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Abstract

Objective: Propose a theoretical framework for retinal biomarkers of Alzheimer’s

disease (AD).

Background:The retina and brain share important biological features that are relevant

to AD. Developing retinal biomarkers of AD is a strategic priority but as yet none have

been validated for clinical use. Part of the reason may be that fundamental inferential

assumptions have been overlooked. Failing to recognize these assumptions will dis-

advantage biomarker discovery and validation, but incorporating them into analyses

could facilitate translation.

New theory: The biological assumption that a disease causes analogous effects in

the brain and retina can be expressed within a Bayesian network. This allows infer-

ences about abstract theory and individual events, and provides an opportunity to

falsify the foundational hypothesis of retina–brain analogy. Graphical representation

of the relationships between variables simplifies comparison between studies and

facilitates judgements aboutwhether key assumptions are valid given the current state

of knowledge.

Major challenges: The framework provides a visual approach to retinal biomarkers

and may help to rationalize analysis of future studies. It suggests possible reasons for

inconsistent results in existing literature on AD biomarkers.

Linkage to other theories:The framework can bemodified to describe alternative the-

oriesof retinal biomarkerbiology, suchas retrogradedegeneration resulting frombrain

disease, and can incorporate confounding factors such as co-existent glaucomaormac-

ular degeneration. Parallels with analogue confirmation theory and surrogate marker

validation suggest strengths andweaknesses of the framework that can be anticipated

when developing analysis plans.
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Highlights

∙ Retinal biomarkers hold great promise for Alzheimer’s disease (AD), but none are

currently used clinically.

∙ Assumptions about the cause of retinal and brain changes are often overlooked, and

this may disadvantage biomarker discovery and validation.

∙ We present a new approach to retinal biomarkers that describes cause and effect

graphically in a Bayesian network.

∙ We show how this allows a more complete assessment of how well a biomarker

might reflect the brain, and how data from right and left eyes can be used to rule

out poor biomarker candidates.

1 OBJECTIVE

We propose a theoretical framework for retinal biomarkers of

Alzheimer’s disease (AD) and other brain diseases. It is based on the

concept that disease causes analogous effects in the brain and retina,

and the framework expresses this mathematically within a Bayesian

network. The intention is to leverage this biological assumption to

make better inferences, and to facilitate critique of this assumption

in light of empirical data. In proposing this framework, we aim to pro-

mote new thinking about analytical approaches to retinal biomarkers

of AD, and stimulate discussion about how best to use data to discover

and validate them. The framework is demonstrated using abstract the-

ory and empirical data to answer clinical questions and evaluate the

assumption of analogy between the retina and brain.

2 BACKGROUND

AD is a serious problem for individuals and their families. It is also a

growing challenge to society as the number of cases is increasing each

year.1 Treatments are likely to be most effective early in the course

of disease and biomarkers are needed to identify preclinical cases,

prognosticate outcome, and predict or measure treatment effect.2

Existing reference-standard biomarkers for AD involve assessment

of brain amyloid beta (Aβ) protein using positron emission tomography

(PET) or assays of cerebrospinal fluid (CSF). Unfortunately, these

methods are relatively expensive, difficult, or invasive and so are

impractical at the population scale necessary to tackle the growing

prevalence of AD.2

In this context, the prospect of retinal biomarkers is appealing

for two reasons. First, the retina is like the brain in ways that are

relevant to AD pathogenesis. Second, the retina is unlike the brain

because it is accessible to high-resolution, non-invasive, and repeated

measurements.3 The retina is the only visible part of the central

nervous system (CNS), and this generates hope that visible retinal

manifestations of AD reflect similar changes in the brain, and that

measuring these will allow us to overcome major challenges in diag-

nosis, stratification, and monitoring. This has motivated significant

efforts to explore associations between the retina and brain in AD

(e.g., Snyder et al.,3 Koronya et al.,4), and the development of retinal

biomarkers was recently the subject of a special meeting convened by

the Alzheimer’s Association.3

Despite several associations between retinal and cerebral changes

in AD, as yet there are no clinically validated retinal biomarkers.

Several reasons have been identified2 including the need for method-

ological standardization and within-subject longitudinal data. Taking

retinal thickness as an example, there has historically been significant

variation in optical coherence tomography (OCT) equipment between

studies, and study design has been overwhelmingly cross-sectional

rather than longitudinal.6

However, we suggest there is an additional problem, which is that

traditional analytical approaches to prospective retinal biomarkers are

not based on an explicit theoretical framework. As a result, they do not

account for the nature of the inference being made from the retina

to the brain on the basis of common biology, which is an analogy.7

Analogical arguments are common in science, and use known simi-

larities between two objects to support the conclusion that further

similarity exists (see Bartha7 for an extensive review of analogical

reasoning).

This has important implications with practical consequences. For

example, analyses usually take it for granted that associations between

the retina and brain exist because the variable in each site is caused

by the same disease process. Indeed, the utility of studying the retina

is often justified by a description of salient retinal and brain biology

altered by AD.2,3 An important corollary follows from such descrip-

tions: this biological account does not just involve the retina and brain,

but also a causal influence from AD acting symmetrically on these

two regions of the CNS. On this account the causal structure between

these three factors (retina, brain, causal disease process) is as impor-

tant as the factors themselves. Similar concepts apply to the validation

of surrogate endpoints in clinical trials.8,9

Consequently, while associations between measurements of the

retina and brain are important, unadjusted associations between a

putative retinal proxy and a brain variable (and still less comparisons

of unpaired retinal and brain data between case and control groups)

cannot show, in principle, whether the retina faithfully indicates the
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F IGURE 1 Graphical representation of analogy, adapted fromDardashti et al.11 Yellow and blue indicate target and source domains,
respectively. Green indicates a node common to both domains. A, Independent domains are represented by parallel graphs. A brain disease causes
effects on the brain, and a parallel retinal disease causes effects on the retina. The absence of a connection between sides encodes the assumption
that any observed association between retina and brain is purely coincidental. There is no known reason to interpret such associations as the
result of a deeper commonality. B, Domains have similar features because of a common cause acting on retina and brain. For example, Alzheimer’s
disease causing amyloid beta (Aβ) protein accumulation in the brain and retina (brain effect, retina effect), measured by positron emission
tomography and curcumin fluorescence. Brain Aβ in turn leads to downstream effects (brain symptoms*). Associations between retina and brain
domains can be legitimately interpreted as analogous if the graph connects biologically similar entities via a common cause. Formulation as a
directed acyclic graphmakes these assumptions explicit and estimates can be done using a Bayesian network or structural equationmodel. *NB
the disease node cannot be the same as the symptoms node. For example, a measurement of cognition could only be used once in the graph—either
to define disease severity or define outcome

state of the brain in response to a disease. On the other hand, the tra-

ditional practice of matching or adjusting for one or more additional

variables actually imposes a causal structure on associations between

the retina and brain that may not be realistic,10 is often unacknowl-

edged, and is different from study to study. Clinicians may be unwit-

tingly misled about a biomarker if these assumptions are both obscure

and invalid, and in the past, this type of error has led to serious harm.8

A further consequence of this causal structure is that within a tra-

ditional regression model the association between a perfect retinal

biomarker and related brain variable will disappear if stratified by a

marker of disease severity (e.g., cognition in AD) because they will

be rendered conditionally independent. A similar effect may occur if

biomarkers are studied in restricted patient groups in which disease is

verymild or very advanced. This may lead to inappropriate rejection of

excellent biomarkers.

It is clear that similarities between the retina and brain create the

potential for powerful retinal biomarkers of AD. However, neglecting

the structure of relationships amongAD, brain, and retinawill certainly

disadvantage attempts to discover and validate them.

3 PROPOSED NEW ANALYTICAL FRAMEWORK

Wepropose a theoretical framework for retinal biomarkers that incor-

porates this biological context within a Bayesian network. It is similar

to analogical reasoning from physical models11 and has parallels with

statistical validation of surrogate endpoints in randomized controlled

trials.9

Analogies have a source domain that is accessible, and a target

domain that one would like to know about. Inference is from source

to target.7 In the case of AD the target is the brain, which cannot

be directly observed, and the source is the retina, in which poten-

tial biomarkers can be measured. For example, curcumin-labelled Aβ
plaques have been imaged in vivo in the retinas of AD patients and

animal models, and thesemight reflect similar plaques in the brain.4,12

However, it is possible—even common—for spurious associations to

exist between domains. In such cases it would be wrong to infer any

deeper meaning from the association because, regardless of statistical

significance, it is merely an epiphenomenon. This situation is illus-

trated in Figure 1A. In contrast, a valid analogy must have biologically
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plausible horizontal and vertical associations. There must not only be

a horizontal association between domains (e.g., eye and brain), but this

association must exist between things that are reckoned to be similar

entities with respect to relevant biology, and the domains must also be

linked by a plausible common premise or cause that has similar effects

on each side. For example, in AD Aβ plaques occur in both the retina

and brain, and a correlation between these would suggest a relevant

horizontal association between domains. But inferring from this that

retinal Aβ is clinically analogous to brain Aβ requires the assumption

that both plausibly result from the same AD disease process acting on

different parts of the CNS to a similar degree (Figure 1B). These ideas

are discussed under the terms isomorphism and universality argument by

Dardashti et al.11 and Bartha.7

Recognizing that these assumptions are necessary means that they

can be stated explicitly and laid open to scientific debate. It also allows

them to be expressed in a Bayesian network.

A Bayesian network is a way of displaying variables and their causal

relationships to each other. It consists of nodes joined by edges. Nodes

represent variables and edges represent conditional dependencies.

The combination of nodes and edges constitutes a directed acyclic

graph, which shows how probabilities of parent nodes contribute to

the probabilities of daughter nodes. It allows researchers to encode

causal relationships betweenvariables basedon their understandingof

the system being modelled. See Greenland et al.,10 Textor et al.,13 and

Pearl14 for a further introduction to directed acyclic graphs.

Such a network can be used to update confidence in abstract the-

ory (see Appendix A in supporting information), and address clinical

problems,15 such as:

1) Estimating brain disease: Suppose a patient is positive for reti-

nal and perhaps other biomarkers, what is the chance she has

analogous brain pathology?

2) Predicting outcome: Suppose a patient is positive for a retinal

biomarker.What is the chance hewill have some clinical outcome?

3) Testing biomarker assumptions: Is the analogy between the retina

and brain likely to be true for a given biomarker?

We illustrate our approach to these questions using data from chil-

dren with cerebral malaria16 and a putative retinal proxy of brain Aβ
protein.17 We discuss testable implications that can indicate when the

assumption of a retina–brain analogy is unlikely to be correct, and

suggest how the analogy hypothesis can be falsified using data from

left and right eyes—which are often much easier to collect than direct

measurements of brain disease.

3.1 Estimating brain disease and predicting
outcome

Paediatric cerebral malaria (CM) is relevant because it is paradigmatic

of the retina reflecting thebrain. CM is an acutehematological parasitic

syndromewith highmortality and a very strong biological link between

retinal and brain pathology—to the extent that the presence ofmalarial

retinopathy is a formal diagnostic criterion for the most strict defi-

nition of the syndrome.18,19 The mechanisms linking parasitemia to

death in CM are obscure but blood–brain barrier (BBB) breakdown is

strongly suspected. Unfortunately, this cannot be measured directly

in sub-Saharan Africa, where CM typically occurs. However, because

there are pre-existing biological reasons to suppose that retinal and

brainmanifestations of CMare similar in nature and extent, we can use

retinal data—and assumptions about the analogy between retina and

brain coded into our graph and probability table—to estimate values

for unmeasured nodes. These assumptions are represented in Figure 2

by total body malaria biomass (disease D) being a parent node to BBB

breakdown (B) and retinal leakage (RL); and in the accompanying prob-

ability table by stating that the conditional probability of B given D

(which we cannot measure directly) is similar to the conditional prob-

ability of RL given D (Table 1). Malaria biomass is approximated by

plasma Plasmodium falciparum histidine-rich protein 2 (PfHRP2).

How similar must these conditional probabilities be? For the sake of

simplicity, we might hypothesize that the retina and brain are affected

identically by malaria. In this case the child nodes (B and RL) are log-

ically equivalent with respect to the parent node (D),21 and therefore

the conditional probabilities are exactly the same. However, clinical

science is rarely so clear-cut. Less than perfect values may still be

informative, and allow for realistic measurement error, or additional

unmeasured causal factors. The similarity of the conditional probabil-

ities relating each domain to the parent node can be specified using

two sensitivity parameters, Γ1 and Γ0, which are based on the odds

ratio of conditional probabilities between source and target domains

(Appendix B in supporting information). Γ1 = Γ0 = 1 if the conditional

probabilities are identical. Deviation from 1 in either parameter indi-

cates a certain amount of asymmetry, and values that are very far from

1 ormarkedly inconsistent between studieswould suggest the hypoth-

esis of analogy may be completely untenable for a given retinal proxy

or marker of disease status. This is similar in principle to the Rela-

tive Effect statistic describing surrogate endpoints.22 For illustration,

Figure 2 outlines the idealistic assumption that Γ1 = Γ0 = 1. With this

we can answer clinical questions, for example:

1) What is the probability of BBB breakdown if retinal leakage is

present in either eye? This is 10%, compared to 9% if retinal leakage

is not present.

2) What is the probability of death if retinal leakage is observed?

This is 12%, assuming that we specify a probability of death given

brain leakage of 47%, and death without brain leakage of 8%

(based on the frequency of death in the presence of radiologi-

cal brain swelling;16 see Appendix C in supporting information for

calculations).

3.2 Testing biomarker assumptions

It is important to note that the divergence from equivalence can

be tested if empirical data are obtained for previously unobserved

nodes in the graph. Analogical confirmation has been criticized in

cosmological settings in which observation of the target domain is



MACCORMICK ET AL. 5 of 9

F IGURE 2 In this graph the disease process (D) acting on retina and brainmay plausibly be captured by a bloodmarker of total bodymalaria
parasite biomass (PfHRP2). Blood–brain barrier breakdown (B) and visible retinal leakage in the worst affected eye (RL) are postulated to be the
result of high levels of malaria parasite, indicated by arrows from the parent to child nodes (B←D→RL). In this example, “high” parasite biomass is
arbitrarily defined as the top 75% of the sample (HRP2>4000 units). Blood–brain barrier breakdown causes death, the clinical outcome (Eb). In
addition, blood–brain barrier breakdown, though unseen, is hypothesized to be similar in nature and extent to visible retinal leakage. This
assumption is not represented in the graph but can be encoded by forcing the conditional probabilities of brain leakage given disease and retinal
leakage given disease to be equal, or at least similar (i.e., P[B|D]∼ P[RL|D]).

TABLE 1 Values of probabilities, and differences betweenmodel estimates and empirically measured frequencies, can be used to critique
assumptions inherent in themodel. Observed frequencies are from.16

Model

estimate

Observed

frequency Comments

P(B) 0.09 0.16

P(B= 1|D= 1)

P(B= 1|D= 0)

0.11

0.06

0.16

0.15

Observed values are similar but small, suggesting that HRP2 does not have a

substantial effect on brain swelling in this end of the disease spectrum.

P(RL|D= 1)

P(RL|D= 0)

n/a

n/a

0.11

0.06

As above, values are small, suggesting that HRP2 does not have a substantial

effect on retinal leakage in this sample with severe disease.

P(B= 1|RL= 1)

P(B= 1|RL= 0)

0.10

0.09

0.54

0.12

The large difference between themodel estimate and observed frequency

suggests a problemwith themodel assumption that the association

between B and RL results from PfHRP2 as the common cause. This

interpretation is consistent with residual association between B and RL

after controlling for D.

P(Eb= 1|RL= 1) 0.12* 0.46 The large difference between estimated and observed frequency suggests

that one ormore unmeasured components of the estimate are wrong. Since

our specification of P(Eb|B) is accurate, P(B|D) must be faulty. This is

consistent with the negligible effect of HRP2 on brain swelling and retinal

leak (B←D→RL) in rows 2 and 3.

*Based onpre-specified value of 0.47 for P(Eb=1|B=1) and0.08 for P(Eb=1|B=0). These aremeasured frequencies of death given the presence or absence

of radiological brain swelling.20

Abbreviations: B, blood–brain barrier breakdown; D, highmalaria biomass; Eb, clinical outcome; P, probability; RL, retinal leakage; n/a, not applicable.
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not possible, because arguably this may assume the very conclusion

of analogy that is under debate (see Crowther et al.23 and further

discussion in Evans and Thébault24). However, our application to

retinal biomarkers is different. Biomarkers are valuable because they

are applicable to a large population when the reference standard test

is restricted for some reason, but some measurement of brain disease

is usually possible even if only on a relatively small sample (e.g., Aβ PET
in AD). These valuable data allow associations to be estimated, such

as between a retinal biomarker and brain reference standard (with and

without adjustment for disease status9,22), and between retinalmarker

and clinical endpoints. However, investigators can also use these data

to estimate Γ1 and Γ0, and use the distance between calculated and

prespecified values of Γ to test the assumption of analogy implicit

in their biological framework. Comparing values estimated from the

graphical model to empirical values from a population sample may

suggest limits to how much information the retinal biomarker can

give in particular settings, and also point to problems with biological

assumptions inherent in the graphical model.

Taking CM as an example, we can use empirical data on radiological

brain swelling in a subset of CMpatients to represent BBB breakdown.

This suggests ameasured Γ1 of 1.5 (95% confidence interval [CI] 0.88–

2.93) andΓ0of 2.4 (0.51–18.33).We can interpret this in the context of

a strong observed association between brain swelling and death (odds

ratio [OR] 14.020), retinal leakage and death (OR 13.2),16 and reti-

nal leakage and brain swelling (OR 4.8).16 These are consistent with a

graph structure implying that the retina and brain ought to be affected

similarly by this disease.

If we accept the graph structure as correct, comparisons of model

estimates and observed frequencies (Table 1) allow us to critique

the identification of the nodes—here chiefly raising questions about

whether the parent node should be PfHRP2. The literature indicates

that PfHRP2 has significant prognostic power in mild and moderate

malaria.25,26 Our data here suggest that in CM, which is at the very

severe end of the disease spectrum, PfHRP2 does not adequately

explain the pathogenesis of brain swelling and that other pathological

processes may be involved. In addition, although Γ is not significantly

different from 1, the width of confidence interval indicates the sam-

ple is too small to judge this accurately. Divergence from 1 would be

consistentwith the existence of additional types of retinal leakage, and

with brain swelling from other causes such as cytotoxic edema. These

point estimates are consistent with the causal pathway between para-

site biomass and death being more complex than: parasite biomass→

cerebral hemorrhage→ brain swelling→ death.14 This illustrates how

our framework allows otherwise unarticulated biological assumptions

to be specified to make predictions, and perhaps more importantly,

critique assumptions in light of additional data.

However, testing the assumption of analogy between the retina and

brain need not wait until data are obtained from the brain. Using our

framework, this assumption can also be assessed using data from right

and left eyes, which can be collected easily. This is because, considered

subregions of the CNS, the left and right eyes are far more similar to

each other than either eye is to the brain.

It follows that aputative retinalmarkerof abraindisease suchasCM

or AD should, at the very least, provide highly similar results for right

and left eyes. In contrast, data indicating that right and left eyes are

not analogous (e.g., Γ1 and Γ0 are far from 1, or inconsistent between

studies) would therefore suggest that a biomarker is unlikely to accu-

rately reflect the brain. Analysis of right and left eye with respect to

pathogenesis cannot prove an analogous impact of that disease on the

eye and brain, but it could potentially provide useful evidence against

this hypothesis. Falsifying this hypothesis may be disappointing, but

is extremely useful because it can direct attention to more fruitful

biomarkers.

We illustrate thiswith paired data froma studyof retinal hyperspec-

tral imaging in AD, which reported measurements from right and left

eyes.17 This allowsus to assess the assumption that eacheye is affected

analogously by AD for this particular biomarker (Figure 3). These data

suggest that there is some symmetry between the probability of one

eyebeingpositive givenAD, and the felloweyebeingpositive, givenAD.

The95%CI forΓ1andΓ0both contain1although theyarewide, consis-
tent with a small sample size (Γ1= 3.29 [1 to∞]; Γ0= 0.46 [0.1–1.35]).

This is in the context of an insignificant association between eyes (P =

.17, Wilcoxon signed rank test). Our analysis therefore suggests that

the sample (n = 25 subjects) is too small to judge whether hyperspec-

tral imaging gives an analogous signal from each eye within subjects,

and so arguably the study is also underpowered to make conclusions

about retinal hyperspectral imaging as a biomarker ofADeffects on the

brain. Comparing large focal leakage in left and right eyes with respect

to PfHRP2 gives some context to the scale of Γ that one might expect.

HereΓ1=1.17 (0.72–1.91) andΓ0=1.11 (0.44–3.54), n=214 subjects

with data from both eyes.16

4 MAJOR CHALLENGES ADDRESSED BY THE
FRAMEWORK

This approach has several advantages over traditional strategies for

analyzing retinal biomarkers, which often allude to common biology

between the retina and brain but do not use this explicitly to inform

inferences. In our framework connections assumed to exist between

variables are clearly visible and can be scrutinized by peers, and

testable implications of assumptions can be used to falsify hypotheses

about the analogy between the brain and retina for a given disease in

a particular population. This sort of approach could help to rational-

ize the discovery and validation of retinal biomarkers within ongoing

or future cohort studies. Although it does not suggest a new biomarker

candidate, the framework offers a newperspective to the conventional

thinking about biomarkers expressed by thewidespread use of hypoth-

esis tests or multivariate models,6 and highlights analytical issues that

may help to explain puzzling results. It therefore addresses a critical

challenge confronting AD.3,27 We have illustrated the approach using

a Bayesian analysis of binary variables, but suggest the principles can

be applied to other types of data through use of surrogate endpoint

statistics.
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F IGURE 3 Frequency of positive retinal hyperspectral imaging in Alzheimer’s disease (AD) patients and controls (Figure 6A in Hadoux et al.17)
can be used to calculate Γ1 and Γ0. Disease status is defined by amyloid beta burden on positron emission tomography imaging. The directed
acyclic graph illustrates the idea that in this case, AD acts on both eyes to cause changes in hyperspectral imaging signal. Results allow the chance
of positive imaging in either eye to be calculated, given case or control status. These are conditional probabilities. Here, FE= 1 indicates “fellow
eye” is positive; SE= 0 that “study eye” is negative, etc. Γ is calculated as a ratio of conditional probabilities. Values far from 1, or that are
inconsistent between studies, would suggest that the retinal measure from one eye did not reflect the fellow eye, and arguably may therefore be
even less likely to accurately reflect the brain

Further validation and refinement are necessary to transform the

ideas presented here into a practical research tool. We hope this

article will stimulate debate about retinal biomarker assessment and

ultimately lead to an improved standard of analysis. In the meantime,

we suggest that authors reporting results of retinal biomarkers do the

following:

1) Analyze variables within subjects (paired data), rather than com-

paring separate groups (unpaired data).

2) Describe sample selection, or any stratification within the sample,

to indicate where their subjects sit within the spectrum of disease

severity.

3) Include a directed acyclic graph to illustrate the proposed connec-

tions among retinal, brain, and disease variables; and explain why

the retinal and brain markers in question are biologically likely to

represent similar manifestations of the same disease. Graphs can

be drawn easily in DAGitty (http://dagitty.net/).13

4) Provide a comparison of biomarker status between eyes given

disease (e.g.,Γ0) andgiven the absenceof disease (e.g.,Γ1)with con-
fidence intervals. This is similar to the relative effect statistic for

clinical trials.22

5) Report the unadjusted association between biomarker signal from

left and right eyes, and also the association adjusted for disease

severity. This would help indicate if the assigned parent node did

indeed render the child nodes conditionally independent, as would

be expected in the case of analogous downstream effects (cf. the

adjusted association statistic22).

5 LINKS TO OTHER THEORIES

We have described this approach principally in terms of a mechanistic

theory in which changes in the retina and brain result from a com-

mon cause (brain ← disease → retina). This is a prominent theory in

AD research,2,3 but an alternative is that retinal changes result from

brain changes (disease→ brain→ retina). Thismay be relevant to some

prospective retinal biomarkers of AD, particularly measures of reti-

nal thickness, which could result from retrograde degeneration of the

optic nerve.6 These theoretical assumptions could also be described

by a modified Bayesian network. While we do not go into detail here,

measurement of the brain variablewouldmake disease and retina vari-

ables conditionally independent, and the analogy assumption would

not apply.

Another important consideration is the role of alternative causes

of retinal changes, such as age-related macular degeneration and

glaucoma.2,3 Like AD, these have strong associations with age and so

may represent confounders of a causal effect on the retina. These pos-

sibilities can be included by adding additional nodes and edges to the

http://dagitty.net/
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directed acyclic graph. Similarly, measurement error can be included

in a Bayesian network by adding a node representing the measured

variable as a daughter of the node for the “true” random variable.

Parallels between our framework and literature on analogical rea-

soning and surrogacy suggest consistency with existing theories.8,11,22

These parallels also highlight potential pitfalls. Our framework

depends on assumptions about a common cause with proportionate

effects on source and target domains. It is therefore crucial to select

a robust measure of disease severity acting on both retina and brain

(cf. universality), and to select markers of retina and brain changes that

have legitimate biological parallels (cf. isomorphism).11 An imperfect

measurement of causal disease status could lead to paradoxical results,

such as if the marker of AD disease somehow describes aspects of

pathogenesis that act more severely on the brain than the retina, or

vice versa.9

As well as completely capturing disease effect, the ideal causal

disease variable should be randomized to prevent confounding of

relationships: disease→brain, and disease→retina.9 Experimental ran-

domization is not possible in observational studies, but an instrumental

variable may provide some of these advantages.28,29

The best use of currently validated biomarkers such as PET or CSF

Aβ protein should be carefully considered, because these could be

thought of either as measurements defining AD disease or as markers

of the effect ofADpathogenesis. They cannot fill both roles at the same

time.

Finally, use of paired data is essential to avoid a lack of transitiv-

ity, which can obscure associations between retina and brain when the

value of amarker in each location is consistently high or low for a group

on average but not on an individual level 8,9.

Considering these points, it should be noted that many also apply

to traditional statistical approaches to biomarkers as well.9 In prac-

tice hypothesis tests or multiple regression are often treated as if

they are impartial; but in reality, they effectively encode many causal

assumptions.10 A key advantage of a graphical model is the explicit

display of these assumptions, allowing discussion of their propriety.

Furthermore, as well as formulating it mathematically, a graphical

model allows the analogy assumption to be tested in light of empirical

data aboutdownstreameffects. This goes far beyondnarrativedescrip-

tions of the eye as a window to the brain—it allows the transparency of

this metaphorical window to be judged on a case-by-case basis. As a

result, perhaps wewill be able to see further through it.

GLOSSARY OF SOME TERMS RELEVANT TO
BAYESIAN NETWORKS (SEE Greenland et al.10 FOR
DETAILS)

Node: A node represents a variable in a Bayesian network. Vari-

ables can be observed or unobserved (latent), numeric, or Boolean

(true/false).

Edge: An edge connects two nodes. Edges have a direction—

upstream nodes are ancestors or parents and downstream nodes

are descendants or children. A variable X is an ancestor or cause of

another variable Y if there is a directed path of arrows leading out of

X into Y. Edges represent conditional dependencies between nodes.

Unconnected nodes are conditionally independent of each other.

Conditional dependency: Refers to the probability of an event

occurring, given that another event has already occurred. P(X) means

“the probability of X,” and P(X|Y)means “the probability of X given that

Y has occurred.”

Probability function: Gives the probability that an outcome will

occur, for every possible outcome. In aBayesian network eachnodehas

a probability function. Values are dictatedbyparent nodes, but can also

be assigned according to expert opinion or empirical measurements. A

substantial inconsistency in the probability function derived logically

from the network and empirical measurements would suggest an error

in measurement or graph structure.
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