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S
portS-related mild TBI, also referred to as concus-
sion, is known to have a high incidence in contact 
sports such as American football, boxing, wres-

tling, soccer, and ice hockey.2,18,54 Mild TBI is typically 
associated with acute symptomatology including dizzi-

ness, headache, visual disturbances, and cognitive im-
pairment.14,41 Although the majority of athletes recover 
within a few days, concerns have been raised about the 
possible long-term effects of mild TBI on the brain’s 
structural and functional integrity.4,10–13,23–25,44,46,62

Until very recently, the diagnosis of mild TBI has 
been based on clinical symptoms rather than on radio-
logical evidence. This practice has arisen from the obser-
vation that the brain often appears quite normal on CT as 
well as on conventional MRI.57 However, studies that use 
more advanced MRI, in particular DTI, are able to detect 
subtle white matter changes indicating diffuse axonal in-
jury, the most common injury observed in mild TBI.35,51,63
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Object. The aim of this study was to investigate the effect of repetitive head impacts on white matter integrity 
that were sustained during 1 Canadian Interuniversity Sports (CIS) ice hockey season, using advanced diffusion ten-
sor imaging (DTI).

Methods. Twenty-five male ice hockey players between 20 and 26 years of age (mean age 22.24 ± 1.59 years) 
participated in this study. Participants underwent pre- and postseason 3-T MRI, including DTI. Group analyses were 
performed using paired-group tract-based spatial statistics to test for differences between preseason and postseason 
changes.

Results. Tract-based spatial statistics revealed an increase in trace, radial diffusivity (RD), and axial diffusivity 
(AD) over the course of 1 season. Compared with preseason data, postseason images showed higher trace, AD, and 
RD values in the right precentral region, the right corona radiata, and the anterior and posterior limb of the internal 
capsule. These regions involve parts of the corticospinal tract, the corpus callosum, and the superior longitudinal 
fasciculus. No significant differences were observed between preseason and postseason for fractional anisotropy.

Conclusions. Diffusion tensor imaging revealed changes in white matter diffusivity in male ice hockey players 
over the course of 1 season. The origin of these findings needs to be elucidated.
(http://thejns.org/doi/abs/10.3171/2012.10.FOCUS12303)
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Abbreviations used in this paper:  AD = axial diffusivity; CIS = 
Canadian Interuniversity Sports; DTI = diffusion tensor imaging; 
FA = fractional anisotropy; HCEP = Hockey Concussion Education 
Project; MRS = magnetic resonance spectroscopy; RD = radial 
diffusivity; SWI = susceptibility weighted MR imaging; TBI = 
traumatic brain injury.
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Diffusion tensor imaging provides information about 
the diffusion of water molecules, reflecting coherence, 
organization, and density of white matter in the brain. 
Fractional anisotropy is one of the most frequently used 
parameters and indicates the direction of the diffusion 
of the water molecules. In this context, a high FA value 
means a more unidirectional flow, whereas a low FA in-
dicates equal water movement in virtually any direction. 
Higher FA thus indicates more elongated shapes of wa-
ter diffusion, which are often observed in white matter, 
where water mainly diffuses parallel rather than perpen-
dicular to the fibers. Fractional anisotropy is often used as 
a measure of white matter integrity. This is in contrast to 
lower FA, which is observed in, for example, CSF, where 
water diffuses at the same speed in all directions.

Another often-used parameter of white matter integ-
rity is trace, also known as mean diffusivity, which mea-
sures the total diffusion in all directions. A high trace 
indicates that there is faster water diffusion. Two other 
diffusivity measures are RD and AD, which in white mat-
ter are purported to measure myelin and axonal pathol-
ogy.1,6,7

Diffusion changes following mild TBI are mainly 
characterized by increased trace/mean diffusivity29,50,52 
and decreased FA,3,21,29,33,37,50 generally observed in white 
matter, indicating reduced white matter integrity. Only a 
small number of studies have reported the opposite re-
sults, an increase in FA.39,63 In a recent review of DTI 
findings in mild TBI,57 it was noted that some studies 
investigating the acute and long-term course of white 
matter injury found an early decrease in mean diffusivity 
and RD directly after the injury, followed by an increase 
equal to or above baseline values.7,59–61 Animal models of 
brain trauma have also linked DTI parameters to histo-
pathology, supporting the aforementioned findings in hu-
man patients.7,59 Moreover, diffusivity parameters have 
been observed to correlate with measures of executive 
function, attention, memory, and learning in mild TBI in 
general35,36,47,53 as well as in sports-related mild TBI.52

Ice hockey players experience frequent impacts to 
the head.15,16,18–20,48,49 Previously reported concussion in-
cidence rates have varied between 1.6 and 3.1 per 1000 
athlete exposures.2,20 A recent study by Echlin et al.18 re-
ported a significantly higher incidence of 21.5 per 1000 
athlete exposures. Echlin et al.17 (Part 2 of 4 in this is-
sue) report an incidence of 8.47 concussions per 1000 
athlete exposures. The higher incidence rate reported 
in these recent studies may be due to the greater aware-
ness of sports-related concussion among the study physi-
cians and their superior vantage points within the arena.18 
Furthermore, although the incidence rate in the Echlin 
et al. study documents clinically diagnosed concussions 
during the observation period, many of the observed and 
nonobserved impacts that were not diagnosed as concus-
sions may have had a cumulative effect on the brain’s 
functional and structural integrity.

To date, the majority of advanced MRI studies have 
been performed in players of other contact sports such 
as American football,9,23–27,41,42 boxing,22,30,44 and rug-
by,28,31,32,45 with only a small number of studies focused 
on ice hockey players.5,8,14,40,56 Bazarian and coworkers,5 

for example, examined 1 concussed American football 
player, ice hockey and American football players with 
multiple (26–399) subconcussive hits to their heads, and 
6 controls. Changes in white matter were observed most 
in the concussed athlete, intermediate changes in athletes 
with subconcussive blows to the head, and no changes at 
all in controls.5 These findings suggest that even in the 
absence of clinically symptomatic concussions, players 
are likely to evince white matter alterations if advanced 
neuroimaging procedures are used. The aim of this study 
was to investigate the effect of repetitive head impacts on 
white matter integrity using advanced DTI, impacts that 
were sustained during 1 CIS ice hockey season.

Methods
Participants and Study Protocol

Twenty-five male ice hockey players between 20 
and 26 years of age (mean age 22.24 ± 1.59 years) were 
included in the study. All participants were part of the 
HCEP, a cohort study performed during a CIS ice hockey 
season (2011–2012). The clinical data for this study are 
described in detail in Echlin et al.17 (Part 2 of 4 in this 
issue).

Briefly, exclusion criteria were MRI exclusion crite-
ria, as well as a history of any neurological or neuropsy-
chiatric disease other than a previously experienced con-
cussion. The study protocol was approved by the ethics 
committee within the universities at which the CIS teams 
were based. All participants provided written informed 
consent prior to the beginning of the study. Participants 
underwent preseason and postseason assessment includ-
ing neuropsychological evaluation and advanced neuro-
imaging with DTI, MRS, and SWI. This study focuses on 
the DTI analyses, whereas the detailed description and 
comprehensive interpretation of concussion incidence, 
neuropsychological testing, as well as MRS results are 
presented in other papers within this issue. The men’s 
team DTI results and both men’s and women’s team SWI 
results from this study will be presented in a future pub-
lication.

Magnetic Resonance Imaging Protocol and Data 
Acquisition

Data acquisition was performed on a 3-T MRI ma-
chine (Achieva, Philips) with an 8-channel head coil ar-
ray. A DTI sequence with 2 averages and the following 
parameters was performed: 60 noncolinear diffusion di-
rections, TR 7015 msec, TE 60 msec, matrix size 100 × 
100, voxel size 2.2 × 2.2 × 2.2 mm, b-value = 0 and 700 
sec/mm2, and 70 slices.

Preprocessing of DTI  

Magnetic resonance imaging data sets were examined 
for image quality. To remove intrascan misalignments due 
to eddy currents and head motion, an affine registration 
(FSL 4.1, part of the FMRIB Software Library, The Oxford 
Centre for Functional MRI of the Brain) of the diffusion-
weighted images to the baseline image was performed for 
each participant. Gradient directions were adjusted using 
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the rotational component of the affine transformations. 
Nonbrain tissue and background noise were then removed 
from the b0 image using 3Dslicer version 3.6.2 (Surgical 
Planning Laboratory, Brigham and Women’s Hospital). 
This program is freely available to the public (http://
www.slicer.org). The diffusion tensor for each voxel was 
estimated using a multivariate linear fitting algorithm, 
and the 3 pairs of eigenvalues (l1, l2, l3) and eigenvec-
tors were obtained. Voxel-wise summary parameters in-
cluding FA were calculated as follows:

RD = [(l2 + l3)/2], AD = [l1], trace  = [l1 + l2 + l3]

White Matter Skeleton

Whole-brain tract-based spatial statistics,58 a voxel-
based standard-space group statistical analysis (FSL 4.1), 
was used to perform the whole brain analysis of white 
matter changes in ice hockey players between preseason 
and postseason. The program, as well as a detailed de-
scription of the method, can be found on the FMRIB 
website (http://www.fmrib.ox.ac.uk/fsl/tbss/index.html). 
Using this program, the first step involved assigning a 
target image by identifying the most representative FA 
image, taking the participants’ FA data, and aligning 
every image to every other one. This target image was 
then affine-aligned to a standard space (1 × 1 × 1 mm3, 
Montreal Neurological Institute [MNI 152]). Finally, all 
images were coregistered into the target image. This step 
adjusts each data set so that the FA data of each indi-
vidual fits the others exactly. These aligned FA images 
were then averaged to generate a cross-participant  mean 
FA image, a 4D data set that combines all individual’s FA 
information in 1 single file. Based on this mean FA im-
age, the mean FA skeleton was created, which represents 
the center of all white matter fiber tracts common to the 
group. The mean FA skeleton was thresholded using an 
FA value of 0.3 to exclude peripheral tracts where there 
was significant intersubject variability and/or partial vol-
ume effects with gray matter (the borderline between the 
basal ganglia and the internal capsule). Each participant’s 
aligned FA data were then projected onto the mean skel-
eton to create a skeletonized FA map by searching the 
area around the skeleton in the direction perpendicular to 
each tract, finding the highest local FA value, and then as-
signing this value to the corresponding skeletal structure. 
This was done to ensure that the skeleton represents the 
same fiber structures across the participants, bypassing 
possible registration inaccuracies.

Statistical Analysis

The skeletonized FA, RD, AD, and trace data were 
then used to perform voxel-wise statistical tests, which 
are based on a nonparametric approach utilizing permu-
tation test theory to test for diffusivity differences in each 
participant’s postseason data against preseason data. The 
testing was performed by the FSL Randomize program, 
in which random permutations were set at 5000. Paired-

group statistics of preseason versus postseason scans 
were performed on the FA, RD, AD, and trace data. We 
used threshold-free cluster enhancement to avoid choos-
ing an arbitrary initial cluster-forming threshold; this 
method provides a voxel-wise significance value, p, that 
is fully corrected for multiple comparisons across space. 
We considered voxels with a p value < 0.05 as significant.

Results
Study Data

Five of the 25 male hockey players in the study ex-
perienced a clinically symptomatic concussion during the 
season, according to the Zurich consensus statement on 
concussions from the 3rd International Conference on 
Concussion in Sport.43 Fourteen of the 25 players admit-
ted that they had suffered at least 1 concussion prior to 
the start of the study. None of the participants had any 
symptoms related to acute clinical concussion when en-
tering the study.

Six of the 25 participants were excluded because 
either a preseason or postseason scan was not available. 
Two additional participants were excluded due to motion 
artifacts. The analyses were therefore performed on 34 
data sets of 17 hockey players, in which 3 of them had 
experienced a physician-diagnosed concussion during the 
time of the study.

Tract-Based Spatial Statistics

The paired-group test was performed on the 17 pre-
season and 17 postseason data sets. Findings revealed 
a significant increase in trace, AD, and RD in the post-
season scans (p < 0.05). Compared with preseason data, 
postseason images showed higher trace, AD, and RD 
values in the right precentral region, the right corona ra-
diata, and the anterior and posterior limb of the internal 
capsule. This region contains pathways of the corpus cal-
losum, the right superior longitudinal fasciculus, and the 
right corticospinal tract. The spatial distribution of the 
clusters with increased diffusivity measures is presented 
in Fig. 1a–c. The individual’s measures in the signifi-
cant clusters, as revealed by tract-based spatial statistics, 
are displayed in the respective scatter plots in Fig. 1d–f. 
There was no significant difference for FA between pre- 
and postseason scans. Table 1 lists the mean percentage 
increase in diffusivity parameters from preseason to post-
season (AD 5.2%, range -1.96% to 12.07%; RD 7.89%, 
range -4.75% to 18.09%; trace 5.78%, range -1.72% to 
13.98%) as well as the change in percentage for each indi-
vidual. A more pronounced increase in RD was found for 
the 3 concussed athletes compared with the other players 
(p = 0.047, Mann-Whitney U-test). No statistically signifi-
cant difference was found for AD and trace values. When 
testing for higher diffusivity in preseason versus postsea-
son images we found higher RD, AD, and trace values in 
the left hemisphere but not in the right (data not shown). 
Figure 2 displays an example of the corticospinal tract in 
each hemisphere as assessed using tractography.

Discussion
This study showed an increase in diffusivity in ma-
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jor white matter tracts in the right hemisphere over the 
course of 1 ice hockey season, suggesting altered white 
matter integrity in ice hockey players. Tract-based spa-
tial statistics revealed large clusters with increased trace-, 
RD-, and AD-containing fibers of the corpus callosum, 
the right corticospinal tract, the right internal capsule, 
and the right superior longitudinal fasciculus. These re-
sults may indicate alterations in white matter, such as re-
duced thickness of the myelin sheaths and/or changes to 
the axon itself.7,62

The findings reported in our cohort of hockey play-
ers are similar to those previously published on mild TBI 
in other contact sports. These studies have reported ab-
normalities in a variety of brain regions, including the 
corona radiata,29,39,50 uncinate fasciculus,21,39 corpus cal-
losum,39,50,64 corticospinal tract,33 internal capsule,3,29,50 
and superior longitudinal fasciculus.21 Interestingly, the 
difference in diffusivity measures between preseason 
and postseason was significant even though only 3 of the 
study participants included in the statistical analysis had 
experienced a clinically symptomatic concussion over the 
course of the season. This suggests that white matter al-

terations occur even in the absence of a diagnosed con-
cussion, which is in accordance with other studies in con-
tact sports where concerns have been raised about the cu-
mulative effects of frequent brain trauma.4,10–13,23–25,44,46,62

Diffusion tensor imaging has only recently been ap-
plied to investigating brain abnormalities in mild TBI, and 
to date, most published studies have only analyzed FA. 
Only a small number of studies exist that have included 
mean diffusivity in addition to FA (the review by Shenton 
et al. in 201257 lists 22), and an even smaller number of 
more recent studies exist that have analyzed RD and/or 
AD in addition to mean diffusivity and FA (Shenton et 
al.57 lists 8). Diffusion changes indicating altered white 
matter integrity following mild TBI are mainly charac-
terized by decreased FA3,21,29,33,37,50 and increased mean 
diffusivity,29,50,52 and in the more recent studies, increased 
RD has also been found.33,34 In addition, animal models 
have shown increased RD to be associated with postin-
jury demyelination.61 Our results showed an increase in 
trace/mean diffusivity, RD, and AD. However, we did 
not find a significant decrease in FA. This may be due 
to the fact that we compared individuals before and after 
the season and did not use a comparison with a control 
group. Moreover, tract-based spatial statistics compares 
all voxels that are part of the entire white matter skeleton 
between the two groups while adjusting for multiple com-
parisons. Therefore, tract-based spatial statistics is known 
to be very conservative and only shows highly significant 
differences between groups.

Previously published studies mainly report white 

Fig. 1. Results of the tract-based spatial statistical analysis (a–c) 
and respective scatter plots of participant measures (d–f). Voxels high-
lighted in red demonstrate significantly increased trace value (a), AD 
(b), and RD (c) on postseason images when compared with preseason 
images. Voxels are thickened into local tracts and overlaid on the group 
mean FA image. Images are shown according to radiological con-
vention (right = participants’ left). Compared with preseason images, 
postseason images showed higher values for trace (median [interquar-
tile range] 0.00224 [0.00006] vs 0.00236 [0.0008], respectively), AD 
(0.00136 [0.00006] vs 0.00143 [0.001], respectively), and RD (0.000469 
[0.00003] vs 0.000512 [0.00006], respectively). Participants who expe-
rienced a clinically symptomatic concussion (Cases 1, 4, and 17) during 
the season are indicated in red in the scatter plots. Importantly, note that 
2 of the 3 concussed players moved from the middle or lower portion 
of the distribution at preseason to the top of the range at postseason.

TABLE 1: Percentage change from preseason to postseason in 

the diffusivity measures for each of the 17 participants in the 

study

Case No. AD RD Trace

1* 3.93 11.57 5.43
2 2.70 −4.75 0.80
3 3.26 7.68 4.04

4* 9.64 18.09 12.33
5 5.12 0.37 6.97
6 11.76 11.38 12.76
7 −0.38 4.96 −1.72
8 6.40 8.84 7.00
9 2.93 3.61 2.49

10 2.92 13.86 3.38
11 −1.96 2.10 −1.32
12 7.42 11.34 8.16
13 7.16 11.03 7.80
14 12.07 15.23 11.10
15 2.35 −1.46 0.14
16 2.98 3.64 5.00
17* 10.02 16.67 13.98

mean 5.20 7.89 5.78

* Participants who experienced a concussion during the season. The 
values for 2 of these players (Cases 4 and 17) are greater than the 
mean percentage change.
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matter changes in both hemispheres, although findings of 
asymmetry have been observed in some studies.9 In our 
cohort, statistically significant effects were only visible in 
the right hemisphere. This might be due to the fact that 
we compared preseason and postseason assessment in-
stead of also comparing hockey players to a control group, 
where we might have found a pronounced overall effect 
rather than a localized effect within the right hemisphere. 
Additionally, 56% of all participants reported at least 1 
previously sustained concussion before entering the study. 
Therefore, the results of this study may only reflect addi-
tional changes in white matter alterations over the course 
of 1 season, because the effects of mild TBI might have 
already been present in the majority of participants. In this 
context, the right hemisphere may be more susceptible to 
diffuse axonal injury than the left, where changes might 
not be as pronounced within the investigated group of 
athletes. However, the interpretation of findings of white 
matter alterations in the right hemisphere is at best specu-
lative. Further studies are needed, including complete in-
formation regarding the laterality of sustained impacts to 
the head, which may provide the necessary link between 
injury mechanism and the location of white matter altera-
tions in sports-related concussion.

The limitations of this study include the small sam-
ple size and the lack of a control group of healthy athletes 
taking part in noncontact sports. The tract-based spatial 
statistics findings of higher RD, AD, and trace values in 
the left hemisphere for the preseason data when compared 
with postseason data were not predicted and are difficult 
to interpret. Gross image artifacts and magnet inhomoge-
neities have been ruled out, but further studies including 
a control group are needed to confirm this finding and to 
evaluate its possible significance. General limitations of 
tract-based spatial statistics include the fact that it only 
evaluates voxels belonging to white matter and thus gray 
matter is not included for investigation.

Conclusions
Diffusion tensor imaging revealed changes in white 

matter diffusivity in ice hockey players over the course of 
1 season. The origin of these changes needs to be eluci-
dated. One possible explanation may be the effect of brain 
trauma, but an effect of training could also contribute. 
Future studies are needed to confirm these findings in 
both male and female athletes and to relate DTI findings 
to other advanced neuroimaging techniques and to neu-
rocognitive function.
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