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Abstract

Background: The nuclear receptors are a large family of eukaryotic transcription factors that

constitute major pharmacological targets. They exert their combinatorial control through

homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to

understand the complex dynamics and potential cross-talk involved.

Results: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression

data have been integrated to provide a comprehensive and up-to-date description of the topology

and properties of the nuclear receptor interaction network in humans. We discriminate between

DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that

identifies potential cross-talk between the various pathways of nuclear receptors.

Conclusion: We infer that the topology of this network is hub-based, and much more connected

than previously thought. The hub-based topology of the network and the wide tissue expression

pattern of NRs create a highly competitive environment for the common heterodimerising

partners. Furthermore, a significant number of negative feedback loops is present, with the hub

protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and

properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH

transcription factors in order to identify both unique themes and ubiquitous properties in gene

regulation. In terms of methodology, we conclude that such a comprehensive picture can only be

assembled by semi-automated text-mining, manual curation and integration of data from various

sources.
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Background
The nuclear receptors (NRs) comprise an ancient family of
transcription factors (TFs) that are found in metazoa and
are involved in the regulation of development, metabo-
lism, homeostasis, reproduction, and cell death [1]. They
are prominent pharmaceutical targets for diseases such as
hypertension, cancer, diabetes, cardiovascular disease,
cholesterol gallstone disease, and the metabolic syn-
drome [2-4].

NRs form a complex and highly connected dimerisation
network. They bind to DNA as monomers, homodimers
and heterodimers [5,3,6,7]. The homodimers and het-
erodimers can bind to DNA elements that are oriented as
palindromes, direct repeats, or even everted repeats. The
two dimerisation domains, that is the DNA binding
domain (DBD) and ligand binding domain (LBD) work
in tandem to enable DNA binding. According to this two-
step hypothesis, the LBD dimerisation interface initiates
the formation of the dimer in solution. The formation of
the second dimer interface within the DBD restricts the
receptors to binding their cognate hormone response ele-
ments on the DNA [8,9]. The ability of NRs to bind to
these differently oriented repeats increases the level of
complexity. The elucidation of the dimerisation network
for this family is very important because the combination
of different NRs in dimers increases the number of genes
that they regulate (combinatorial control), creates either
permissive or non-permissive dimers, combines different
signalling pathways on the same promoter, and creates
competition for common heterodimeric partners. As an
extra level of complexity, NRs can form non-DNA-binding
dimers using different interfaces. In these interactions, an
NR can function as co-activator [10] or it can repress the
formation of another functional DNA-binding dimer
[11,12].

Our goal is to get a global understanding of the NR dim-
erisation network. For such a systems biology analysis,
synthetic approaches are needed, where large-scale exper-
iments like yeast two-hybrid (Y2H) analyses [13-15],
microarrays [16], protein arrays [17], and text mining of
the literature [18] are integrated. While none of these
experimental approaches has yet been perfected, they
have revealed, for the first time, some of the statistical
properties of biological systems, e.g. the scale-free nature
of protein-protein interaction, protein-DNA interaction,
and metabolic networks [19]. In these scale-free networks,
a small number of proteins are highly connected (i.e. they
represent hubs), whereas the majority are poorly con-
nected (i.e. they are peripheral members of the network)
[20]. It has been proposed that systems with such topolo-
gies favour fast information flow (creating a so-called
'small world') and that they respond rapidly to changes,
while exhibiting robustness to mutation or inhibition

[21,20,22,23]. An effective control of many interdepend-
encies with a minimal number of connections is a feature
of biological systems that involve gene regulation [24].

NRs are an extensively researched molecular class and,
consequently, the literature corpus for NRs is very large;
over 70,000 articles were retrieved when querying with
the generic keyword "nuclear receptor". This fact, com-
bined with the large number of protein family members
(48 genes in humans) and of synonyms (over 100) makes
the elucidation of the dimerisation network a non-trivial
task. Therefore, we developed a semi-automated method
to scan the literature exhaustively and to try to construct
as complete a picture of the NR dimerisation network as
possible. In doing this, we also integrated data from pre-
vious text-mining efforts [25] and recent human Y2H data
[26-28], in order to answer questions relating to the struc-
ture and functions of the NR network.

Results
Integration of interaction data from various sources

Previous work by the Koegl group revealed a network of
117 interactions among NRs with specific names. The
data accumulated by that group combines interaction
data obtained from text mining of literature abstracts for
the years 1966–2001 [25] and a Y2H screen of NRs [26].
No evaluation of the biological significance of the net-
work topology was undertaken.

Our text-mining effort, covering abstracts of papers pub-
lished between January 1993 and December 2005
retrieved 127 specific protein-protein interactions. The
127 interactions were between proteins whose specific
name and not the generic name (the group name) was
used to describe them, e.g. the generic term RXR [NR2B]
could refer to any of the 3 paralogues (RXR-a [NR2B1],
RXR-b [NR2B2], RXR-g [NR2B3]). Since paralogues share
very similar dimerising DBD and LBD domains, it is often
observed that all members of one phylogenetic group will
interact with all members of another group, as is the case
between the RXR-PPAR [NR2B-NR1C] and RXR-RAR
[NR2B-NR1B] groups. This has also been observed for the
bHLH [29] and bZIP [17] families of dimerising TFs. Nev-
ertheless, exceptions exist – such as the MINOR [NR4A3]
gene from the NR4A group, which does not interact with
RXR [NR2B] proteins, while its other two paralogues,
NUR77 [NR4A1] and NURR1 [NR4A2], do [30]. For this
reason, we selected only interactions between proteins
that have a specific name.

We integrated results from i) our text-mining effort ii)
data from the most comprehensive and publicly available
protein-protein interaction database, HPRD [18,31], iii)
the large-scale Y2H experiment in humans [27], and iv)
the previous datasets from the Koegl group [26,25], to
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obtain the complete dataset, with a total of 179 NR pro-
tein-protein interactions. Each of the individual sources
has a certain degree of overlap with the others, but it also
contributes a number of unique interactions that were not
covered in any other source. The contribution of each
source and the number of unique interactions is shown in
table 1 and in Additional file 1.

Confidence in the protein-protein interactions

Using data from literature-mining efforts (accessing scien-
tific papers), large-scale Y2H experiments, and phyloge-
netics, we defined a simple measure of confidence and
assigned a level of confidence to every interaction (Figure
1). The first level of confidence (L1) includes 88 interac-
tions that have at least two different sources of evidence,
(i.e. either mentioned in at least two papers, or in one
paper and one of the Y2H experiments, or in two Y2H
experiments). The second level of confidence (L2)
includes 50 interactions between proteins that have only
one source of evidence (either one paper, or one Y2H
experiment), but are members of phylogenetic groups
that are also linked by at least one L1 interaction. For
example, the interaction between SHP [NR0B2] and RAR-
gamma [NR1B3] is found only in one large-scale Y2H
experiment [26] ; nevertheless, there is at least one inter-
action of level 1 between the NR0B and NR1B phyloge-
netic groups (SHP [NR0B2] – RAR-alpha [NR1B1]). The
use of phylogenetic information allows us to increase the
level of confidence that may be attributed to a given inter-
action. The third level of confidence (L3) includes 19
interactions between proteins that have only one source
(one paper, or one Y2H experiment), but there also exists
at least another one interaction, with only one source,
between other members of these two phylogenetic
groups. For example, the interaction between GR
[NR3C1] and Nur77 [NR4A1] is mentioned only once in
the literature, but there is at least another interaction (e.g
GR [NR3C1] – Nurr1 [NR4A2]) between the NR3C and
NR4A phylogenetic groups, that also has only one source
of evidence. The fourth level of confidence (L4) includes
22 interactions between proteins that have only one
source (one paper, or one Y2H experiment), with no other
interaction between proteins of the same two phyloge-
netic groups. All subsequent analyses reported in this
paper are performed by excluding the interactions of level
4. Evidently, the interactions attracting most confidence
belong to level 1, which have been verified at least twice;
whereas, levels 2 and 3 include interactions assigned
moderate confidence, which have been verified by one
source and are additionally supported by phylogeny. The
interactions in which there is least confidence belong to
level 4, for which there is support from only 1 source.

Topology of the interaction network

We tested the properties of the network that is formed by
the DNA-binding dimerising interactions, by plotting the
log of frequency of proteins with K interactors against the
log of K interactors (see Methods section and
interactions_distribution worksheet in Additional file 1).
We found that its distribution of connectivity decays in a
similar fashion to a scale-free network (log-log plot linear
regression R2 = 0.654). This means that there are a few
highly connected proteins-hubs (the RXRs [NR2B]) and
many but poorly connected proteins that comprise the
peripheral members of the network. A similar observation
can be made for another dimerising network of TFs, the
bHLHs [29]. The same kind of distribution was observed
for the network that is formed by the non-DNA-binding
dimerising interactions, where the hub was SHP [NR0B2]
(see interactions_distribution worksheet in Additional file
1); the log-log plot linear regression R2 = 0.7427. Never-
theless, this statistical property was not observed when the
two networks of NR interactions were merged into one
(log-log plot linear regression R2 = 0.3935).

The overall topology of the NR protein-protein interac-
tion network that we constructed is in good agreement
with several reviews [5,32,3], a previous analysis that was
performed manually [33] and the two analyses by the
Koegl group. During the revision process of this manu-
script, we also observed that the network is in good agree-
ment with recent and extensive reviews on nuclear
receptors (from the special issue of Pharmacological
Reviews) and still contains the most extensive interaction
dataset [34-41].

Our own text-mining effort, and integration of all data
sources, confirms the overall hub-based structure and the
central role of RXR [NR2B], which is the common het-
erodimerising partner of 11 phylogenetic groups. How-
ever, this new analysis also highlights the central role of
SHP [NR0B2] as an additional hub, which suppresses the
function of 10 NR phylogenetic groups when it interacts
with them. In a sense, SHP [NR0B2] functions as a master
negative switch due to the lack of a DBD and the presence
of a repressor domain [42,43]. There is a distinct differ-
ence between the two hubs, RXR [NR2B] and SHP
[NR0B2]. RXR interactions, mediated by the dimerisation
helix 10(11) of the ligand-binding domain, are true NR
dimerisations and are a pre-requisite for DNA-binding. In
contrast, SHP [NR0B2] interactions with NRs do not
involve the dimerisation domain but require short NR-
binding domains (LXXLL, NR-box) within SHP and the
AF-2 coactivator-binding surface within the NR ligand-
binding domain. In a sense, SHP is a co-repressor hub. We
compared this promiscuous interaction pattern of SHP
with two well-known non-NR co-repressors, NCOR1 and
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SMRT, and found that these proteins also bind a large
number of NRs (24 and 23 NRs respectively).

Our analysis reveals that the network is even more con-
nected than was originally thought. Many interactions
exist among peripheral members that are not covered in
any generic publicly available database, like HPRD. This
could be an effect of the distribution of information in the
literature. Pubmed retrieves over 70,000 articles when
querying with the keyword "nuclear receptor" and a cer-
tain sub-set of interactions are repeatedly mentioned,
whereas a large number of interactions are mentioned
very few times. This fact makes it extremely challenging
for any researcher to detect rarely mentioned interactions,
assemble a complete view of the interaction map, and
update it with new data. To our knowledge, this paper
presents the most thorough interaction dataset for NRs
compiled to date and also identifies interactions of high
confidence.

Gene expression validates interaction data and shows a 

wide tissue expression pattern for NRs

As a quality control of this interaction dataset, gene
expression data from normal human and mouse tissues
were analysed. We verified that both partners of 99 out of
125 heterodimerising protein interactions with specific
names in human and 87 out of 125 in mouse were present
in at least one of the tissues (see Additional files 1 and 3).
For most (15/26 in human; 36/38 in mouse) of the
remaining heterodimerising interactions, one of the inter-
acting partners was not present in any tissue. This may
well be due to high-stringency criteria in our gene expres-
sion data analysis (see Methods). The above findings ver-
ify the biological significance of the NR interaction
network.

The integration of gene expression, protein-protein inter-
actions, and phylogenetic information also indicates the
possibility that not all NR interactions have been verified
yet. If there are at least two protein-protein interactions
among any two phylogenetic groups, then other members
of these groups could possibly interact if they are also co-

expressed. This is the case for 119 pairs of NR proteins for
which no interaction is reported. In human, there is at
least one tissue where both interacting partners are
present in the case of 82 out of 119 predicted interactions
(Additional file 1). In mouse, this number rises to 85 out
of 119 predicted interactions. Thus, we predict that a sig-
nificant number of these 82 and 85 pairs of NRs, (with an
overlap of 75 pairs between mouse and human) form bio-
logically significant dimers, which remain to be validated.

Twenty human and 19 mouse NR genes are expressed on
average in each of the 61 and 39 normal human and
mouse tissues respectively. Moreover, 7 NR phylogenetic
groups (NR1A, NR1B, NR1D, NR2B, NR2C, NR2F,
NR3C) have at least one paralog (for every group)
expressed in all 61 human tissues. This wide expression
pattern is confirmed in 5 of these 7 families (except
NR1D, NR2C) in mouse, where, there exists at least one
paralog (for every group), expressed in more than 90%
(36/39) of the tissues. The widely expressed NR genes and
their highly connected network, where the hub RXR
[NR2B] is always present, apparently create a competitive
environment for the binding of peripheral members to
the hub protein. This extremely competitive environment
could be related to the fact that many NR dimers are lig-
and-activated, thus introducing an additional check-point
in the network, in order to reduce noise.

Protein-DNA interactions and negative feedback loops in 

the NR network

Protein-DNA interactions among human NR genes were
also retrieved (see Figure 2, Methods, and Additional file
1), in order to obtain a better understanding of the NR
network. The integration of protein-protein and protein-
DNA interactions reveals that there may be several nega-
tive feedback loops that all share the same component:
the co-repressor hub, SHP [NR0B2]. The activation of sev-
eral of the peripheral members (LRH1 [NR5A2], ER-a
[NR3A1], ERR-g [NR3B3], HNF4-a [NR2A1], LXR-a
[NR1H3]), will create functional dimers or monomers.
These functional proteins in turn, will activate SHP. SHP
will then suppress the activating effect of these peripheral

Table 1: Contribution of interaction datasets. Contribution of various sources (text mining, publicly available databases and Y2H 

experiments) towards the complete nuclear receptor interaction dataset

Dataset Unique interactions Total interactions

Amoutzias et al text mining 36 127

Albert et al text mining 11 91

HPRD 10 55

Albers et al Y2H 20 47

Rual et al Y2H 4 33

Complete nuclear receptor interaction dataset 179
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members by binding to them (Figure 2). Due to the high
sequence identity of the DBD, more than one member
from each NR phylogenetic group (SF1 [NR5A1], ER-b
[NR3A2], ERR-a [NR3B1], ERR-b [NR3B2], HNF4-g

[NR2A2], FXR [NR1H4], LXR-b [NR1H2]) could regulate
the promoter of SHP. This, combined with a conserved
interaction domain for SHP, could increase the number of
negative feedback loops from 5 (observed) to 12 (pre-

Protein-protein interaction matrix of NRsFigure 1
Protein-protein interaction matrix of NRs. Side-bar colours represent phylogenetic subfamily classifications. Colours in 
the matrix correspond to one of the four levels of confidence for each interaction.
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dicted by sequence identity). The possibility of SHP par-
ticipating in negative feedback loops has been raised
previously, but not to such an extent [44]. Negative feed-
back loops are essential for establishing oscillations in
transcription [45]. It has been reported that such loops
occur at the post-transcriptional level, where the protein-
DNA interactions are thought of as the "slow" part (often
having a timescale of minutes), whereas the protein-pro-
tein interactions can be thought of as the "fast" part (often
with a subsecond timescale) [46]. It is intriguing that this
negative feedback loop pattern was not observed for the
dimerisation hub RXR [NR2B]. It appears that the nega-
tive feedback loops occur at the co-repressor level and not
at the dimerisation level. Regulation at the co-factor level
has previously been highlighted as a very important factor
of gene regulation [47].

Discussion
The genomic era has revealed that dimerising TFs are at
the "heart" of animal complexity and deserve a lot of
attention, in order to deconstruct and understand the
major control circuits of life. It has been observed that the
increased complexity of organisms correlates with an
increase in control functions per gene; i.e. both the abso-
lute number of TFs and the ratio of that number to the
number of genes controlled are increased [48-51] as
organisms become more complex. Moreover, hetero-dim-
erisation has proved to be an efficient and successful strat-
egy for increasing the complexity and range of gene
regulation, since it combines already available factors in
new control programmes [52,45]. A better understanding
of regulatory networks has been achieved in the last few
years by studying their architecture, motifs, function and
evolution (either by gene duplication or by accruing
regions of disorder) [46,53-55].

Previous work on the largest eukaryotic family of dimeris-
ing TFs (over 100 genes in humans), the bHLH family, has
revealed that they form complex and conserved dimerisa-
tion networks that are not random, but hub-based [29].
Such topologies evolved by single-gene duplications,
domain re-arrangements and possibly whole-genome
duplications [29] (i.e. the two rounds of whole genome
duplication – 2R hypothesis – at the origin of vertebrates
[56]). We observed that the topology of the dimerisation
network for the second largest eukaryotic family of dimer-
ising TFs (over 50 genes in humans), the bZIPs, is also not
random, although it is not hub-based. The overall archi-
tecture is linked to redox control of DNA binding [57].
Again, this family has a similar evolutionary history [58].
In the current study, we focused on the third largest family
of dimerising TFs, the NRs, and we observed that they
have a hub-based topology, like the bHLHs. For the inter-
actions that form DNA-binding dimers, RXR [NR2B] is the
common heterodimerising partner. For the interactions

that form non-DNA-binding dimers, SHP [NR0B2] is the
common partner, and functions as a co-repressor. It is
intriguing that when, the two networks were studied sep-
arately, they revealed their scale-free nature. Nevertheless,
when they were merged, this property was lost (see Meth-
ods section and interactions_distribution worksheet in
Additional file 1).

Since the bHLH and NRs are dimerising TFs that also
share a hub-based topology, it is interesting to compare
the two families and their networks in order to reveal
common features, which could be universal, as well as
unique features that characterise each network.

Similarities between the bHLH and NR dimerisation 

networks

Fast information flow as a result of high connectivity and
hub-based topology [19] seem to be key elements of the
NR and bHLH [29] dimerising networks. Furthermore,
these two networks have both evolved proteins that lack
the DBD (the Id and SHP [NR0B2] proteins for the bHLH
and NR networks, respectively). Id and SHP both retain
the dimerisation domain and thus inhibit DNA binding
when they interact with the hub protein (preferably), or
even with a protein that is a peripheral member of the net-
work. These two networks share not only their topological
features but also their evolutionary histories, since they
both emerged by two waves of gene duplications – at the
origin of metazoa, and the origin of vertebrates. Step-wise
gene duplications, that lead to new binding specificities
and regulation, are a common mechanism in protein
complexes [59]. Alternative models of network evolution
also exist, e.g by increasing the protein length, or acquir-
ing regions of disorder and/or internal repeats [55]. It
appears that evolution favoured the hub-based topology
in both cases.

Differences between the bHLH and NR dimerisation 

networks

Despite these similarities, the two dimerising networks
have a number of distinct features. Although RXR [NR2B]
is a potent dimerisation hub, NRs have a great ability to
bind DNA as monomers or homodimers. In addition, we
observed a large number of interactions between periph-
eral members that were verified both by text-mining and
Y2H approaches. In the bHLH network, on the other
hand, heterodimerisation with the hub is the essential
control mechanism. Therefore, the role of the hub seems
more important in the bHLH network. This results in the
network being vulnerable to mutations in the gene encod-
ing the hub protein. Nevertheless, the role of the periph-
eral members should not be underestimated: when they
dimerise with the hub, they regulate a large number of
genes, thus becoming hubs as well in the overall genetic
network. Furthermore, the efficiency of the bHLH net-
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Negative feedback loops in the NR networkFigure 2
Negative feedback loops in the NR network. a) The protein dimerisation and protein-DNA interaction network of the 
NR family. Nodes represent proteins, grey edges represent protein-protein interactions and green edges represent protein-
DNA interactions. Red edges represent protein-protein interactions that participate in the SHP negative feedback loops. b) 
The feedback loops are composed of protein dimerisation (black), protein-DNA interactions (activation: green), and inhibition 
through protein interaction (red).
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work is increased since it allows suppression of a large
number of peripheral members by suppressing only one
protein, the hub.

In the NR network, the ability of several peripheral mem-
bers to be functional either as monomers or homodimers
makes them less dependent on the hub. This may explain
why two major mechanisms of suppression have evolved.
One uses the COUPTF [NR2F] repressor proteins, that
compete with several RXR [NR2B] heterodimers for com-
mon DNA-binding sites [60]. The second exploits the
emergence of an NR member (SHP [NR0B2]) that lacks
DNA-binding ability, contains inhibitory domains, and
not only interacts with the hub, but also interacts with
peripheral members that are not entirely dependent on
the hub. It would be reasonable to assume that the second
mechanism of repression would be the prevalent one. It
has been reported, based on RT-PCR experiments [61],
that SHP [NR0B2] is ubiquitously expressed in rat tissues.
Paradoxically, however, from our human gene expression
data, it appears that COUPTF [NR2F] is more widely used
than SHP. Possibly, the highly stringent parameters that
we used in our gene-expression analyses underestimated
the tissue distribution of SHP [NR0B2]. Nevertheless, the
wide gene expression profile of COUPTF [NR2F] and the
restricted gene expression profile of SHP are additionally
supported by Q-PCR experiments in mouse tissues [2].

One of the advantages of a hub-based topology is eco-
nomical control at the genome level, since inhibition of
the whole system can be easily achieved by evolving a
minimal number of repressors that target the hubs.

Data integration and static modelling are only the first
steps in this new era of "omics" and systems biology. They
allow us to capture a snapshot of the global picture,
understand the properties of the system as a whole, gener-
ate new hypotheses (like prediction of protein-protein
interactions) and perform, in the future, targeted experi-
ments. Quantitative measurements of protein-protein,
protein-DNA binding affinities, and mathematical model-
ling should be the next steps that would allow us to com-
prehend, to an unprecedented extent, the biology of
nuclear receptors.

Conclusion
We infer that the topology of this network is hub-based,
and much more connected than previously thought. The
hub-based topology of the network and the wide tissue
expression pattern of NRs create a highly competitive
environment for the common heterodimerising partners.
Furthermore, a significant number of negative feedback
loops is present, with the hub protein SHP [NR0B2] play-
ing a major role. We also compare the evolution, topology
and properties of the nuclear receptor network with the

hub-based dimerisation network of the bHLH transcrip-
tion factors in order to identify both unique themes and
ubiquitous properties in gene regulation. In terms of
methodology, we conclude that such a comprehensive
picture can only be assembled by semi-automated text-
mining, manual curation and integration of data from
various sources.

Methods
External protein interaction databases

The most comprehensive and publicly available protein-
protein interaction database, HPRD, [18,31] was scanned
for dimerising interactions among NR proteins.

Extraction of protein-protein and protein-DNA 

interactions from the literature

For the extraction of protein-protein interactions from the
literature (comprising both abstracts and full text), the fol-
lowing methodology was used:

1) We used an established classification scheme for the
human NRs (proposed by nuclear receptors Committee,
1999) and based on sequence identity (see Additional file
1).

2) Synonyms for every NR protein were retrieved from
GeneCatalogue, an AstraZeneca gene and protein refer-
ence database, and from a review paper [32] (see syno-
nyms worksheet in Additional file 1).

3) The QUOSA software was used to retrieve full-text arti-
cles and abstracts from MEDLINE that referred to NRs
[62].

4) A keyword term ("nuclear receptor") was identified
that would retrieve the highest number of relevant articles
with the QUOSA software.

5) The following were downloaded:

a. The relevant 5,241 full text articles of 2003 in PDF or
HTML form, depending on availability.

b. The relevant 46,300 abstracts of the 13 years from 1993
to December 2005 in plain text form.

6) Full-text documents were converted from PDF and
HTML into plain text format, using the freely available
MULTIVALENT [63] and HTMLESS software [64].

7) PERL scripts were written to extract sentences where
two different NR protein names or any of their synonyms
co-occurred with terms that described an interaction (e.g.
"dimer", "interact", etc).
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8) All (~3500) sentences retrieved from full text and
(~3000) sentences retrieved from abstracts were read
manually and those that described a physical or protein-
DNA interaction were marked (see Additional files 1 and
2).

9) While reading the extracted sentences, we earmarked
dimers that were shown to bind to DNA. In addition, the
Nuclear Receptors Factsbook was scanned to identify dim-
ers that bound to DNA. If a dimer between two phyloge-
netic groups was shown to bind to DNA, any other dimer
among proteins of the same two phylogenetic groups was
predicted to bind to DNA as well, due to the very high
sequence conservation of the DNA-binding domain. For
example, a DNA-binding dimer is formed between RXR_b
[NR2B2] and RAR_b [NR1B2]. Based on this fact, we pre-
dict that the dimer formed between RXR_g [NR2B3] and
RAR_b [NR1B2] also binds to DNA.

10) A large number of sentences from the full-text subset
did not provide the specific names of the interactors (due
to PDF conversion) and therefore were not used subse-
quently for the dimerisation dataset.

11) From the 46,300 abstracts, 1128 abstracts contained
1802 sentences that mentioned a true protein-protein
interaction.

12) Graphs of protein-protein and protein-DNA interac-
tions were generated using the Adobe Illustrator software.
Matrices of protein-protein interactions and co-expression
were generated using a customized version of the R gplots
package [65].

Integration of protein interaction data from different 

species

Protein interactions among mammalian members of the
NR family were identified. Protein interactions for mam-
mals were extracted for both human and murine ortho-
logues, due to their high amino-acid sequence identity
(>70%). Identification of murine-human orthologues
was based on literature reports. Interactions from different
species were collapsed on the same graph as in [29]. For
example, the human A-factor(human) - B-factor(human) and
mouse B-factor(mouse) - C-factor(mouse) interactions were
collapsed into the mammalian A-factor(mammalian) - B-fac-
tor(mammalian) - C-factor(mammalian) interactions.

The validity of this approach has been verified by cases
where interactions are conserved even when one of the
heterodimeric partners is the ortholog from another dis-
tant species [66].

Statistical properties of the protein-protein interaction 

network

In order to assess whether a network is scale-free or not,
the distribution of connectivity is plotted (see
interactions_distribution worksheet in Additional file 1).
Specifically, we plotted the log of the frequency of pro-
teins with K interactions, versus the log of K interactions.
A network may resemble a scale-free topology if the distri-
bution of connectivity decays in a power-law fashion.
Therefore, the better the trendline (in the log-log plot) fits
a linear regression, the more the network resembles a
scale-free topology. For the DNA-binding and non-DNA-
binding dimers, we obtained an R2 value of 0.654 and
0.7427 respectively, concluding that the networks resem-
ble a scale-free topology. For the whole network (adding
the DNA and non-DNA binding dimers together), we
obtained an R2 value of 0.3935, concluding that the net-
work does not resemble a scale-free topology.

Protein-DNA interactions

While mining the full-text literature from 2003, any doc-
ument that mentioned protein-DNA interactions between
any two NR members was also marked (see Additional
File 1). In this paper, the term "protein-DNA interaction"
is meant to denote the binding of one TF to the upstream
regulatory DNA element of another NR gene; that could
either activate or repress its expression. The whole articles
were read, and their references followed, in order to verify
the 19 protein-DNA interactions. We also expanded this
incomplete dataset to a total of 28 protein-DNA interac-
tions by looking in the nuclear receptor Factsbook [67].

Gene expression data

In order to better understand the mechanisms employed
by the NR family, gene expression data were used i) for the
48 human NR genes (provided by AstraZeneca) and ii) for
the 49 mouse NR genes, by mining the published dataset
of Bookout et al [2].

The human gene expression dataset was based on the
Affymetrix HG_U133 chip. The focus was on expression
of probe sets that mapped to an exon or a 3'UTR in tissue
samples that were classified as having normal morphol-
ogy and pathology over 99 different human tissues (see
Additional file 3). The Affymetrix MAS5 algorithm uses
the Detection Call as a qualitative measure of gene expres-
sion. In any single experiment, a probe set may be called
Present, Marginal or Absent. The presence or absence of a
gene's transcript from a tissue in this analysis was deter-
mined according to the following rule: if the tissue had
more than 10 experimental samples and the gene tran-
script was called Present in at least 50% of the samples,
the transcript was considered present. If there were less
than 10 experimental samples for a tissue, the presence or
absence of the transcript of any gene for that particular tis-
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sue was considered undetermined. After applying the
above criteria, we found 42 out of 48 human NRs present
in at least one of 61 normal human tissues.

The mouse gene expression dataset was based on Q-PCR
experiments, performed by Bookout et al., [2], for all 49
mouse NR genes, over 39 normal tissues, repeated in two
mouse strains (C57Bl/6J & 129x1/SvJ). The presence of a
gene's transcript from a tissue in this analysis was deter-
mined according to the following rule: the relative mRNA
level of a given transcript had to be above the suggested
cut-off of 0.1, in both strains. After applying the above cri-
terion, we found transcripts of 41 mouse NR genes present
in at least one of the 39 normal mouse tissues.
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