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Abstract 

Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere 

erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for 

the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell 

lines for research and clinical use, strategies have been applied including internal genomic or external matrix micro-

environment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic 

manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix 

(dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. 

Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortaliza-

tion and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized 

cells as well as a potential rejuvenation strategy through combination with the dECM approach.
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Background
Tissue and organ failure is a prominent health issue that 

cannot be ignored. Surgical intervention, organ trans-

plantation, artificial substitutes and mechanical devices 

are methods to address this issue but all have undesir-

able short- and long-term consequences [1]. Tissue engi-

neering is an attractive method that enables fabrication 

of functional tissue for tissue regeneration as well as the 

establishment of physiological and pathological mod-

els for mechanistic studies [2]. �is technique can har-

ness the intrinsic regenerative potential of primary cells 

and expand them in a controlled environment before 

reintroduction into the patient’s body. �ese natural, 

synthetic or semisynthetic tissue and organ mimics are 

expected to function normally in a tissue-specific pat-

tern as required [1, 3]. However, primary cells derived 

from non-cancerous tissues have a finite lifespan and 

decreased proliferation ability when cultured in  vitro. 

After a limited number of divisions, cells enter a viable 

state of permanent quiescence, termed cellular senes-

cence [4]. Cellular senescence, regulated by both intrinsic 

and extrinsic factors, is characterized as two key pheno-

types, a stable proliferation arrest and altered secretory 

pathway, the senescence-associated secretory phenotype 

(SASP) [5].

In order to acquire an abundant number of cells for 

functional tissue engineering, cellular senescence is 

the major obstacle that needs to be overcome. Numer-

ous attempts have been made in past decades to deal 

with cellular senescence in order to achieve success-

ful immortalization of primary cells. To establish 
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immortalized cell lines for research and clinical use, 

strategies have been applied including internal genomic 

or external matrix microenvironment modification. 

Considering the potential risks of malignant trans-

formation and tumorigenesis of genetic manipula-

tion, environmental modification methods, especially 

the decellularized cell-deposited extracellular matrix 

(dECM)-based preconditioning strategy, appear to be 

promising for tissue engineering-aimed cell immor-

talization. Due to few review articles focusing on this 

topic, this review provides a summary of cell senes-

cence and immortalization and discusses advantages 

and limitations of tissue engineering and regeneration 

with the use of immortalized cells as well as a potential 

rejuvenation strategy when combined with the dECM 

approach (Fig. 1).

Fig. 1 A schematic diagram of immortalization strategy combined with the decellularized cell-deposited extracellular matrix approach to 

overcome cell senescence and promote tissue regeneration
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Cellular senescence
Cellular senescence is a process that imposes irrevers-

ible proliferative arrest on cells in response to internal 

and external environmental changes. Various stress-

ors, including progressive telomere erosion, oxida-

tive stress, the expression of oncogenes and the loss of 

tumor suppressors, contribute to the occurrence of cel-

lular senescence.

Replicative senescence

As vital structures that cap and protect the ends of lin-

ear chromosomes [6], shortening of telomeres happens 

at every fission which eventually causes cells to reach 

their “Hayflick limit” which halts growth after approxi-

mately 60 population doublings [4, 7]. When telom-

eres are too short to function normally for capping, 

replicative senescence (M1 stage, a cellular growth 

arrest) occurs [8–10]. �e critically short telomeres 

are detected by cells as double-strand breaks and trig-

ger a deoxyribonucleic acid (DNA) damage response 

(DDR) that consists of a series of signaling events cen-

tered on two anti-proliferative mechanisms, the p53/

p21 and p16/tumor suppressor retinoblastoma protein 

(Rb) pathways. �is cessation allows cells to repair the 

DNA damage, but if the damage continues to exceed a 

certain limit, apoptosis or senescence may occur [11]. 

Regulated by its upstream partner p16, one of the cyc-

lin-dependent kinase inhibitors (CKIs), Rb controls cell 

cycle progression from  G1 into S phase by binding to 

and suppressing the activity of E2F transcription factor 

1 (E2F1) [10, 12, 13].

Many researchers have verified the importance of both 

pathways in directing senescence as the suppression of 

either p53 or Rb alone failed to achieve cell immortaliza-

tion [14–17]. However, there were still reports showing 

that, in human mammary epithelial cells and mesenchy-

mal stem cells (MSCs), inactivation of p16 alone allows 

human cells to avoid senescence [18, 19]. Meanwhile, in 

human diploid fibroblasts, the p53 mutant alone is able 

to suppress cellular senescence [20]. �ese findings raise 

the possibility that these two pathways may function dif-

ferently among different cell strains.

However, abrogation of the p53/p21 and p16/Rb path-

ways will only lead to a “pre-immortal” state instead of an 

“immortal” status for cells. Terminal telomere shortening 

still exists and will eventually lead to the M2 stage, char-

acterized as massive cell death [10, 15, 21]. In most cases, 

the stabilization of telomeres is achieved through the 

introduction of telomerase, an enzyme that synthesizes 

telomeric repeats and adds them to the ends of chromo-

somes for the compensation of inevitable loss with each 

round of DNA replication [22].

Premature senescence

Senescence also happens in conditions that are not 

dependent on telomere erosion or dysfunction. �is pro-

cess is often referred to as “premature” since it can arrest 

growth prior to reaching the “Hayflick limit” [23]. Vari-

ous conditions have been identified that may result in 

premature cellular senescence.

Stress-induced senescence

During a long-term in  vitro cell expansion, laboratory 

culture conditions, generally defined as a lack of sur-

rounding cell types and support from extracellular matrix 

(ECM), abnormal growth factors and oxygen  (O2) level, 

expose the cell to excessive oxidative stress and induce 

oxidant production [24–27]. �e excessive levels of reac-

tive oxygen species (ROS), including hydrogen peroxide 

 (H2O2), hydroxyl radical  (OH−) and superoxide anion 

 (O2
−), are detectable during long-term culturing of 

MSCs, accounting for stress-induced senescence [24–

26].  H2O2 could directly affect cellular DNA, trigger DDR 

and subsequent p16/Rb and p53 pathways, leading to cell 

cycle arrest [28–32].

Oncogene-induced senescence

�ere is accumulating evidence showing both in  vitro 

[33–35] and in vivo [36, 37] oncogene activation, includ-

ing Ras, Raf, BRAF (human gene that encodes a protein 

called B-Raf )  and E2F1, can cause an irreversible cell 

growth arrest, termed oncogene-induced senescence. In 

normal primary cells, Ras activation leads to compulsory 

replication, triggering DDR and the subsequent senes-

cence-based pathways [33, 38, 39]. Raf encodes proteins 

that function as a downstream effector of the Ras fam-

ily and activate the extracellular signal-regulated kinase 

(MAPK) kinase (MEK) in cascade, which in turn, acti-

vates extracellular signal regulated kinase 1/2 (ERK1/2) 

[40]. Interestingly, Raf itself is able to elicit senescence 

in IMR-90 cells [34]. �e p16/Rb and p53 pathways are 

crucial mediators of oncogene-induced senescence; how-

ever, the p16/Rb pathway in oncogene-induced senes-

cence acts differently than in replicative senescence [33, 

41, 42]. �e BRAF gene, a downstream effector of Ras, is 

an intracellular effector of the MAPK signaling cascade 

that facilitates transmembrane signal transduction [43]. 

In primary cells, the expression of BRAFV600E is known 

to induce transient stimulation of proliferation and sub-

sequently trigger cellular senescence as demonstrated 

in normal cells including melanocytes [44], fibroblasts 

[45] and stem cells [46]. E2F1 is the founding member of 

the E2F family, a regulatory protein that drives cell cycle 

progression through interaction with Rb [47]. When a 

cell prepares to enter the S phase of the cell cycle, E2F1 
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is released from the Rb-E2F1 complex, activating the 

downstream target genes regulating normal entry into 

S phase [48]. Interestingly, in normal human fibroblasts, 

E2F1 and its target gene p14 (ARF) are responsible for 

the induction of cellular senescence [35]. Meanwhile, 

E2F1 knock-out mouse embryonic fibroblasts demon-

strated attenuated senescence and ROS levels [49].

Tumor suppressor loss-induced senescence

Tumor suppressors are the counterpart of oncogenes, and 

their loss can elicit cellular senescence. Depletion of NF1 

(Neurofibromatosis 1), a tumor suppressor gene, induces 

senescence in human fibroblasts [50]. Similarly, loss of 

BTG3 (B-cell translocation gene 3), a member of the anti-

proliferative BTG gene family and a downstream target of 

p53, triggers cellular senescence as well [51]. Inactivation 

of VHL (von Hippel-Lindau tumor suppressor) induces 

an efficient senescence in mouse fibroblasts and primary 

renal epithelial cells under atmospheric conditions (21% 

 O2); however, loss of VHL only causes a decreased cell 

proliferation instead of cell arrest in human renal epithe-

lial cells [52, 53]. Similarly, acute loss of tumor suppressor 

gene PTEN (phosphatase and tensin homolog) induces 

growth arrest through the p53-dependent cellular senes-

cence pathway in mouse prostate both in vitro and in vivo 

whereas, in systemic lupus erythematosus patients, the 

complete loss is significantly related to advanced cancer 

and poor outcomes [54–56]. �ese findings raise the pos-

sibility that tumor suppressors may function differently 

according to different species and cell types.

Signaling pathways involved in cellular senescence
Despite the abovementioned p53/p21 and p16/Rb path-

ways, other signaling pathways are also involved in 

cellular senescence, including, but not limited to, trans-

forming growth factor β (TGFβ)/bone morphogenetic 

protein (BMP), Wingless/Int (Wnt)/β-catenin, MAPK, 

phosphatidylinostitide 3 kinase (PI3K)/protein kinase B 

(AKT)/mammalian target of rapamycin (mTOR), Hippo, 

NOTCH, fibroblast growth factor (FGF) and insulin-like 

growth factor (IGF) and hypoxia inducible factor (HIF) 

(Fig. 2).

TGFβ/BMP signaling pathways

TGFβ is a classic regulator for chondrogenic differentia-

tion but its role in cell expansion remains controversial 

[57, 58]. TGFβ activation is positively involved in the 

induction of cellular senescence of all kinds of species 

[59–61]. In human breast cancer cells, TGFβ negatively 

mediates telomerase activity through its downstream 

effector, Smad3 [62, 63]. For stress-induced senescence, 

TGFβ contributes to ROS production and activation of 

DDR during the senescence of human fibroblasts and 

bone marrow-derived MSCs (BMSCs) [64, 65]. �e 

kinase ataxia-telangiectasia mutated (ATM) is a key 

player in nuclear DDR [66]. Meanwhile, TGFβ is required 

for oncogene-induced senescence that is independent 

of the p16/Rb and p53 pathways; attenuation of TGFβ 

inhibits premature senescence in human mammary epi-

thelial cells [67, 68].

BMPs are secreted signal factors belonging to the TGFβ 

superfamily and are involved in embryonic development 

and cellular processes [69]. Similar to the function of 

TGFβ, BMP receptor II/Smad3 contributes to telomerase 

inhibition and telomere shortening in human breast can-

cer cells, leading to replicative senescence [70]. Similar 

results were observed in primary cells as the BMP sign-

aling axis plays an important role in oncogene-induced 

senescence of mouse fibroblasts [71].

Wnt/β-catenin pathway

Wnts are highly conservative proteins that participate 

in embryonic development and homeostatic mecha-

nisms in adult tissues [72]. Wnt signals appear to be an 

important regulator of both premature senescence and 

replicative senescence. On one hand, the Wnt/β-catenin 

signaling pathway interacts with the p53/p21 pathway 

for ROS production to induce MSC senescence [73–76]. 

On the other hand, Wnt3a/β-catenin also plays a critical 

role in hedging replicative senescence of MSCs, probably 

through regulation of a telomerase subunit—telomerase 

reverse transcriptase (TERT) [72, 77]. Meanwhile, Wnt/

β-catenin signaling enhances rat nucleus pulposus cell 

senescence as well as induces the expression of TGFβ, 

another strong promoter of cellular senescence [78].

MAPK pathway

�e MAPK signaling cascade, mainly including ERK, 

c-Jun N-terminal kinase (JNK) and p38, regulates sev-

eral physiological and pathological processes [40]. p38 

is well-recognized to be involved in premature cellular 

senescence [79, 80]. �e major role of the p38 pathway 

in oncogene-induced senescence is induced by the onco-

gene Ras or its downstream effector, Raf-1 [81, 82]. Ras 

provokes premature senescence through activation of 

the MEK/ERK pathway, followed by p38 activation [81]. 

Shin and colleagues found that ERK2 is responsible for 

Ras-induced senescence in mouse embryonic fibro-

blasts [83]. Despite premature senescence, ERK is also 

actively involved in replicative senescence and suppres-

sion of ERK signaling rescues cardiac progenitor cells 

from replicative senescence when expanded in vitro [84]. 

�e JNK signal was reported to be active in respond-

ing to a wide range of DNA-damaging agents from both 

endogenous and exogenous causes and JNK phospho-

rylation is involved in senescence-associated matrix 
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metalloproteinase-1 production in response to ROS in 

IMPR-90 cells [85–89]. However, the senescence-pro-

moting role of JNK was challenged as it was also revealed 

to antagonize p38-induced p16 activation [90]. Moreover, 

JNK acts as a negative regulator of p53 tumor suppressor 

to suppress p53-dependent senescence in mouse embry-

onic fibroblasts [91]. An increase of intracellular ROS 

levels can suppress the growth of cancer cells and induce 

cellular apoptosis by mediating MAPK signaling compo-

nents [92].

PI3K/AKT/mTOR pathways

PI3Ks and their downstream mediators AKT and mTOR 

constitute the core component of the PI3K/AKT/mTOR 

signaling pathway which is precisely controlled under 

normal physiological conditions and is a frequently 

hyperactivated pathway in cancer [93]. Similar to the 

MEK-ERK pathway, PI3K is one of the main downstream 

effectors of Ras dependent signaling and its activation 

plays dual roles in cell cycle regulation as it can promote 

cell cycle progression as well as cause cell cycle arrest 

[94]. Recent studies reveal the involvement of PI3K/

AKT/mTOR in the regulation of replicative senescence 

in human vascular smooth muscle cells [95]. Moreover, 

a constitutively active, myristoylated form of AKT leads 

to oncogene-induced senescence in primary cultured 

human endothelial cells and murine fibroblasts; the loss 

of PTEN triggers senescence through activation of the 

PI3K/AKT pathway in mouse prostate [56, 96]. However, 

a recent report subverted the positive role of the PI3K/

Fig. 2 Signaling pathways mediating the cellular senescence process. In response to telomere erosion, ROS production, the expression of 

oncogenes and the loss of tumor suppressors, various signaling pathways including TGFβ, BMP, Wnt, MAPK, FGF, IGF, HIF and Hippo pathways are all 

actively involved in cell cycle regulation, which eventually influences the cellular senescence process of primary cells
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AKT/mTOR pathway in senescence-induction by intro-

ducing the fact that activation of this pathway abolished 

 BRAFV600E-induced senescence in both primary human 

fibroblasts and primary human melanocytes [97]. Moreo-

ver, targets of the PI3K/AKT signaling pathway have been 

found to promote cell survival [98] and the activation of 

the PI3K/AKT pathway can be induced by TGFβ, lead-

ing to a pro-survival/anti-apoptotic effect in both human 

nasopharyngeal carcinoma cells [99] and mesenchymal 

cells/fibroblasts [100].

Hippo pathway

�e Hippo pathway is a tumor suppressor pathway; dys-

regulation of this pathway can lead to uncontrolled cell 

proliferation and tumorigenesis [101]. Yes-associated 

protein 1 (YAP), a major downstream effector of the 

Hippo pathway, is phosphorylated and inactivated by 

the serine/threonine kinases large tumor suppressor 1 

(LATS1) and LATS2 [102, 103]. YAP dephosphorylation 

is associated with the senescence of rat nucleus pulpo-

sus cells and overexpression of YAP in primary human 

keratinocytes blocks clonal evolution and induces cell 

immortalization [104, 105]. Coordination of the Hippo 

pathway and p53 occurs in response to various types of 

stress signals including replication and oncogenic Ras. 

LATS2 cooperates with p53 to induce p21 expression, 

resulting in cellular senescence [106]. LATS2 also plays 

an important role in the oncogenic H-Ras induced stress 

checkpoint in a p53-dependent pathway [107].

Notch pathway

�e Notch pathway is an evolutionarily highly conserved 

signaling pathway that is associated with a variety of cel-

lular processes including cell-fate determination, prolif-

eration and death. In mammals, the Notch family has five 

ligands and four receptors [108, 109]. �ere is accumu-

lating evidence that abnormal Notch signaling has been 

implicated in multiple facets of cancer biology, and Notch 

can behave as either an oncogene or a tumor suppres-

sor depending on cell context [110, 111]. �e oncogenic 

function of Notch has been demonstrated in several 

types of cancer including melanoma [112], breast cancer 

[113] and brain tumors [114]. Activated Notch 1 signifi-

cantly enhances the rate of glycolysis, which prevents cel-

lular senescence of human adipose-derived stromal cells 

(ADSCs) through HIF1 activation and p53 inactivation 

[115]. On the other hand, the Notch pathway is found to 

serve as a tumor suppressor in the progression of carci-

noma including bladder cancer [116], medullary thyroid 

carcinoma [117] and pancreatic cancer [118]. Enforced 

Notch activation in human endothelial cells is associ-

ated with cellular senescence with the involvement of p16 

[119]. Down-regulation of Notch 3 in human fibroblasts 

and mammary epithelial cells delays the onset of senes-

cence and extends cell lifespan [120, 121].

FGF and IGF pathways

FGFs are well-recognized for their critical roles in 

embryonic development [122]. �e mitogenic effect of 

FGF has been demonstrated by promoting proliferation 

while maintaining stemness of MSCs in vitro [123–125]. 

FGF2 treatment led to an early increase in telomere size 

in MSCs, probably due to its ability to increase TERT 

mRNA expression [126, 127]. FGF signals negatively reg-

ulated MSC senescence through interaction with PI3K/

AKT/MDM2 (mouse double minute-2 homolog) in the 

mouse and through down-regulation of TGFβ expres-

sion in human MSCs [128, 129]. Surprisingly, FGF23 can 

also induce premature senescence in human MSCs from 

skeletal muscle via the p53/p21 oxidative-stress pathway 

[130].

IGFs are considered detrimental to cell survival due 

to their role in diminishing tissue resistance to oxidative 

stress and shortening lifespan [131, 132]. In mouse, rat 

and human primary vascular smooth muscle cells, IGFI 

induces cellular senescence dependent on the upregula-

tion of p53 [133]. Additional evidence has revealed that 

IGF binding protein-5 is upregulated in the regulation of 

premature senescence of umbilical vein endothelial cells 

through a p53-controlled mechanism [134, 135]. �ese 

findings may be due to the mechanism whereby IGFI is 

capable of inducing telomere shortening [136]. However, 

opposite results were found in human annulus fibrosus 

cells as IGFI alleviates cellular senescence [137]. In this 

scenario, the regulatory roles of both FGFs and IGFs 

relating to cellular senescence are context-dependent.

HIF pathway

HIFs are composed of two different basic-helix-loop-

helix-PAS transcription factors, HIF1α and HIF1β [138]. 

It has been proposed that a classic cellular response to 

hypoxia is cell cycle arrest at the  G1/S interface through 

the regulation of p27 expression in which HIF1α is a 

major mediator [139, 140]. On the other hand, HIFs are 

involved in the promotion of cancer growth and the loss 

of HIFs induces the production of ROS and the activa-

tion of proteins p53 and p16 [141, 142]. HIF1α is involved 

in the suppression of senescence through regulation of 

p53 and p21 in human diploid fibroblasts [143]. When 

expanded in hypoxic conditions, human MSCs and the 

old human endothelial progenitor cells escape senescence 

through regulation of HIF1α-TWIST-p21 axis [144, 145]. 

Moreover, hypoxia led to PI3K/AKT pathway activation 

and elevated expression of Wnt coreceptor low-density 

lipoprotein receptor-related protein 5 (LRP5), contrib-

uting to the promotion of self-renewal and decreased 
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cellular senescence of marrow-isolated adult multilineage 

inducible cells [146].

Immortalization of cells through genetic 
modi�cation
To achieve cell lifespan extension, biotechnological 

methods are often used for direct manipulation of a cell’s 

genome. However, concerns still exist regarding genomic 

stability and tumorigenicity after genetic modification. 

For MSCs and progenitor cells, the potential loss of dif-

ferentiation ability after genetic modification is a prob-

lem that cannot be overlooked.

Genetic modi�cation

�e introduction of viral oncogenes/oncoproteins and 

TERT are two typical methods for this type of genetic 

modification (Table 1).

Viral oncogenes/oncoproteins

Viral oncogenes that are able to inactivate both pRb and 

p53 can overcome M1 (a barrier in which normal cells 

senesce and cease replication) and significantly prolong 

cell lifespan. For several decades, simian virus 40 (SV40) 

early region genes have been commonly used for cell 

immortalization and cell line establishment [147, 148]. 

SV40 is limited to two proteins as the large T (LT) and 

small t antigen (ST). LT is mainly responsible for the 

SV40-extended lifespan based on its ability to interact 

with growth suppressors—pRb and p53. LT binds to the 

pRb-E2F complex via its pocket binding site including 

AA101–118 and the J domain that acts as a chaperone, 

leading to the dissociation of E2F from the LT-pRb com-

plex [149]. Meanwhile, LT binds to p53 therefore sup-

pressing the p53 pathway [150]. More interestingly, SV40 

was reported to induce telomerase activity in primary 

Table 1 Immortalization of primary cells for therapeutics and research

Immortalization Cell type References

Oncoprotein(s) Human Articular chondrocytes, bone marrow endothelial cells, cranial suture 
progenitors, foreskin keratinocytes, hepatocyte, keratinocytes, liver 
renal proximal tubular epithelial cells, mammary epithelial cells, 
marrow stromal cells, nucleus pulposus cells, podocyte cells, sinu-
soidal endothelial cells, umbilical cord blood endothelial progenitor 
cells, umbilical vein endothelial cells, uterine cervix epithelial cells

[154, 233, 238, 287–303]

Animal Mouse articular chondrocytes, rat renal proximal tubular epithelial 
cells

[304]

Oncogene(s) Human Prostate epithelial cells, neural precursors, embryonic stem cell-
derived MSCs

[160, 161, 305]

Oncoprotein(s) and oncogene(s) Human Embryonic fibroblasts, keratinocytes [162, 306]

TERT Human Adipose-derived stromal cells, amnion-derived stem cells, bone 
marrow-derived MSCs, cementum-lining cells, cord blood MSCs, 
dermal microvascular endothelial cells, embryonic stem cells, fetal 
hepatocytes, hepatic stellate scavenger cells, neural progenitor cells, 
osteoblasts, periodontal ligament progenitor cells, renal proximal 
tubule epithelial cells, vocal fold fibroblasts

[178, 215, 307–318]

Animal Mouse temporomandibular joint disc cells [319]

TERT and oncoprotein(s) Human Adipose-derived stromal cells, amniotic fluid-derived mesenchymal 
stem cells, bone marrow-derived MSCs, ovarian surface epithelial 
cells, pancreatic β cells, pancreatic islet cells, periodontal ligament 
fibroblasts, pulmonary microvascular endothelial cells, renal proxi-
mal tubule epithelial cells

[244, 247, 320–328]

Animal Rat ventricular cardiomyocytes [329]

TERT and oncogene(s) Human Fetal pancreatic epithelial cells, placenta-derived MSCs, adipose-
derived stromal cells

[246, 330–332]

Animal Bovine germ line stem cells [163]

TERT, oncoprotein(s) and oncogene(s) Human Bone marrow-derived MSCs [333]

TERT and suppression of p53 or Rb pathway Human Mammary epithelial cells, ovarian surface epithelial cells [176, 334, 335]

TERT and cyclin-dependent kinase 4 Human Bronchial epithelial cells [336]

Mutant p53 Human Mammary epithelial cells [337, 338]

Irradiation and oxidative stress Human Mammary epithelial cells [339, 340]

Chemical carcinogens Human Mammary epithelial cells [341]

Animal Syrian hamster dermal fibroblasts and embryo cells, rat hepatocytes [342–344]

TERT and cytotoxic T lymphocyte-associ-
ated antigen 4-Ig

Human Bone marrow-derived MSCs [345]
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human mesothelial cells, but not in primary fibroblasts 

[151].

Human papillomavirus (HPV) is a small, double-

stranded DNA virus that infects mucosal and cutaneous 

epithelial tissue [152]. �e high-risk strains including 

HPV-8, -16, -18 and -31 cause malignant progression of 

lesions, whereas the low-risk strains including HPV-6 

and -11 cause benign warts and lesions [153]. �e E6 

and E7 proteins encoded by “high-risk” strains including 

HPV-16 and -18 are oncoproteins that have been shown 

to have transformation properties [154]. When used in 

immortalization, E6 causes telomerase activation as well 

as accelerating the degradation of p53 by the 26S protea-

some, whereas E7 inactivates Rb by preventing the bind-

ing of pRb to the E2F transcription factor [155, 156].

Human T-lymphotropic virus type 1 (HTLV-1) is 

the etiologic agent of adult T cell leukemia. Although 

HTLV-2 is less pathogenic than HTLV-1, both of the 

HTLV-1 and -2 Tax proteins,  p40tax (Tax1) and  p37tax 

(Tax2), share the capacity to immortalize lymphocytes 

in vitro [157]. HTLV-2 protein Tax2 demonstrates much 

stronger efficacy than that of Tax1 in immortalizing 

human T cells [158].

�e myc oncogene family consists of several different 

members including c-myc, N-myc, L-myc and B- myc. 

c-myc expression is restricted to proliferating cells while 

N-myc and L-myc expression is associated with cellu-

lar differentiation [159, 160]. Moreover, the oncogene 

myc fulfils many of the expectations for a gene involved 

in immortalization of primary cells alone [160, 161] or 

cooperates with oncoproteins [162] or TERT [163].

B cell-specific Moloney murine leukemia virus integra-

tion site 1 (BMI1) which was identified as a c-myc-coop-

erating oncogene, is a critical transcriptional repressor 

for maintenance of proper gene expression during devel-

opment [164–166]. INK4a locus, which encodes p16 and 

 p19Arf, is an important target of BMI1 and overexpres-

sion of BMI1 extends replicative lifespan of human fibro-

blasts, probably through suppressing the p16-mediated 

senescence pathway [167, 168].

TERT

Telomerase is composed of two core components: the 

small nuclear ribonucleic acid (RNA) human telomerase 

RNA, which serves as an internal template for the syn-

thesis of telomeric repeats, and the protein TERT (or 

hTERT in humans), which serves as a catalytic subunit 

that synthesizes the new telomeric DNA from the RNA 

template [22]. In most human primary cells, telomerase 

is either absent or present at an insufficient level for tel-

omere maintenance [169]. TERT is the determinant for 

the presence of active telomerase [170, 171]. �e intro-

duction of ectopic expression of TERT is necessary for 

telomere-dependent senescence as it is able to signifi-

cantly extend the lifespan of a variety of cell types, but 

it alone is not sufficient to immortalize them [172–174]. 

�eoretically, the abrogation of the Rb and p53 pathways 

with oncogenes or at a minimum, low p16 expression, is 

indispensable for cell immortalization [175, 176]. How-

ever, there are still investigations showing that TERT 

bypassed Rb and p53 pathway-dependent barriers to 

immortalize cells alone [176–180].

Carcinogenic limitations and strategies

Despite the increasingly sophisticated strategies to 

immortalize human cells, there is still some debate over 

the risks upon integration of oncogenes into chromo-

somes. �e primary safety concern with the use of a cell 

line is the transmission of an oncogenic factor to the 

host cells. Indeed, cells transduced with these oncogenes 

underwent additional changes including full carcinogen-

esis-associated changes (Table  2). �e persistent infec-

tion by a subset of HPVs, especially HPV-16 and HPV-18, 

is etiologically linked to cervical cancer in women [181]. 

Deregulated overexpression of HPV E6 and E7 led to sev-

eral alterations in cellular pathways and functions, which 

is associated with malignant transformation of cells and 

tumorigenesis [182]. In addition, HPV E6 oncoprotein 

can interact with hTERT to promote carcinogenesis in 

keratinocytes [183, 184].

SV40 or SV40 sequences were found in several types of 

human cancers located in bone, brain, chest, etc. [185–

188]. Evidence has shown that SV40 can successfully 

transform cell lines in  vitro and induce tumors in neo-

natal hamsters in vivo [189–192]. �e injection of SV40-

transformed cells into terminally ill human patients 

caused subcutaneous tumor nodules [193]. Moreover, 

SV40-transduced cells contained integrated SV40 DNA, 

which was integrated at random positions on the cellular 

chromosomes of host cells [194, 195], leading to the con-

troversial question of whether the virus poses a threat for 

further in vivo use.

Although introduction of hTERT is associated with 

fewer phenotypic and karyotypic changes of cells com-

pared with SV40, the tumorigenicity of hTERT-trans-

fected human cells remains controversial as well [176]. 

Previous studies have claimed that the hTERT-trans-

duced primary human fetal lung fibroblasts, ameloblas-

toma cells and bovine mammary epithelial cells showed 

no malignant transformation [180, 196, 197]. Similarly, 

the hTERT-immortalized human MSCs past 290 popu-

lation doublings showed no sign of malignant transfor-

mation or tumorigenesis in vitro and in vivo as the cells 

maintain contact inhibition and a stable protein expres-

sion profile as well as no tumor-like activity in immune-

deficient mice [198–200]. Meanwhile, after subcutaneous 
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injection with HPV-16 E6/E7 immortalized BMSCs into 

Nonobese Diabetic/Severe Combined Immunodefi-

ciency (NOD/SCID) mice for 3 days, no tumor mass was 

observed compared to those injected with Hela cells in 

which tumor mass was observable [201]. Even the intro-

duction of TERT and SV40 or HPV-16 E6/E7 was suffi-

cient to immortalize ovarian surface epithelial cells and 

dermal papilla cells but not enough for tumor formation 

[179, 202–205].

However, other groups argue about the increased 

potential for tumor development in TERT-immortalized 

cells. On monolayer cultures, human MSCs and fibro-

blasts avoid cell-to-cell contact inhibition, anchor to 

culture dishes and tend to proliferate limitlessly [206, 

207]. In clinical practice, elevated hTERT expression is 

a diagnostic marker for tumor and the overexpression 

of hTERT is claimed to be associated with an advanced 

invasive stage of tumor progression and poor progno-

sis [208–210]. Moreover, there are still concerns about 

genetic instability after TERT transfection or transduc-

tion. Spontaneous changes in c-myc proto-oncogene 

expression and other genetic alterations have been 

observed during in vitro culture of hTERT-immortalized 

human cells [211, 212].

Despite safety concerns for the immortalized cells, there 

are still some cases that successfully applied these cells for 

in vivo organ and tissue restoration. For liver impairment, 

Guo et al. [213] found that SV40-immortalized marmo-

set hepatic progenitor cells (MHPCs) injected into the 

injured liver of fumarylacetoacetate hydrolase-deficient 

mice repopulated with hepatocyte-like cells and MHPCs 

were also implanted as cholangiocytes into bile ducts of 

3.5-diethoxycarbonyl-1,4-dihydrocollodine-induced bile 

ductular injured mice. Meanwhile, SV40-immortalized 

human fetal liver cells differentiated into mature hepat-

ocytes after being transplanted into liver injured mice 

[214]. For brain damage, hTERT-immortalized cord 

blood MSCs were injected into the traumatically injured 

brain of a rat model and proliferated efficiently at the 

injury site for 2 weeks and showed no tumor formation in 

SCID mice after a 6-month observation [215].

To avoid persistent oncogene expression, conditional 

immortalization technology was developed. Conditional 

immortalization includes inserting a reagent mediate, 

operator controllable gene to create a cell line that can 

be expanded in a consistent fashion when the transgene 

is active. When desired clinical quantities of cell mate-

rial are achieved, the transgene can be deactivated by 

the operator and the cells will return to a normal, post-

mitotic state. �e conditional immortalization technol-

ogy c-MycERTAM uses a combination of growth factor 

and 4-hydroxytamoxifen (4-HT) to activate the c-MycER 

transgene. In the absence of 4-HT, c-MycER is inacti-

vated and the cells return to a normal phenotype [216]. 

Inactivation of SV40 LT was achieved using a tempera-

ture-sensitive mutant of the LT (SV40 tsA58) that is bio-

logically active at permissive temperature (33.5  °C) but 

inactive at a non-permissive temperature (39  °C) [217]. 

Different vectors can have influence on the expression 

of transgenes. Unlike lentivirus, adenovirus does not 

integrate transgenes into the host genome and thereby 

can only provide a transient expression of the transgenes 

[218]. However, this kind of expression time is not 

controllable.

To acquire more accurate excision of oncogenes, site-

specific recombination systems were developed. Cre/

Table 2 Malignant transformation and tumorigenesis during immortalization of primary cells

Immortalization Cell type or animal References

Oncoprotein(s) Human Biliary epithelial cells, fetal keratinocytes, fibroblasts, keratinocytes, 
mesothelial cells

[190, 346–349]

Animal Chinese hamster embryo fibroblasts, rabbit chondrocytes [191, 350]

Oncoprotein(s) and oncogene(s) Human Colon smooth muscle cells, embryonic esophageal epithelial cell, 
epidermal keratinocytes, hepatocytes, primary fibroblasts, prostatic 
epithelial cells, mammary epithelial cells

[351–358]

TERT Human Astrocytes [359]

TERT and viral oncoprotein(s) Human Airway (bronchial) epithelial cells, endothelial cells, esophageal epi-
thelial cells, fibroblasts, hematopoietic progenitor cells, mammary 
epithelial cells, MSCs, ovarian surface epithelial cells

[202, 240, 360–368]

Animal Bovine adrenocortical cells [369]

TERT and oncogenes Human Mammary epithelial cells, MSCs [370, 371]

Oncoprotein(s), oncogene(s) and growth factors Human Oral keratinocytes [372]

Oncoprotein(s) and chemical carcinogens Human Ectocervical and endocervical cells, oral keratinocytes [373–377]

TERT, oncoprotein and alpha subunit of eukary-
otic initiation factor 2

Human Kidney cells [378]



Page 10 of 21Wang et al. Cell Biosci             (2019) 9:7 

LoxP technology involves engineering a transgene 

flanked by LoxP sites. �e transgene is activated until 

Cre recombinase is added. However, the cre-lox sys-

tem is not 100% efficient and cells that have not deleted 

the transgene might require elimination [219, 220]. In 

addition, a Tet on/off system uses tetracycline respon-

sive elements (TRE) that consist of a Tet operator and 

minimal promoter. �e activation of the transgene and 

the subsequent cell division is related to tetracycline or 

doxycycline, which acts as a cue for activation (Tet-On) 

or inactivation (Tet-Off) [221, 222]. However, this tech-

nology still has the evident limitation termed “leakiness”, 

where the transgene continues to express at a low level 

even when the system is off [223]. Moreover, the tran-

sient activation of β-catenin was used to efficiently induce 

hTERT activation while silencing β-catenin suppresses 

the expression of hTERT [224]. Meanwhile, therapeutic 

strategies concerning transient activation of telomerase 

with small molecules, including the administration of 1% 

N-acetylcarnosine lubricant eye drops for prevention and 

treatment of cataracts, have been proven beneficial for 

dogs and other animals [225]. Huang et al. have identified 

that anthraquinone derivatives might be able to activate 

hTERT expression without causing genetic alterations in 

cells, whereas these cells fail to possess potent prolifera-

tive ability [226]. Interestingly, the introduction of some 

adenovirus derived genes, including the early 4 region 

(E4) of the adenoviral vector (AdE4), augments survival 

of human endothelial cells [227, 228]. However, investi-

gations into AdE4 gene products were largely overshad-

owed by the fact that these proteins not only orchestrated 

many viral processes, but also overlapped with oncogenic 

transformation of primary cells [229, 230]. Although 

creation of conditionally immortalized cell lines has the 

potential for therapeutic application, complete silence of 

the transgene before introduction into the patient’s body 

is still a concern that needs to be addressed.

Potential loss of di�erentiation capacity

Differentiation capacity of MSCs and progenitor cells 

after immortalization is another concern that deserves 

more attention. A variety of reports has claimed that 

immortalization of progenitor cells will retain prolif-

erative activity without compromising multipotent or 

specific differentiation potential of primary cells from 

species including human, mouse and porcine [231–237]. 

A similar phenomenon has been mentioned in human 

MSCs immortalized with SV40 [238, 239]. After serial 

transduction with hTERT, SV40 and H-Ras, human 

MSCs still retain their multilineage differentiation poten-

tial even during tumorigenesis [240, 241]. Moreover, 

Yang et al. [242] showed that hTERT-transduced human 

BMSCs seeded on porous polylactic glycolic acid (PLGA) 

scaffold have better osteogenic differentiation ability than 

primary human BMSCs seeded on scaffold. Similarly, 

human BMSCs immortalized with hTERT and HPV16 

E6/E7 displayed greater differentiation potential far 

beyond the primary human BMSCs or even when human 

BMSCs expressed HPV-16 E6/E7 alone [243]. Interest-

ingly, Okamoto et al. [244] reported that human BMSCs 

immortalized with hTERT and HPV-16 E6/E7 demon-

strated significant clonal heterogeneity in differentiation 

potential. A similar phenomenon was found in mouse 

melanocyte progenitors that displayed distinct melano-

genic differentiation potential [232]. More interestingly, 

there were opposite results as human primary dental 

pulp stem cells (DPSCs) are found to be approximately 

60% more effective than hTERT-immortalized DPSCs 

in osteogenic differentiation [245]. For human placenta-

derived MSCs immortalized with hTERT and BMI1, the 

differentiation potential was lost [246]. �is discrep-

ancy may partially be due to different immortalization 

strategies as the lost differentiation potential in ADSCs 

due to “SV40+hTERT” introduction can be preserved 

by “hTERT+BMI1” [247]. Moreover, cellular senes-

cence counteracts the induction and reprogramming of 

induced pluripotent stem cells and senescence related 

INK4A/ARF and p53/p21 pathways are considered to be 

involved in these processes [248–251].

Preconditioning of cells through matrix 
microenvironment optimization
Although genetic manipulation is a popular strategy for 

functional tissue engineering, it has limited clinical ben-

efit due to its inherent risks [189, 193, 194]. For human 

cells that are sensitive to external changes, matrix micro-

environmental alterations may modify intercellular com-

munication, leading to enhanced proliferation ability 

without carcinogenic mutation [252, 253].

Cells in the body reside in a niche, a dynamic and com-

plex environment, where extracellular cues provided 

allow cells to survive and maintain their balance between 

quiescence, self-renewal and differentiation [254, 255]. 

ECM, a versatile component that plays a key role in the 

stem cell niche, interacts with the resident cells by modu-

lating cell behavior through its physical, biochemical and 

biomechanical properties [256, 257]. �ere is an increas-

ing number of reports indicating that dECM is a prom-

ising substrate to maintain the stemness of expanded 

cells by mimicking the in  vivo niche [258, 259]. dECM 

was found to improve the expansion capacity of human 

BMSCs [260], human and porcine SDSCs [261, 262], 

human umbilical cord MSCs [263] and porcine adipose 

stem cells derived from the infrapatellar fat pad [264]. 

Interestingly, dECM deposited by SDSCs could also reju-

venate somatic cells such as porcine nucleus pulposus 
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cells [265, 266] and replicatively senescent porcine chon-

drocytes [267]. �ese dECM-expanded cells were smaller 

in size compared to those grown on plastic flasks. �ese 

results are in accordance with the finding from White-

field and coworkers in which, under time-lapse video 

microscopy, the smaller cells were observed to continue 

proliferation, while the larger cells became senescent and 

exited the cell proliferation cycle [268].

Furthermore, current data indicate that dECM depos-

ited by MSCs yields human adult SDSCs [269, 270] and 

porcine adipose stem cells derived from the infrapatellar 

fat pad [264] with better chondrogenic potential in vitro 

and with better repair capacity for cartilage defects 

in vivo [271]. Interestingly, BMSCs, a tissue-specific stem 

cell for endochondral bone formation, could be greatly 

recharged toward chondrogenic differentiation by expan-

sion on dECM deposited by nonchondrogenic human 

urine stem cells [272] or human BMSCs themselves [260]. 

More interestingly, a recent report showed that, despite 

dECMs deposited by BMSCs and ADSCs enhancing the 

proliferation ability of MSCs, they failed to yield expan-

sion of cancer cells (HeLa, MCF7 and MDA-MB-231) in 

terms of inhibiting the expansion ability of these cancer 

cells [273]. �is finding indicates that normal cell derived 

dECM is not favorable for the growth of cancer cells. 

Given the undesirable potential of carcinogenesis after 

genetic modification from cell immortalization, dECM 

tends to be a better alternative.

In addition to rescuing replicative and differentiation 

capacities, dECM could reduce intracellular generation of 

ROS in aged murine BMSCs [274] and in human BMSCs 

[260] and umbilical cord MSCs [263]. Meanwhile, dECM 

could enhance the anti-oxidative capacity of human 

adult SDSCs [269] and protect umbilical cord MSCs 

from oxidative stress-induced premature senescence 

[275] to finally achieve better chondrogenic differentia-

tion. Moreover, dECM could repress osteoclastogenesis 

in bone marrow monocytes through the attenuation of 

intracellular ROS [276]. All the above mentioned studies 

confirmed the anti-senescence and anti-oxidative effect 

of dECM as a culture substrate.

Mechanical cues, including stiffness and elasticity from 

the surrounding matrix microenvironment, are impor-

tant cellular inputs that sustain cell proliferation and 

oppose cell senescence. Integrin-based focal adhesions 

are the main adhesion complex dominating mechano-

sensing [277]. In our previous study, dECM-expanded 

human BMSCs demonstrated increased expression of 

integrin α2 and β5 [260], which are potentially involved 

in the process of cell proliferation [278, 279]. As a power-

ful regulator of cell proliferation and survival, YAP/YAZ 

act as mechanotransducer that is regulated by F-actin 

cytoskeleton [280, 281]. Interestingly, dECM expansion 

was found to induce sustained activation of ERK1/2 as 

well as phosphorylated cyclin D1 human BMSCs [260] 

but decreased phosphorylated ERK in human adult 

source SDSCs [261]. A similar phenomenon was found 

in phosphorylated p38 expression in human SDSCs [261] 

and human umbilical cord MSCs [263] after dECM pre-

conditioning. �ese discrepancies might be explained 

by the dual role of ERK [282] and p38 [283] signals that 

play upon cell senescence. �e expression of Wnt5a and 

Wnt11a were also found to be upregulated following 

dECM expansion [261].

Conclusions and perspective
Primary cells display a stable and long-term loss of pro-

liferative capacity upon in  vitro expansion despite con-

tinued viability and metabolic activity. �is inability to 

proliferate is due to progressive shortening of telomeres 

during each replication which ultimately makes cells 

reach their “Hayflick limit”, termed telomere-dependent 

or replicative senescence. Meanwhile, there is another 

kind of senescence referred to as premature senescence 

since it can arrest cell growth long before reaching the 

“Hayflick limit”. One type is stress-induced senescence 

caused by the failure to simulate the in  vivo supportive 

environment, which puts pressure on cell proliferation 

through the generation of ROS. In addition, both onco-

genes and their counteracting tumor suppressors are 

proven to provoke premature senescence. A variety of 

signaling pathways are involved in all of these types of 

senescence, in which the p53/p21 and p16/Rb pathways 

are the two major signals involved. Oncogenes including 

SV40 and HPV-16 E6/E7 inhibit the p53/p21 and p16/Rb 

pathways, but are not able to immortalize primary cells 

unless followed by the introduction of TERT, which elon-

gates telomeres, thereby abrogating the effect of the end 

replication problem. However, all of these genetic modi-

fication methods have the risk of virus introduction and 

potential oncogenesis, which must be addressed before 

its application into tissue engineering.

Optimization of the laboratory culture environment 

[259], including modulation of oxygen level and cell den-

sity and the introduction of growth factors, and recently 

discovered dECM preconditioning, is also an effective 

strategy to fight against senescence. Despite the fact that 

dECM deposited by MSCs from fetal [261] or young 

donors [272] offers a better rejuvenation effect in pro-

moting aged MSCs in both expansion and differentia-

tion capacities compared to adult donors, the source of 

these young cells was either allogenic or xenogeneic, 

which might pose a potential risk of compromising the 

donor [284] or immune rejection [285]. In this scenario, 

cells donated by the patients themselves are considered 

the best candidate. However, the elderly primarily suffer 
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from degenerative disease and most of their autologous 

cells may suffer from senescence, which was identified as 

an influential factor in the quality of cells [286]. Given the 

demand for a younger cell population and the situation 

of carcinogenic transformation after genetic modification 

for immortalization purposes, it raises the possibility of 

combining genetic modification and environmental opti-

mization strategies. In other words, we can immortalize 

these senescent cells and utilize their deposited dECM 

instead of the cells themselves to achieve a reduced 

senescent status and enhanced proliferation potential 

of expanded cells. �e combination strategy might also 

overcome the potential loss of differentiation capacity of 

stem cells with the use of immortalization strategy alone. 

Further investigation into this matrix microenvironmen-

tal preconditioning-based rejuvenation strategy may 

offer important insights into possible means of providing 

robust primary cells as therapeutic agents.
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