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How can individuals with schizophrenia best be equipped to distinguish delusions from

accurate judgements about their environment? This study presents an approach based

on the principles of Bayesian probability and presents the results of a series of tests

in which a simulated observer classifies randomly generated data characteristic of a

simulated environment. The complexity of the data ranges from scalars to vectors of

variable lengths, and the simulated observer makes its decisions based on either perfect

or imperfect models of its environment. We find that when a low-dimensional observation

is considered characteristic of both real observations and delusions, the prior probabilities

of any observation being real or fake are of greater importance to the final decision than

the attributes of the observation. However, when an observation is high-dimensional

(complex), classification accuracy tends to improve toward 100% with increasing

complexity of observations, as long as the patient’s model of the world isn’t drastically

inaccurate. On the contrary, when the observer’s model is sufficiently inaccurate, the

accuracy rate decreases with increasing observational complexity. Overall, the results

suggest applicability of the Bayesian model to the use of interventional therapy for those

who suffer from psychosis.

Keywords: schizophrenia, hallucinations, delusions, Bayesian probability, cognitive behavioral therapy, reality

testing

1. INTRODUCTION

The American Psychiatric Association’s DSM-5 (2013) categorizes schizophrenia as a spectrum of
psychotic disorders whose characteristic symptoms include delusional beliefs and hallucinatory
sensations which impair ordinary thinking and behavior, and lead to dysfunction in social and
occupational life (American Psychiatric Association, 2013).

Factor analysis has, since the late 1980s, identified three general categories of symptoms; the
symptoms associated with one factor are more likely to occur alongside each other than with the
symptoms associated with other factors (Liddle, 1987).

The “positive symptoms” made famous by their association with florid states of psychosis,
such as hallucinations and delusions, are only one such group. The second group, the negative
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symptoms, may include a flattening of speech and gestures that
drastically reduces emotional expressiveness, or decreases in
spontaneousmovement to the point of catatonia.The third factor,
meanwhile, is associated with a lack of coherence or abstraction
in thought.

This study focuses on the problem of separating delusions
from reality, but will first consider what phenomena may reliably
be named as delusions, how these phenomena differ from each
other, how they interact with each other and with phenomena
outside the group, and which categories may be amenable to
our approach.

Delusions, like hallucinations, are a positive symptom of
schizophrenia—an addition to the lived experience absent from
the experiences of those without schizophrenia. Delusions and
hallucinations may both also occur in affective disorders, which
include bipolar disorder, major depression, and post-traumatic
stress disorder. A detail that might confirm a diagnosis of
schizophrenia would be the extension of a plausible idea into
absurdity; a patient might have sense of being carefully watched
by others or being addressed with messages specifically for
them, which becomes a delusion when that person is convinced
that obviously disinterested actors like newspapers or TV
shows, which are meant for a mass audience, are specifically
referring to them and alluding to their circumstances (McKenna,
2017). In this way a delusion can assimilate anything in a
person’s perception, assigning motivations and responsibilities—
but the main character of a delusion is usually the person
holding the belief. Situations seem to them to be created
with them in mind; people around them are talking to each
other about them, or organizing something with them at the
center (McKenna, 2017).

Where do the delusions of schizophrenia come from, and
what strengthens them? A state of “delusional mood” has been
described in some people, in which a familiar environment
feels odd, uncanny, or different in some indescribable way, and
events in that space are assigned new meaning or significance.
A person may consider delusional-sounding explanations at this
stage and reject them, or have them crystallize into deeply held
ideas (McKenna, 2017). Similar descriptions have been given
of auditory verbal hallucinations (AVH), or “hearing voices”:
individuals with schizophrenia distinguish between their own
“inner speech” (the phenomenon of “thinking to yourself ” or
imagining your thoughts as a voice) and AVH on the basis that
they feel no ipseity (the quality of being created by and belonging
to oneself, also described as “authorship” or “mineness”) toward
their AVH. Something that should be familiar to the subject
isn’t familiar anymore, and they ascribe some other meaning
or identity to what they cannot attribute to themselves (Rosen
et al., 2018). Some delusional patients may proceed in this way
to read meanings into the arrangement or other qualities of
inanimate objects (a delusion of reference), or read a hidden
and deeply personal meaning into the mundane interactions of
other people with each other or with the patient (a delusion of
reference). However, delusions of reference or misinterpretation
are not always preceded by delusional mood (McKenna, 2017).
Furthermore, a delusion doesn’t have to stem from or be centered
around an external event. Instead, delusions can, starting from

a thought or some other internal event like a hallucination, still
develop into a deeply held opinion, proposition, or judgement
on oneself or one’s status. To summarize, a delusion begins with
a snap judgement on an object of personal significance, which
is elaborated on and pushed into an absurd direction by further
snap judgements.

The delusions of schizophrenia have some overlap with those
seen in other disorders, or with non-delusional forms of strong or
overvalued beliefs. However, the delusions of other disorders can
be different enough in their onset and development to warrant
different therapeutic assumptions and practices. Paranoia or
“delusional disorder” distorts ideas in a manner similar to
schizophrenia, seeking references from the environment or
characteristics of oneself on which some opinion can be built.
Persecutory variants lead to feelings of danger from others, and
grandiose variants lead to feelings of superiority over others. A
fifth of patients diagnosed with delusional disorder go on to be
rediagnosed with schizophrenia. However, the peak age of onset
for delusional disorder is the late thirties or mid forties, while the
peak age of onset for schizophrenia is late adolescence (Waters
and Fernyhough, 2016), and 60–80% of patients diagnosed with
delusional disorder are married (McKenna, 2017). Prodromal
schizophrenia may become fully developed through a period
of stress, but delusional disorder is associated with the stresses
and anxieties of a very different stage of life. The delusions of
schizophrenia especially should not be conflated with those of
affective disorders, like bipolar disorder, major depression, and
post-traumatic stress disorder (PTSD). “Depressive cognitions”
may include low self-regard, considering oneself unequal to one’s
responsibilities, and wishing to escape; in some cases of fully
delusional thinking, patients may hold themselves responsible
for inexplicable or supernatural disasters affecting people they
care about (McKenna, 2017). Delusional thinking in affective
disorders draws on affect or mood, integrating ideas of personal
guilt, sin, and vulnerability that schizophrenia may not. The
remainder of the study will discuss therapies optimized for
schizophrenia, and the approach promoted by this study will
only tangentially focus on the emotive content of the patient’s
observations or the patient’s own mood at the time of making
them. Our approach will therefore also be evaluated with respect
to its possible effectiveness specifically against schizophrenia.

First developed in the 1990s, cognitive-behavioral therapy
(CBT) is a prominently used family of therapy methods for
several disorders, sometimes used along with antipsychotic
medication (Lencer et al., 2011). As a treatment, CBT for
psychosis (CBTp) embraces a more reactive approach,
focusing on reducing the emotional distress associated with
the positive symptoms of schizophrenia, developing new
coping strategies, and shifting established ways of thinking
about one’s own symptoms (Hagen et al., 2011). Recently, CBT
has had some new developments, sometimes referred to as
third wave therapies, including compassionate mind training,
eye movement desensitization, and reprocessing (Sommer
et al., 2012). We believe our study supports another
“third wave therapy,” that utilizes Bayesian probability
to teach patients to learn the algorithm implemented in
this study.
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This study is a preliminary exploration of the possibility and
promise of treating the separation of delusional judgements on
the environment from accurate observations as a problem of
probability. We propose an approach for separating real sensory
perceptions from delusions that focuses on identifying and
building, through collaboration between individuals and their
therapists, two personalized distributions of attributes which the
patient considers typical of an accurate observation about their
environment, and typical of their conserved delusional thinking,
respectively. The question of what an “accurate” observation is
might be addressed in sessions between patients and therapists
that draw on CBT methods like reality testing, and identification

of the common traits underpinning the patients’ delusions could
benefit from metacognitive examination of the feelings that
underpin that range of thinking. The question of whether a
particular thought about the environment is reliable or not
can then be expressed by the patient as a question of whether
the attributes of that thought are more representative of the
accurate or delusional distribution, or whether the thought is
more likely to have arisen from one distribution or another
given the nature of its attributes. This is suited for a direct
application of, or else a style of thinking modeled on, Bayes’
rule of conditional probabilities, which will be discussed in the
next section.

FIGURE 1 | A simplified depiction of a proposed scheme to measure and improve the effectiveness of individuals’ cognitive techniques for determining the reality of

an observation.
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To summarize, the patient builds off initial assumptions of
what’s “weird” or “strange” to build a more detailed description
of where “strange” begins and ends, where the “normal” or
“expected” begins and ends, and where the two might overlap.
In the last phase the patient, unaided by a second opinion but
assisted by their constructed model, identifies their thoughts on
the environment as accurate or delusional.

Implementing this idea in a randomized controlled trial,
or even a pilot study, is outside the scope of this paper. We
consider ourselves to be establishing the groundwork for a pilot
study by (1) working out a theoretical basis for our approach,
(2) suggesting methodologies that could be used by a study
with human subjects, and (3) testing a computer simulation
of our approach and analysis of results. First, we continue the
investigation of the literature begun in this section in section 2, to
verify our theoretical assumptions, identify a subset of individuals
with schizophrenia that may be well-suited for our approach,
and lay out the problem in more detail. In particular, section
2.1 will describe the history of similarly-structured experiments
in psychological research, and the dominant conclusions from
them. Second, section 2.2 will show how virtual reality (VR)
technology could contribute to implementing the system of
controlled observation and categorization of delusions described
in Figure 1. Third, we conduct several idealized simulations,
with varying initial parameters, of an observer using Bayes’
theorem to discriminate between two observational distributions.
Instead of complex clustering approaches, we have chosen amore
simple discrimination method that may be imitable by humans
with minimal training. In fact, some believe that humans are
Bayesian and can manipulate probabilities in a way that is at least
somewhat logical (Griffiths and Tenenbaum, 2007). The ultimate
goal of our approach is to build in patients with schizophrenia
an appreciation and active use of the basic assumptions of Bayes’
rule, and the proximate goal of the simulation would be to set
an upper bound for the effectiveness of this minimalist approach,
or to determine the highest extent to which we can expect this
approach to work. The results of this simulation and immediate
conclusions from them are discussed in Section 4.

We hypothesize that training people with schizophrenia to
represent the reality of their observations perspective, and then
to decide an observation based on those probabilities, has enough
potential for therapeutic benefit to warrant further study. The
strengths and weaknesses of our investigation, and the ultimate
validity of our hypothesis, will be discussed in Sections 5 and 6.

2. BACKGROUND

In this paper, we are validating a therapeutic method that requires
individuals with schizophrenia to manipulate probabilities. In
this section, we describe evidence that such an approach
might succeed.

2.1. Schizophrenia and Probability
Evaluation
In what follows, we will describe a proposed therapy that
relies on individuals with schizophrenia correctly evaluating
probabilities. It may be hard to imagine a human juggling

high-dimensional vectors and precisely calculating the likelihood
of each component. However, a simpler version of the same
task, with simple proportions and smaller vector sizes, has for
decades been a recurrent tool in examinations of the effects of
schizophrenia on reasoning.

Preliminary studies by Hemsley and Garety (1986), Fischhoff
and Beyth-Marom (1983), and Volans (1976) inspired the
deployment of the “beads task” by Huq et al. (1988). This team
tested the performance of 15 patients with active delusions, 15
patients with disorders other than schizophrenia, and 15 controls.
In the beads task, the patient is informed that the test will
involve two jars of beads, which both contain beads of two
different colors. The jars have different ratios of beads: one might
have a 80:20 ratio of color A to color B, while the other has a
20:80 ratio. Harder versions of the task will make the jars less
distinct (60:40 and 40:60 ratios) or make it so the jars’ ratios
aren’t reciprocal. Beads are drawn from exactly one jar, and
the resulting sequence of beads becomes the subject’s means of
determining which jar is the source of the beads. Variations of
the taskmay include switching beads with emotionally significant
items like positive or negative comments about people, but
even these items are framed as being “drawn from jars,” where
each jar represents a different ratio of the possible variants
of items. In discriminating between two different distributions
through sequences of observations and calculations of likelihood,
our approach resembles the beads task. Our simulation of the
beads task differs in one respect, however— in the simulation,
the observations are not qualitative traits with stark differences
(like bead color) but real numbers drawn from two continuous
random variables.

Early studies tried to prove a “jumping to conclusions” (JTC)
bias characteristic of delusional subjects, by arguing that a lower
average “draws to decision” (number of beads a subject has to
see being drawn before they are ready to decide which jar is
the source) was associated with delusion presence or severity.
However, these studies’ conclusions were still expressed with
reservations about whether the subjects had really understood the
task, or if some other confounding variable was at play (Moritz
and Woodward, 2005). Associations with clinical variables are
only found on harder versions of the task; one version that used
reciprocal 20:80 and 80:20 ratios found no significant correlation
between delusion-measurement scales and draws to decision
despite a sample size of 300 (Pytlik et al., 2020). Controlling
for strength of negative symptoms and IQ the association with
positive symptoms, and delusions in particular, becomes non-
significant (McKenna, 2017). The connection with delusions
is more tenuous when one considers that JTC measures do
not improve in response to antipsychotic medication, which
reduces delusion strength (So et al., 2015). Meanwhile, one
recent study using a variant of the beads task counteracted
lack of motivation or interest in the task by punishing hastily-
made wrong decisions through deductions from a monetary
reward, and found that the variable that JTC was mostly
strongly correlated with was a non-clinical variable—namely, low
socioeconomic status—while delusional patients actually showed
increased draws-to-decision (Baker et al., 2019).

Reduced draws-to-decision now seems less like the delusional
bias it was initially framed as, and more like a cognitive deficit
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that may only be weakly, if at all, related to delusions. Lunt
et al. (2011) administered the beads task to 19 people with
frontal lobe lesions, and found significantly reduced draws
to decision. Another theory that fails for similar reasons as
the idea of a delusional “jumping to conclusions” bias is
the idea that changes in theory-of-mind are responsible for
delusions. Theory of mind refers to the ability to infer the
mental states of others, and one possible theory of delusions
was that individuals with schizophrenia built and maintained
delusions through misrepresentations of their own mental
state (seeing their own inner speech as auditory hallucinations
resembling the voices of others, or otherwise taking on a foreign
or invasive quality) and the mental state of others (reading
meaning into the meaningless, or a reference to oneself in
the interactions of the disinterested). However, studies of low
performance on theory-of-mind tests have generally shown
stronger correlations with negative symptoms (flattened affect,
etc.) and formal thought disorder/disorganization than with
positive symptoms (McKenna, 2017).

Based on the evidence, it is unlikely that delusions lead
to inevitable impairment in probabilistic reasoning, but it is
probable that strong negative symptoms lead to the same. Our
approach may, unfortunately, be totally unsuitable for patients
with strong negative symptoms or cognitive deficits. Across the
spectrum of possible presentations of schizophrenia, we may
predict that our approach undergoes a reduction in effectiveness
that scales with the strength of negative symptoms, basing
this prediction off the association of negative symptoms with
reduced draws-to-decision, which manifests in the simulation of
our approach as a reduced observational vector size. We may
predict that different patients will be able to go up to different
vector sizes, isolating different numbers of components from
their judgements before arriving at a final decision on how to
categorize that judgement. Our simulation must therefore not
only predict themaximumpossible effectiveness of our approach,
but must set the upper bound for effectiveness even for small,
non-ideal (but perhaps more realistic) vector sizes.

Existing approaches to cognitive therapy integrate education
about the nature of cognitive biases. The beads task could be
integrated into our approach as a teaching tool, that introduces
and reinforces principles of probability and use of Bayes rule.
Another example task might include an accurate estimation of
coincidence probability (Griffiths and Tenenbaum, 2007).

2.2. Measuring Delusions and Analyzing
Measurements
The simple depiction of delusional ideation and discrimination
of truth from delusion in Figure 1 may give some readers pause:
if the patient is recalling memories of delusional judgements,
how is the therapist (who may not have been around to see, for
example, an arrangement of background objects or a bystander’s
attitude which the patient considers significant) supposed to
prove or disprove these specific assessments, and how will the
patient avoid recall bias? Even if the emphasis is on delusional
judgements which the therapist or some other neutral party (a
parent or friend) was around to see and independently evaluate,

can these ideas really be classified on demand, especially within
the short sessions (30–40 min) of CBT?

One approach that produces current and independently
verifiable delusional judgements in a safe, reliable way may
be virtual reality (VR). Over the last 10 years, since the
introduction of the Oculus Rift and other consumer-friendly VR
devices, a common experimental setup has involved setting up
environments like train interiors or elevators, where a patient’s
avatar shares space with several other avatars. The situations
are emotionally neutral, but may be environments in which
the patient comes to feel the attention of many people on
them and develops delusions of reference or paranoia (Brown
et al., 2020). Such associations will be coincidental, since the
environment has not been constructed to produce them; but
coincidences are themselves phenomena in which a certain event
seems to be more likely under an alternate theory or hypothesis
than the currently-held one, inviting reconsideration of causal
explanations (Griffiths and Tenenbaum, 2007). The embrace
of this alternate theory is characteristic of the reasoning style
associated with schizophrenia.

The experiences produced in virtual reality can be analyzed
with the same measures used for asking people about real-
life experiences. In one study, Freeman et al. use six different
assessment scales measuring paranoid, affective, and other
symptoms (Freeman et al., 2010). Another review of VR in
psychological research makes note of the possibility of real-time
physical measurement, with eye-tracking (useful for analyzing
targets of the subject’s gaze or eye contact, in studies on
social skills), heart rate monitoring, and galvanic skin response
(sweat changes the skin’s electrical conductance, allowing
detection of sweaty palms which may further indicate emotional
unease) (Freeman et al., 2015).

This study makes no particular commitment to virtual reality,
and only suggests it as a promising option. Its merits or
drawbacks are further discussed in section 5.

3. THEORETICAL FRAMEWORK

Relevant features of probability theory are reviewed in section
3.1. In section 3.2, we describe our model of the world and
the observer.

3.1. Probabilities and Probability Density
Functions
We will take a frequentist approach to describing random
variables and probabilities, but will then rely heavily on
Bayes theorem as our basis for how an observer might
classify judgements as delusional or not. There is no internal
contradiction here; frequentist and Bayesian arguments simply
boil down to different but compatible interpretations of
probabilities, as will be explained.

Although there are more formal ways of describing this,
a random variable X takes on a realization x ∈ X in an
“experiment” in which one of many possible realizations is
randomly produced. Each possible value x has a particular
probability p(x) of occurring; if one repeats the experiment
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a large number of times, then the frequency of x’s will
be nearly p(x). One can also view p(x) as describing our
belief about the likelihood of getting x in any particular
experiment. The quantity p(x) is referred to as a probability
distribution. For example, let X represent a coin flip. The
realizations can take on one of two values, x ∈ X = {H,T}.
If the coin flip is fair, then p(H) = p(T) = 1

2 . When
the set of possible values for the realization is finite,
the random variable is said to be discrete, as in this
coin flip.

When this is not the case, the random variable might be
continuous (e.g., when X = ℜ) or mixed (a mixture of discrete
and continuous). In this article, we will need to describe a
continuous random variable X with realizations x in which X =
ℜn, an n-dimensional vector with real values, as this is how we
will model sensory perceptions (imagine unfurling an L × L
image into an L2 long vector of pixel intensities). In a great
many experiments, we will never see the exact same vector twice;
the frequency with which we observe the exact same vector in
many experiments is exactly 0. However, we can ask about the
probability (frequency) with which we observe a vector whose
entries fall between two prescribed limits, written as P(x ≤
X ≤ x + 〈δx1, ..., δxn〉). For small δxi, this will take the form
ρ(x)δx1...δxn. The quantity ρ(x) is referred to as the probability
density function of the random variable X. A common example
of such a probability density function is the normal distribution
shown in Figure 2.

We are also interested in joint probabilities of two random
variablesX, Y and so-called conditional probabilities.Where two
random variables are related (X may represent the result of a
coin flip, while Y may represent the result of m rolls of a dice,
where m depends on the results of the coin flip) we can ask: how
does our observation of Y change based on knowledge of X, or
vice versa? The answer is encapsulated in conditional probability
distributions or densities p(y|x) and p(x|y). Simply put, these are
the probabilities of observing y (or x) in an experiment given that
we have observed x (or y).

FIGURE 2 | An example of a normal distribution, in which a random variable

has probability density function ρ(x) = 1√
2πσ2

e−(x−µ)2/2σ2
with µ = 200, σ = 2.

One is most likely to see observations near the mean, and the likelihood of an

observation is governed by how many standard deviations one is away from

the mean. Lines indicate locations at which one is 1 (red), 2 (green), or 3 (blue)

standard deviations from the mean.

3.2. Simulating World and Observer
The proposed method from Figure 1 outlines three phases
of development. First, the patient works with a therapist
who can affirm or challenge their judgements about their
environment (VR environment or otherwise), or else devise
a test of the assumption that may lead the patient to the
therapist’s intended conclusion. During this period of supervised
observation, the patient acquires a sense of the prior frequency of
delusion f ′.

Concurrently, the patient constructs distributions of
delusional and accurate judgements. The therapist may explain
this process as “itemizing” one’s views of the world, or making
a checklist of essential qualities. Just as the beads task described
in section 2.1 becomes easier to solve as more beads are drawn,
the task of building a distribution of essential qualities for
real and delusional observations or of their attitudes toward
them, and later identifying an unknown observation as coming
from either distribution, relies not only on making many
observations but breaking down each one by prominent
sensory details, emotive content, visible relations of cause and
effect, implications, and other details on which a difference
in distributions could be established. The patient may be
encouraged to start with a short list, run through it a few
times when in an unfamiliar situation, and then add onto it
with time. The length of this list corresponds to the complexity
of the task.

Then, the patient may begin to classify their own
judgements in real time as accurate or delusional based on
the estimated frequency of delusion and her estimations of
how real and delusional observations are distributed. The
simulation discussed below is an analogical representation
of this process using generated observations and a
simulated observer, which we have implemented in a
computer program.

When generating observations or judgements o, we will err on
the side of simplicity, though one could imagine the framework
being applied to “records of thoughts” in the form of natural-
language text samples such as patient interview responses. Each
observation o will be an n-dimensional vector, where n has a
minimum of 1. A 1-dimensional vector is a single number, and
we can suppose this number will be drawn from a single number
line representing all real numbers. The set of all real numbers is
here used to analogically represent all the possible observations
that a person can make about a specific feature or topic of their
environment. In the same way that some observations are more
likely than others, certain numbers are more likely to make up
the observations o.

T observations will be generated, and each observation o will
be an n-dimensional vector. Each component will be chosen
independently of all others, but all components will be drawn
from only one of two possible distributions. The ith component
oi of any given judgement will be described by probability density
function ρr(oi) when the judgement is accurate and ρf (oi) when
the judgement is delusional. A biased coin flip with probability
f of success (MacKay, 2003) determines whether or not the
delusional distribution is chosen to generate an observation. All
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the trials used in our simulation will have the same ρr(oi), but
different means and standard deviations for ρf (oi). This reflects
the individualized nature of delusions, and the necessity of our
approach being robust enough to deliver promising results under
several possible scenarios.

The probability density function for the entire judgement
o is

∏n
i=1 ρr/f (oi). Now, when receiving the judgements o,

the observer models the probability density function of oi
as ρ̃r/f (oi). The farther away ρ̃ is away from ρ, the worse the
individual’s model.

4. RESULTS

In this section, we will turn to a simulated observer to get a sense
of the maximum effectiveness of this approach for humans, and
any possible limitations that are inherent to the approach.

The simulated observer described below can accommodate
observations as described above. The observer’s evaluation
method is not tied to the environment’s method for generating
observations— although the two are related in design, the
observer’s “perception” of environmental parameters is allowed
to differ from the “true values” used by the environment.

4.1. Classification of Observations
According to Bayes theorem, if we have two random variables X
and Y with respective realizations x and y, then

p(y|x) =
p(x|y)p(y)

p(x)
. (1)

Bayes theorem in the context of cognition often interprets Y
as hypothesis about the world and X as data. In this context,
p(y) is our prior probability distribution over hypotheses, our
subjective belief about how likely each world model is to be true.
The conditional probability p(x|y) is the probability that some
data x is produced if the world operates according to hypothesis y,
often called the likelihood. Whereas, the conditional probability
p(y|x) is the probability that hypothesis y is accurate given
observed data x, also called the posterior. The evidence p(x)
encapsulates the likelihood that such data occurred at all. One
can therefore reasonably use Bayes theorem to update beliefs
about the world given data. Acquisition of additional data can
result in another Bayes update, using the previous posterior as
the new prior.

The classification algorithm is not given confirmation as to
whether each term is real or fake; its goal is to guess that
information. It must estimate p(R|ot), the probability that ot was
drawn from ρr given its value, as well as p(F|ot), the probability
that the term was drawn from ρf given its value. These come
directly from Bayes theorem:

p(R/F|ot) =
p(ot|R/F)p(R/F)

p(ot)
, (2)

where p(R) and p(F) are the prior probabilities that an ot of any
value was drawn from a particular distribution. To decide if an

observation is accurate or delusional, we will simply take the ratio
of p(R|ot) to p(F|ot). We call this ratio L:

L =
p(R|ot)
p(F|ot)

=
p(ot |R)p(R)

p(ot)

p(ot |F)p(F)
p(ot)

=
p(ot|R)p(R)
p(ot|F)p(F)

=
ρr(ot)(1− f ′)

ρf (ot)f ′
, (3)

where the prior probability that any observation is delusional
is thought to be p(F) = f ′ and the probability that any
observation is real is thought to be p(R) = 1 − f ′. Similarly,
the probability (densities) of the observation is thought to be
ρr/f (ot) =

∏n
i=1 ρ̃r/f (ot,i), as described earlier. Substituting these

values gives

L =
1− f ′

f ′

n
∏

i=1

ρ̃r(ot,i)

ρ̃f (ot,i)
. (4)

The classification algorithm need not exactly match the
parameters used by the generative algorithm, and we discuss the
implications of mismatch later on.

The following sections describe three sets of trials. Within
each set, trials differ in parameters like the mean and standard
deviation of the distribution from which delusional observations
are drawn, to simulate specific and distinct tendencies under the
general banner of “delusional ideation.” Trials may also differ in
how accurate the observer’s perception of the environment is.
We will show that the observer is better at classifying complex
observations than simple ones, and that this holds true even in
select cases where the observer has an incorrect model of the
environment, though not in others. In this latter category, a direct
relation of observational complexity and classification accuracy
fails to manifest.

4.2. Misclassification in One Dimension
First, we discuss classification accuracies when n = 1, i.e.,
when the sensory perceptions are low-dimensional and not
complex. Figure 3 and Table 1 refer to three representative
trials that each illustrate a different phenomenon. In each
one, the observer classified 1000 unidimensional observations,
and had a perfect model of both accurate judgements and
delusions, i.e., ρ̃ = ρ and f = f ′. Table 1 describes the
conditions under which the observations were generated, and
some quantitative measurements of the success of classification.
Figure 3 shows the probability distributions described in
Table 1 and the corresponding results of classification, showing
how the initial data set is processed by the observer. In
trial 1, the real and delusional models overlap significantly,
and the frequency of delusions is low; the accuracy rate is
correspondingly high. In trial 2, the frequency of delusions
has increased, and accuracy has dropped to 56.6%. In trial
3, the frequency of delusions is small, as in trial 1; but the
real and delusional models differ substantially. The mere fact
that a delusion is highly unlikely and that outliers are highly
likely to be delusions is enough to drive the accuracy rate
to 97.7%.
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FIGURE 3 | (A–C) Graphs of the distributions used to generate the observations of the simulated world and used by the simulated observer to find the likelihood, for

unimodal Trials 1–3. (D–F) Results of Trials 1–3, showing a histogram of the 1,000 observations of the simulated world colored by the result of classification (blue for

classified as real, orange for classified as false).

TABLE 1 | Results of unidimensional classification for three experimental

conditions, with perfect observer models.

Experimental conditions Accuracy

rate (%)

True positive

rate (%)

False

positive rate

(%)

ρr ∼ N (200, 2), ρf ∼ N (201, 2),

f = 0.1

91.5 100 100

ρr ∼ N (200, 2), ρf ∼ N (201, 2),

f = 0.5

56.6 55.4 41.2

ρr ∼ N (200, 2), ρf ∼ N (201, 20),

f = 0.1

97.7 99.9 22.2

For the first trial, the classification treated every single one of the 1, 000 observations as

true, as seen in Figure 3 (left). The true positive and false positive rates are the possibilities

that a real observation is classified as real or that a real observation is classified as

false, respectively.

Figure 3 offers more insight. In trial 2, for an observation
below 200.5 (the average of the distributions’ means) L will
always be greater than 1, and the observations will always be
classified as real. However, the area under the density curve from
x = (−∞, 200.5) is nearly the same for both distributions.
Even though every observation within that interval will inevitably
be classified as real, the likelihood of the generative algorithm
producing real or delusional observations in that interval is
around the same. After x = 200.5, ρf values are now always
greater than ρr . L will always be less than 1, and the observations
will all be classed as delusional despite a non-zero probability of
them being real. In trial 1, f—the frequency of delusion—is small.
Multiplying ρr by 1 − f and ρf by f leads to L being greater
than 1 in all cases. When ρr and ρf are very close together, it is
impossible to discriminate between them based on the value of

the observations, and so our prior—the frequency of delusion—
becomes the main determinant in how we classify observations.

Trial 3 classified 922 of 1, 000 observations as real, with an
accuracy rate of 97.7% and a false positive rate of 19.79%. Here,
the distributions are more distinct. There is still one interval
of overlap where neither ρr nor ρf are negligible, but ρr is
always greater. As such, the observations are always classified
as real even when there is a chance of them being delusional,
contributing to the false positive rate. The distribution ρf is,
however, wide enough in spread to produce two large zones
where there is minimal overlap between the distributions and
where ρr is negligible. Within these areas only false observations
are expected to be generated and all are expected to be classified
correctly, raising the overall accuracy.

In short, observations are classified as real or delusional based
on the interval that they are in. A delusional observation that
happens to fall in a “real interval” will always be misclassified
as real. An extraordinary delusion can be distinguished from
the real, but an ordinary delusion which occupies the same
interval cannot.

4.3. Rescuing the Accuracy Rate by
Increasing Dimensionality
The sometimes poor accuracy rates of the previous subsection
can be increased markedly by increasing the dimensionality of
the sensory perception. Each element of the vector describing
the sensory perception provides independent information about
whether or not the perception is real or delusional. Put
together, the accumulated evidence more correctly points to
the nature of the observation than any one element of the
observation vector.
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FIGURE 4 | Accuracy increases with the size of the observation vector when its size is ≥ 1. At (A), φr = N(200, 2), φf = N(201, 2), and f = 0.1. Due to the similarity of

the two distributions, the accuracy rate increases slowly. At (B), φr = N(200, 2), φf = N(201, 20), and f = 0.1. Due to the high variance in φf and thus dissimilarity in the

two distributions, the accuracy rate increases quickly to nearly 100%.

As observations get more complex, Bayesian classification
become more effective at determining which distributions they
come from.We see strong numerical evidence of this in Figure 4.
Figure 4 (left) displays results of ten trials for each of 30
dimensionalities with the experimental conditions listed in the
caption. There is a clear positive correlation between accuracy
and dimensionality. In Figure 4 (right), accuracy jumps from
97.5 to 100% at dimensionalities of 5 with high probability,
meaning that most trials led to accuracy rates near 100%.

The rate at which scatter in accuracy decreases is extremely
dependent on environment. From Figure 4 (right), it appears
that scatter in accuracy rate can bemade quite small at even n = 5
for those environmental conditions; but at n = 30 in Figure 4

(left), the scatter is still quite noticeable.
Multidimensional observations allow the classification

algorithm to decide on real or delusional with more information
than would be afforded by a scalar observation. Suppose n = 10.
If an observation is just one number, a number drawn from the
false distribution can land in an interval where ρr exceeds ρf ;
but out of a set of ten numbers drawn from ρf , a majority may
be within the interval where ρf exceeds ρr . By leveraging the
power of more data, we can achieve accuracy rates approaching
100% with probability one by increasing n, the dimensionality
of sensory perceptions. In real life, sensory perceptions can be
of very high dimensionality, and so this analysis is likely more
relevant than that of the unidimensional case. A full theoretical
analysis is contained in section 4.4 below.

4.4. Imperfect Models Can Still Lead to
Near-Perfect Accuracy
Until now, we have assumed that the observer’s model of
the environment is perfectly accurate. We have assumed that
the observer’s estimation of the prior probability that any
given observation is delusional is exactly the same as the
environmental variable f , and that the observer has also identified
the distributions ρr and ρf that observations are drawn from.

TABLE 2 | Descriptions of the observer’s assumptions for each trial, with the true

environmental conditions given in Figure 5.

Environmental Model: ρr = N(200, 2), ρf = N(201, 2), f = 0.1

Observer’s models
∫

∞

−∞
ρr (o) ln

ρ̃r (o)
ρ̃f (o)

do
∫

∞

−∞
ρf (o) ln

ρ̃f (o)
ρ̃r (o)

do

ρ̃r = N(200, 2), ρ̃f = N(201, 2), f = 0.2 0.125 0.125

ρ̃r = N(200, 2), ρ̃f = N(201, 2), f = 0.9 0.125 0.125

ρ̃r = N(196, 2), ρ̃f = N(205, 2), f = 0.1 1.125 1.125

ρ̃r = N(198, 2), ρ̃f = N(199, 2), f = 0.1 −0.375 0.625

ρ̃r = N(202, 2), ρ̃f = N(203, 2), f = 0.1 0.625 −0.375

These are accompanied by divergence scores calculated according to Equation (5).

Five simulations were run in which the observer had an incorrect
perception of the prior probability, or an incorrect perception
of the mean of one or both distributions. Perhaps surprisingly,
under weak conditions, imperfect models can lead to near-perfect
accuracy rates.

In section 4.3, we showed that increasing the dimensionality of
observations will always raise the accuracy rate of classification.
This is only sometimes true when one has an imperfect model.
To illustrate this, we focus on five different imperfect models
at a range of dimensionalities. See Table 2. There will be two
quantities that determine whether or not the accuracy rate
increases with increasing dimensionality, µr and µf :

µr/f = n

∫ ∞

−∞
ρr/f (o) log

ρ̃r/f (o)

ρ̃f /r(o)
do. (5)

As we will show later, there are good theoretical reasons to
suspect that negative µr/f leads to a less than perfect accuracy
rate in the limit of large observation length. But for now, we will
show corroborating empirical evidence.

In Trials 1, 2, and 3, as illustrated in Figure 5 (left, right),
increasing the dimensionality increases the accuracy rate. In all
of these trials, both µr (the mean of the log-scaled summation of
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FIGURE 5 | Classification with priors and models that don’t match the environmental values can lead to increases in accuracy rate to near 100%. Observations were

generated with the environmental model given in Table 2. For classification, the observer used the distributions given in the first two rows of Table 2. (A,B) both show

results of the trials where the simulated observer has an accurate grasp of the environmental distributions [ρ̃r = N(200, 2), ρ̃f = N(201, 2)] and prior probability f of

false observations. The prior probability is f = 0.2 for the trial whose results are shown in (A), and f = 0.9 for the trial whose results are shown in (B).

FIGURE 6 | Classification with priors and models that don’t match the environmental values can lead to increases or decreases in accuracy rate. Observations were

generated with the environmental model given in Table 2. For classification, the observer used the distributions given in the last three rows of Table 2. The top row

shows ρf (), ρr (), ρ̃f (), and ρ̃r (), while the bottom row shows the corresponding accuracy rate as a function of observation length. The environmental distributions and

observer-constructed distributions given in Rows 3–5 of Table 2 are illustrated in (A) (Row 3), (B) (Row 4), and (C) (Row 5). (D) describes the results for the trial using

the conditions shown in (A), (E) shows the results from (B), (F) shows the results from (C).

likelihood ratios for classification of real observations in Equation
5) and µf (the equivalent for classification of fake observations)
are positive as seen in Table 2. However, in Trials 4 and 5, as
illustrated in Figure 6 (middle, right), increasing dimensionality
does not increase accuracy. For Trial 4, the accuracy actually
decreases; and for Trial 5, the accuracy remains, with some
scatter, fixed around 1 − f in a manner reminiscent of the
trials with unidimensional observations. For these two trials,

either µr or µf is negative, and accuracy tends to decrease with
increasing dimensionality.

Let’s focus on Trials 3− 5 so that we can, in detail, understand
the effects of a mismatched model.

In Trial 3, the observer’s perception (ρ̃r) of ρr has a mean
(196) two standard deviations below the environmental value
(200), and the observer’s perception (ρ̃f ) of ρf has a mean
(205) two standard deviations above the environmental value
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(201). Figure 6A illustrates the consequence of this: due to the
minimal overlap between these distributions, any environmental
observation judged to have been likely to be drawn from ρ̃r is
judged as impossible to draw from ρ̃f , and vice versa. Hence,
µr and µf are larger in Trial 3 as compared to Trials 1 and
2. In other words, because ρ̃r is so much more likely to be
low when ρ̃f is high and vice versa, the likelihood ratio used
to calculate µr/f is more extreme, leading to larger values for
µr/f . However, µr/f are both still positive for Trial 3, and as
in Trials 1 and 2, the accuracy rate is rescued. So long as the
observation vectors are filled in randomly, larger vectors may
(if real) be filled in with more values which are likelier to be
from ρr than ρf , and (if false) be filled in with more values
which are likelier to be from ρ̃r rather than ρ̃f , and so there is
a basis for correct decision-making that is improved upon by
increasing dimensionality.

In Trial 4, the observer’s perception ρ̃f actually overlaps
more with ρr than ρ̃r does. When for a real observation ρ̃r is
consistently lower than ρ̃f , µr is consistently negative because
the ratio within the logarithm is consistently less than 1. This
removes the basis for correct decision-making present in Trial
3. There instead arises a tendency to classify everything as fake,
resulting in a decreasing accuracy with a horizontal asymptote
around f = 0.1, the prior probability that an observation
was fake to begin with. In other words, the observer classifies
everything as fake, and is right around 10% of the time because
the environment is supposed to make around 10% of the
observations fake in every case.

In Trial 5, ρ̃r overlaps more with ρf than ρ̃f , resulting in a
tendency to classify everything as real, which is right 90% of the
time (1− f = 0.9). Here, µf is negative, and for a similar reason
as before.

A straightforward theoretical argument explains these
findings, and further illustrates their robustness to simulation

P(L > 1|R) =
1

2
erfc











log
f ′

1−f ′ − n
∫∞
−∞ ρr(o) log

ρ̃r(o)
ρ̃f (o)

do

√
2n

(

∫∞
−∞ ρr(o) log

2 ρ̃r(o)
ρ̃f (o)

do−
(

∫∞
−∞ ρr(o) log

ρ̃r(o)
ρ̃f (o)

do
)2
)1/2
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and

P(L < 1|F) =
1

2
erfc











log
1−f ′

f ′ − n
∫∞
−∞ ρf (o) log

ρ̃f (o)

ρ̃r(o)
do

√
2n

(

∫∞
−∞ ρf (o) log

2 ρ̃f (o)

ρ̃r(o)
do−

(

∫∞
−∞ ρf (o) log

ρ̃f (o)

ρ̃r(o)
do
)2
)1/2
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parameters. Consider classifying just one observation o. We
can rewrite

L =
1− f ′

f ′
exp

(

n
∑

i=1

log
ρ̃r(oi)

ρ̃f (oi)

)

. (6)

According to the Central Limit Theorem (Pishro-Nik, 2016), the
summation in the exponent tends toward a normally distributed

random variable in the large n limit. If the observation is
real/fake, then the mean of this normally distributed random
variable is given by

µr/f = n

∫ ∞

−∞
ρr/f (o) log

ρ̃r/f (o)

ρ̃f /r(o)
do (7)

as shown earlier and the variance is given by

σ 2
r/f = n

(

∫ ∞

−∞
ρr/f (o) log

2 ρ̃r/f (o)

ρ̃f /r(o)
do

−
(

∫ ∞

−∞
ρr/f (o) log

ρ̃r/f (o)

ρ̃f /r(o)
do

)2


 . (8)

The accuracy of the classification algorithm, averaged over many
observations, is

A = (1− f )P(L > 1|R)+ fP(L < 1|F) (9)

where (1 − f ) represents the probability that the observation
is real, P(L > 1|R) represents the probability that we
classify the observation as real given that the observation
is real, f represents the probability that the observation is

fake, and P(L < 1|F) represents the probability that we
classify the observation as fake given that the observation

is fake. If Z represents the normally distributed random
variable, then

P(L > 1|R) = P(
1− f ′

f ′
eZ > 1) = P(Z > log

f ′

1− f ′
) (10)

From this we can conclude that

where erfc is defined in Pishiro-Nik (Pishro-Nik, 2016).
Altogether, we now have a closed-form expression for the average
accuracy in the large n limit. Suppose that f < 1

2 , so that delusions
are rare. Some analysis inMathematica 12 shows that, in the large
n limit, accuracy approaches 1 with correction factors of order
1

n3/2
as long as

∫∞
−∞ ρr/f (o) log

ρ̃r/f (o)

ρ̃f /r(o)
do > 0. This inequality is

guaranteed if the model is completely correct, ρ̃ = ρ, as then the
left-hand side of the inequality is the Kullback-Leibler divergence
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(MacKay, 2003), between ρr and ρf or vice versa– a non-negative
measure of distance between the two distributions– therefore
explaining the results in Figure 6.

In Figures 5, 6, we see varying rates of convergence to final
values of accurate rate. The estimation of the frequency f ′ of
delusions does not affect convergence properties strongly. Rather,
the rate at which the accuracy approaches 1 is affected by a
complicated function of ρ and ρ̃, indicating that one’s model and
the true nature of the world are both fundamental to how well
one’s classification algorithmwork. In particular, the rate at which
accuracy increases or decreases with increasing dimensionality
is governed by parameters σr/f . Note from Equation (9) and
the equations that follow that imperfect information about the
frequency of delusions is essentially unimportant in determining
both the accuracy rate at large dimensionalities and the rate of
increase in accuracy rate with increasing dimensionality.

The analysis above assumes a large n, such that the scatter
in L is minimized. But, for small enough n, the scatter in L
might be substantial, leading to a large scatter in accuracy. For
example, perhaps a majority of the vector components of the
sensory perception aren’t drawn from the right interval or that
the likelihoods are so evenly matched that the prior-ratio is able
to overwhelm the difference as seen in Table 1.

5. DISCUSSION

We believe that cognitive approaches to schizophrenia therapy
are a healthier approach to making judgements, or dealing with
fixed ideas, as their goal, but accept that since our approach
is so dependent on CBT for theoretical support it is worth
looking at some of the criticisms of it as well. Since the 1990s,
the cognitive model of auditory hallucinations introduced by
Chadwick and Birchwood (Chadwick and Birchwood, 1994) has
suggested that a person’s (potentially delusional) beliefs about the
identity, powers, and intentions of their AVH, as well as their
own ability to control aspects of these voices, are predictors for
the distress, depression, or problematic responses (for example,
compliance with a hallucination that manifests as a command to
do something) these hallucinations cause (Thomas et al., 2014).
A study with small samples of individuals from India, Ghana, and
the United States found that while the Indians perceived their
AVH as the voices of elders telling them to do simple things
and the Ghanaians perceived their AVH as the voice of God,
the Americans heard unidentifiable voices which discussed and
called for violence (Luhrmann et al., 2015). Meanwhile, people
with low self-esteem and feelings of being unsafe may hear voices
which remind them of experiences of being unsafe (Taylor et al.,
2020), and may also perceive new people as threatening on the
basis of little evidence (Garrett et al., 2019).

To address the interlinked challenges of schizophrenia,
cognitive behavioral therapy for psychosis (CBTp) places its
focus on helping people think about their symptoms from a
more helpful perspective, or cope with their symptoms in a
more effective manner (Thomas et al., 2014). Individualized
case formulation is the distinguishing feature of CBTp, because
several aspects of schizophrenia can vary between individuals
(symptom presentation and severity, hospitalization, self-esteem,
family support, response to medication) with independent and

interlinked effects on their chances of recovery (Turkington et al.,
2003). The particulars of CBT depend on mutual agreement
between each individual patient and their therapist, but may
consist of psychoeducation (conventional education about a
disorder and its symptoms), identification and review of beliefs,
exercises to build awareness of emotional states or other triggers
for psychotic symptoms, and exercises to seek out more positive
emotional states (Freeman et al., 2015).

A criticism of CBT has been its tendency to exist as a “black
box” which is hard to evaluate with conventional randomized
control trials– because CBT strives to be as individualized
as possible, mixing in different exercises or even different
theoretical underpinnings, there is a limit to how much can
be said about its general effectiveness in reducing the severity
of specific or overall psychosis-related symptoms, or about the
effectiveness of the exercises it contains (Thomas, 2015). A subset
of CBTp known as CBTv (CBT for voices), which retains the
emphasis on challenging patients’ beliefs about themselves but
focuses specifically on those beliefs about voice omnipotence
and personal submission that make coping with AVH especially
difficult, has been promoted– but there is not yet sufficient
evidence to conclude that it lives up to its promise of being just
as effective as (or more effective than) CBTp while requiring
less clinician expertise, which would ideally allowmore clinicians
to participate in delivering this service (Hazell et al., 2018). In
addition, anywhere from 80% of individuals with schizophrenia
lack insight into, or awareness of, their illness and symptoms
(Joseph et al., 2015). In one case study, a patient was aware of his
symptoms, but insisted that there had to be some physiological
cause with them, some defect in his body, rather than a
mental illness (Bastiaens and Agarkar, 2014). Several studies have
outlined how, when uncertain about the source of a perceived
event, individuals with schizophrenia will prefer to attribute it to
an external source (Engh et al., 2010). The effect is a lack of faith
in treatment, and consequently a lack of adherence to it- since
they do not fundamentally believe themselves to be mentally ill
even if informed of that fact by others, they will consciously refuse
or merely forget to take medicine doses and other treatments,
which may lead to relapse (Bitter et al., 2015). This study takes
anosognosia (another term for “lack of insight”) as an indication
that individuals with schizophrenia cannot be expected to agree
with others on the cause of their symptoms, even when they
acknowledge the existence of those symptoms (Engh et al., 2010).
Therefore, CBT and similar therapies are successful to the extent
that they help patients build an understanding of when and how
they come to initiate negative emotional states like worry or
fear, review harmful assumptions about these states or the beliefs
that justify them, and learn to plan around them or deal with
them (Freeman et al., 2010).

However, achieving true self-awareness may not be necessary.
So long as an individual can acknowledge that their delusions
at least have unusual or uninvited qualities, which even patients
with grandiose delusions of divinity are capable of doing (Isham
et al., 2019), and keep track of the way they deviate from what
is expected of the real world, there can be a way for them to
discriminate between delusions and non-delusional observations
no matter what their attitudes on the delusion’s truth or falsity
are (Beck and Rector, 2005). This is all in the general tradition of
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cognitive therapy going back to Aaron Beck’s identification of the
conserved nature of depressive cognition, and his development
of a therapeutic approach that encouraged patients to recognize
how different situations could lead to similar depressive thoughts,
to anticipate the thoughts they will have on entering a situation,
and to prepare in advance against them (McKenna, 2017).

Although the question of how effective a treatment CBT is
remains an enigma, we believe the results of our demonstration
of Bayesian inference in classification suggest that a person, as
long as efforts are taken to develop their model of the world,
can find consciously adopting Bayesian reasoning helpful for
dealing with delusions. Figure 1 illustrates a simplified scheme
for implementing this, by encouraging a patient to challenge their
initial judgements, take in more observational information, and
revise their assumptions. If people can be made to imagine the
real and unreal as overlapping ranges of possibilities, Bayesian
inference can provide a method for figuring out which of these
locations any given observation comes from.

It should also be clarified that in recommending a technique
to aid conscious thinking, this study makes no claims about the
fundamental mechanisms on which human cognition operates.
Advancements in artificial intelligence have influenced theories
of human cognition, though some approaches to AI are better at
imitating human abilities than others. For example, people and
“neural networks” can both be trained to recognize handwritten
letters and numbers with high accuracy, but while people can
recognize handwritten characters after seeing only a single
example (and also store this information as a flexible mental
concept which is open to future changes), the MNIST data set
for recognizing digits contains 60, 000 images (6, 000 for each
digit 0 − 9) people can recognize handwritten characters after
seeing only a single example (Lake et al., 2017). To imitate the
results as well as the starting conditions of human cognition, a
machine must make inferences that go beyond the data available
to the machine for the task at hand. One way to do this is
Bayesian modeling with strong priors, in which a computer can
start with limited data but continually revise an assumption over
the course of making a new decision (Lake et al., 2017). The
idea that human brains use rules as precise and systematic as
those of mathematical models has been challenged, but there is
not yet sufficient evidence to rule out the idea that the brain
works like a computer and the success of probabilistic algorithms
in AI applications has ensured their popularity in theories of
cognition (Gershman et al., 2015). Although the literature on the
relevance of Bayesianism to psychology often frames it as a way
to explain brain activity, this study does not have the same goal;
it remains agnostic on the fundamental nature of the brain or on
what normative principles can explain schizophrenia, and devises
a proof of concept for an acquired and imitable method.

6. CONCLUSION

In this study, we try to study reality-testing from a computational
perspective. Patients with schizophrenia may be able to decide
whether specific observations on their environment can be relied
on or not, on the basis of prior estimates of the probability
that any observation is real or delusional and the likelihood
that a specific observation belongs in either category based
on its attributes (which may be characteristic of one or both
categories). This study assumes that this decision takes the form
of comparing the results of two calculations: the probability that
the observation is real, and the probability that the observation
is false. Classification proceeds by comparing the ratio of these
probabilities to 1.

This study concludes that when an observation is low-
dimensional (simple) and are just as likely to have emerged from
either distribution, the prior probabilities of any observation
being real or fake are of greater importance to the final decision
than the attributes of the observation, and so a Bayesian thinker
will either doubt everything or doubt nothing within particular
intervals. However, when an observation is high-dimensional
(complex), classification accuracy tends to 100% as long as the
patient’s model of the world is not drastically inaccurate.

The principle that noting more attributes about an object
or event allows for a better understanding of it is common
sense, but in this study it finds mathematical expression, which
allows this principle to potentially inform the design of therapies.
This study also shows an important fact about Bayes’ theorem:
an optimal decision informed by limited information can be
very different from an optimal decision informed by more
comprehensive input.
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