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A Protein Interaction Information-
based Generative Model for 
Enhancing Gene Clustering
Pratik Dutta  1,3*, Sriparna Saha1,3, Sanket Pai2 & Aviral Kumar2

In the field of computational bioinformatics, identifying a set of genes which are responsible for a 
particular cellular mechanism, is very much essential for tasks such as medical diagnosis or disease gene 
identification. Accurately grouping (clustering) the genes is one of the important tasks in understanding 
the functionalities of the disease genes. In this regard, ensemble clustering becomes a promising 
approach to combine different clustering solutions to generate almost accurate gene partitioning. 
Recently, researchers have used generative model as a smart ensemble method to produce the right 
consensus solution. In the current paper, we develop a protein-protein interaction-based generative 
model that can efficiently perform a gene clustering. Utilizing protein interaction information as the 
generative model’s latent variable enables enhance the generative model’s efficiency in inferring 
final probabilistic labels. The proposed generative model utilizes different weak supervision sources 
rather utilizing any ground truth information. For weak supervision sources, we use a multi-objective 
optimization based clustering technique together with the world’s largest gene ontology based 
knowledge-base named Gene Ontology Consortium(GOC). These weakly supervised labels are supplied 
to a generative model that eventually assigns all genes to probabilistic labels. The comparative study 
with respect to silhouette score, Biological Homogeneity Index (BHI) and Biological Stability Index (BSI) 
proves that the proposed generative model outperforms than other state-of-the-art techniques.

One of the fundamental issues in the field of functional genomics is understanding the genes’ biological func-
tionalities. Recent years have seen a rapid increase in studies into high-throughput techniques, particularly in 
the profiles of gene expression1. Analyzing gene expression values contributes to the exploration of certain bio-
logically important genes and a stronger understanding of gene functions. Genes with analogous variations of 
expression have similar functionalities2,3. For the analysis of such data, clustering4 is a very popular unsupervised 
pattern classification method5. Clustering is an exploratory data analysis technique in which objects in the same 
cluster demonstrate greater resemblance than those which are in different clusters6,7. In the field of bioinformatics, 
gene clustering has a huge application in understanding molecular studies of the gene, disease gene classification 
task8,9 and also the design of new drugs10. This kind of analysis was first employed by Spang et al.11 and Golub et 
al.12. Since then, clustering methods have drawn a great deal of attention of Bioinformaticians13. Researchers have 
been proposing novel gene clustering methods by taking account of different intrinsic properties of the data14,15. 
In this regard, the necessity for developing an intelligent gene clustering system by utilizing the data pattern and 
functionalities is becoming crucial.

Now a days, using biological knowledge extracted from existing databases for gene clustering is the point of 
interest of the researchers. Gene Ontology16 is one such external resource that helps in improving gene cluster-
ing17. Also, it has been observed that the protein interaction information of the genes leverages the performance 
of a wide variety of biomedical tasks such as informative gene selection18, identification of the functional mod-
ules19, disease gene classification8, etc. Recently, protein interaction information has also shown promising results 
for improving gene clustering performance20–22.

With the advent of computational biology, there is an explosion of biomedical data. However, most of the 
data is unlabeled and noisy. Though, collection of a huge amount of unlabeled data is relatively easy, the validity 
of the results we obtain upon dealing with this data is highly questionable. Hence, relying on the unlabeled data 
may not be the right course of action in every situation. On the contrary, labeled data is more reliable than the 

1Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihta, 801103, India. 
2Department of Chemical Science and Technology, Indian Institute of Technology Patna, Bihta, 801103, India. 3These 
authors contributed equally: Pratik Dutta and Sriparna Saha. *email: pratik.pcs16@iitp.ac.in

OPEN

https://doi.org/10.1038/s41598-020-57437-5
http://orcid.org/0000-0002-1579-8946
mailto:pratik.pcs16@iitp.ac.in


2SCIENTIFIC REPORTS |          (2020) 10:665  | https://doi.org/10.1038/s41598-020-57437-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

unlabeled data. The main difficulties in acquiring labelled data are that the method is expensive and needs a great 
extent of human effort and knowledge. The collection of such labelled information is tremendously costly and we 
need experts (subject matter experts (SME)) in the field to develop this labelled information. While some large 
enterprises (https://www.wired.com/2016/11/googles-search-engine-can-now-answer-questions-human-help/, 
https://time.com/4631730/andrew-ng-artificial-intelligence-2017/) can bear this price23, it is not simple for most 
developers to bear the price.

There is a notable trend in using generative models24 to investigate data from weak supervisory sources to 
solve this bottleneck. These weak supervision sources which synthesize the labels by exploiting external knowl-
edge bases25, heuristic laws26, noisy crowd labels27, or even other classifiers28, often have limited accuracy and 
coverage. As the labels are conflicting and noisy, these labels are not regarded to be gold standards. We must 
infer the dependence and correlation between them in order to solve this conflict. In this respect, the generative 
model plays an important role in inferring the probabilistic labels without having access to the ground truth. The 
user-specified structure of the generative model directly impacts the precision of the inferred labels29–31. Recently, 
the researchers of Stanford university proposed a new paradigm of generative model named Snorkel28,32. Due 
to the inherent property of Snorkel, it is widely used in various real life problems like surveillance with elec-
tronic health records33, clinical text classification34, web content and event classification35. Also, Snorkel is used 
for improving gene clusteing36 and medical image training37.

Motivated by the above stated facts, we utilized the generative model of Snorkel for developing a novel gene 
clustering technique. In this work, the final probabilistic labels of the genes are inferred by using protein interac-
tion information, weak supervision sources and Snorkel. Recently, researchers have used generative model of 
Snorkel without modifying the internal architecture for improving the gene clustering36. In this study, the 
novel contribution is to integrate protein interaction information as a new parameter of the generative model of 
Snorkel. As per our knowledge, this type of integration of biological knowledge (protein interaction informa-
tion) with generative model is a new and unique approach. Here, for generating weak supervised sources, we have 
utilized a multi-objective optimization (MOO) based clustering technique20 and Gene Ontology38. Recently, clus-
tering methods based on multi-objective optimization8,39 have been discovered to be efficient in solving various 
real-life issues in clustering. The solutions of MOO-based clustering π π πΠ = …{ , , , }
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the dominance relation. Recently, the authors of36 utilize the non-dominated solutions as the weak supervised 
sources of the generative model. In the proposed approach, we prudently integrate protein interaction informa-
tion with the generative model so that it can label the gene expression data efficiently. The protein interaction 
information acts as a parameter for the generative model that helps in improving the accuracy of the generative 
model. The final clustering solution is then evaluated by three cluster validity indices namely biological homoge-
neity index (BHI)40, biological stability index (BSI)40 and Silhouette index41. Experimental results indicate that the 
technique we propose achieves better outcomes than the state-of- the-art techniques. In short, the suggested 
strategy is a novel way of improving gene clustering from weak supervision sources, by utilizing the protein inter-
action information and a generative model. For the ease of understanding of the readers, the list of mathematical 
logic symbols that are used throughout the article is shown in Table 1.

The current paper is unique in the following ways: 

•	 A protein interaction based generative model is used for improving the gene clustering. The model utilizes 
different weak supervision sources and infers a probabilistic clustering solution.

•	 In this study, for weak supervision sources we have used MOO-based solutions along with the three Gene 
Ontology-based solutions.

The remaining part of the article is structured as follows. In the subsequent section, first, we provide the 
comprehensive description of the experimental evaluation along with a brief analysis of the performance for the 
proposed generative model. The next section provides a brief overview of the weak supervision sources and the 
proposed generative model. Finally we conclude the article by stating the uniqueness and future scope of the 
work.

Results
In this section, we analyze the performance of the proposed generative model when it is applied on the gene 
expression profile. In this section, firstly, we briefly describe the details of the datasets. Then we provide a compar-
ative performance analysis of different algorithms with our proposed generative model. Finally, a comprehensive 
discussion is presented. In the discussion section, we have analyzed the performance of the developed model 
in an incremental way, i.e., new components are added one by one and the enhancements in performance are 
reported.

Experiment results. In this section, we comprehensively evaluated the performance of proposed protein 
interaction based generative model on three real-life NCBI datasets. We have compared the performance of the 
proposed generative model with different state-of-the-art techniques. For the performance measures, we have 
calculated two bio-oriented cluster validity indices, namely, biological homogeneity index (BHI) and biological 
similarity index (BSI) along with a traditional cluster validity index named Silhouette index41. For comparing 
the performance of the proposed method with different existing works, we have considered traditional cluster-
ing techniques, one multi-objective optimization based clustering technique, a multi-objective based differential 
evolution (MODE)42 approach, and a cluster ensemble technique. For traditional clustering techniques, we have 
utilized two popular clustering techniques, namely K-means43 and a density-based clustering technique named 
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DBSCAN44. For the multi-objective optimization based clustering technique, we utilized an existing MOO-based 
clustering algorithm20 where three objective functions are simultaneously optimized. The three objective func-
tions are Fuzzy Partition Coefficient (FPC), PBM index and DB index. In this MOO-based clustering, we reported 
the best non-dominated solution for comparison purpose. We have also utilized a pairwise similarity based 
ensemble technique45 as a state-of-the-art comparing method. In MODE42, which is a multi-objective based dif-
ferential evolution algorithm, two objective functions are simultaneously optimized.

Along with these state-of-the-art methods, we prudently integrate different parts with the generative model so 
that the cumulative performance of the architecture follows an incremental way. Simultaneously, we have reported 
the performance of the proposed architecture in each integration step. Firstly, we have integrated the MOO-based 
solutions using the generative model (1: (MO + GM)) of Snorkel. Here only the partitioning solutions pro-
duced by MOO based technique are considered as the weak supervised solutions. In the next step, we integrated 
the protein protein interaction information with the generative model. In this integrated model (2: 
(MO + PPI + GM)), we consider protein protein interaction information as a parameter θppi that specifies the 
strength of the accuracy factor, φAcc, in the generative model, pθ. Lastly, apart from MOO based solutions, three 
GO-based solutions are also utilized as the weak supervised solutions in the final integrated architecture (3: 
(MO + PPI + GM + GO)). As in the GO-based solutions, all the genes are not labelled; we did not exploit only 
GO-based solutions as the weak supervision sources.

The comparative analyses of the performance of the proposed generative model with different state-of-the-art 
methods are shown in Tables 2, 3 and 4. These tables illustrate the performance comparison in terms of BHI 
(Table 2), BSI (Table 3) and Silhouette score (Table 4). From these tables, it is evident that we modelled the whole 
architecture in a way so that addition of different modules follows an incremental way in terms of performance. 
In general, the final integrated generative model (3) obtained higher BHI and BSI values compared to other 
existing models. For example, in BCLL dataset, the BHI value of 3 is 0.361 which is 50.42%, 9.06% and 4.64% 
improvements over MOO-based ensemble technique, 1 model and 2 model, respectively. For ILD dataset, the 
final integrated generative model(3) attains a BHI score of 0.475 which outperforms MOO-based ensemble 
technique, 1 model and 2 model by 11.24%, 4.86% and 3.26%, respectively. For prostrate dataset, 3 model 
attains a BHI score of 0.451 which is 10%, 1.3% and 0.6% performance improvements over MOO-based ensem-
ble, 1 and 2, respectively. Also, 3 model achieves the BSI scores of 0.994, 0.941 and 0.945 for BCLL, ILD and 
prostrate datasets, respectively.

In conclusion, the analysis as mentioned above shows that the proposed integrated generative model obtains 
better performance in grouping the genes in terms of biological relevance. Also, to validate the effectiveness of the 

Logic Symbols Values

Π(P) Set of solutions at Pareto front

πM
P( ) Mth solution(partitioning) at Pareto front

 Proposed model

G Gene expression profile

N Number of genes in the gene expression profile

F Number of samples(features) in each gene

gi ith gene of the gene expression profile

G Prepossessed gene expression profile

N Number of prepossessed gene

S Non-dominated solutions of the proposed multi-objective optimization based clustering

D Number of non-dominated solutions

MO Proposed multi-objective optimization based clustering technique

Li Label of ith non-dominated solution

λ Weak label function

pθ Proposed generative model

 Factor graph

Λ Label matrix of size × +N D( 3)

Y Vector of final probabilistic labels

φ Factors of the factor graph

θ Parameters of the factor graph

P Pareto front

αij Confidence score of the interaction between the proteins gi and gj

K Number of cluster centers in a solution

Ci ith cluster of any solution or partitioning

f Objective function

Table 1. Glossary of variables and symbols used in the paper.
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result, we did a biological analysis and a statistical test. The detailed description and results of these validations 
are reported in the Table 5, respectively.

Discussion
In recent years, the generative model has been extensively used in many fields, and their applications in the bioin-
formatics domain shows a promising direction. However, this powerful method was never utilized for gene clus-
tering. In computational biology, grouping the same biologically expressed genes improves diagnosis, prognosis, 
and treatment of a particular disease. Also, it has been found that the use of integrated information extracted from 
different related biological datasets improves the specific biological task. In this regard, we have utilized protein 
interaction and Gene Ontology-based information for improving gene clustering. In this study, we logically inte-
grated different biological information in different steps of the generative model so that a noticeable increment in 
performance can be observed in each level of integration.

Generally, a generative model generates a solution by considering the correlations and dependencies of the 
inputs. The correlation is inferred by stochastic gradient descent (SGD) and Gibbs sampling. In this study, for 
understanding the dependency between the inputs, we utilized protein interaction information along with SGD 
and Gibbs sampling. A characteristic property of the genes is that their protein products have strong physical 
interactions with each other. Hence the protein interaction information is utilized for inferring the dependency 
between the inputs.

In this study, the generative model is used as an ensembling model that takes different weak supervision 
solutions as inputs and infers a probabilistic solution by considering their interrelated dependencies. Hence, the 

B-CLL ILD Prostrate

K-means 0.163 0.395 0.379

DBSCAN 0.193 0.417 0.396

MODE 0.236 0.421 0.406

Best MOO-based solution 0.236 0.428 0.410

Ensemble Technique (MOO-based solution) 0.240 0.427 0.410

Ensemble Technique (MO + GM) 0.331 0.453 0.445

Ensemble Technique (MO + PPI + GM) 0.345 0.460 0.448

Ensemble Technique (MO + PPI + GO + GM) 0.361 0.475 0.451

Table 2. Comparative study with respect to biological homogeneity index(BHI); MO: MOO-based solutions, 
GM: Generative model, PPI: Protein interaction information, GO: Gene Ontology based solutions.

B-CLL ILD Prostrate

K-means 0.934 0.860 0.884

DBSCAN 0.986 0.839 0.879

MODE 0.987 0.905 0.892

Best MOO-based solution 0.989 0.908 0.902

Ensemble Technique (MOO-based solution) 0.989 0.926 0.935

Ensemble Technique (MO + GM) 0.989 0.936 0.941

Ensemble Technique (MO + PPI + GM) 0.992 0.938 0.944

Ensemble Technique (MO + PPI + GO + GM) 0.994 0.941 0.945

Table 3. Comparative study with respect to biological stability index(BSI); MO: MOO-based solutions, GM: 
Generative model, PPI: Protein interaction information, GO: Gene Ontology based solutions.

B-CLL ILD Prostrate

K-means 0.879 0.479 0.055

DBSCAN 0.404 0.336 0.057

MODE 0.845 0.517 0.062

Best MOO-based solution 0.901 0.510 0.065

Ensemble Technique (MOO-based solution) 0.901 0.516 0.070

Ensemble Technique (MO + GM) 0.934 0.534 0.073

Ensemble Technique (MO + PPI + GM) 0.928 0.567 0.073

Ensemble Technique 
(MO + PPI + GO + GM)

0.941 0.569 0.076

Table 4. Comparative study with respect to Silhouette index; MO: MOO-based solutions, GM: Generative 
model, PPI: Protein interaction information, GO: Gene Ontology based solutions.
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performance of the generative model depends upon the quality of the input solutions along with the generative 
model architecture. For weak supervision sources, we have utilized two types of solutions. Each type of solu-
tion has different role in generating the final solution. The advantages of different weak supervised solutions are 
described as follows.

 1. MOO-based solutions: These weakly supervised solutions are generated after applying a MOO-based 
clustering algorithm on the gene expression datasets. The proposed MOO-based clustering technique 
generates the solutions after optimizing three objective functions (described in subsection MOO-based 
clustering). In recent literature39,46, MOO-based clustering has been found to be a powerful technique in 
solving a wide variety of problems. The MOO-based clustering solutions are generated by programmatic 
rules and do not utilize any ground truth information. Hence, protein interaction information is being 
used as the weighting factor of the accuracy for each solution. The addition of the protein interaction 
information as the weighting factor with the generative model improves the performance of the model. The 
detailed comparative analysis of the experimental results (described in subsection Experiment Results) 
proves the effectiveness of using protein interaction information in improving gene clustering.

 2. GO-based solutions: Along with the MOO-based solutions, we generated three more weakly supervised 
solutions by utilizing Gene Ontology. These three solutions are generated by considering three biolog-
ical aspects of the gene ontology namely molecular function (MF), biological process (BP) and cellular 
component (CC). These GO-based solutions are generated by accessing an external knowledge base. These 
solutions act as nearly ground truth, hence leveraging the performance of the model.

In this study, we have integrated these weak supervision solutions by using three variants of the generative 
model, namely 1, 2 and 3. Here, 1 refers to a vanilla model where only the MOO-based solutions are used 
to infer the final probabilistic model. The proposed MOO-based clustering technique generates a significant 
amount of optimized solutions. These optimized solutions guide us to infer the final probabilistic labels using the 
vanilla model 1. However, in model 1, it is assumed that all the MOO-based solutions have equal weights in 
regard to their accuracies which lead to misjudging the quality of the final inferred solutions. Hence, to assign the 
appropriate weights to different MOO-based solutions, we make use of protein-protein interaction information. 
In this regard, we develop 2 model where protein interaction information is processed for inferring the weight 
of each solution. In the above two models (1 and 2), we did not take into account any ground truth informa-
tion about the genes for inferring the final probabilistic labels. To enhance the biological relevance of the final 
solution, along with the MOO-based solutions, we have added three GO-based solutions obtained from a 
human-curated database. This database refers to Gene Ontology Consortium (GOC) which is the world’s largest 
knowledge-base of gene functions. The three solutions are generated by performing an enrichment analysis on 
the GOC using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system. In 
this regard, finally, we develop an integrated generative model (3) which exploits GO-based solutions along 
with the MOO-based solutions. As the GO-based solutions are generated by utilizing the human-curated data-
bases, the integration of these solutions enhances the performance of the 3 model.

Keeping the above arguments in mind, an important question may arise as why we have not used GO-based 
solutions exclusively as they are considered as near ground truth. The reason behind this is as follows: 

•	 The number of GO-based solutions that we can obtain is quite low. Hence inferring the final solution by con-
sidering only these solutions is prone to over-fitting.

•	 The PANTHER classification system does not classify all the genes as Gene Ontology Consortium may 
not contain the information for all the genes. Thus, the GO-based solutions do not provide labels for those 
unmapped genes.

For the above two reasons, we did not use only GO-based solutions for inferring the final solution. The inte-
gration of two types of solutions helps us in improving the overall performance of the generative model in terms 
of three quality measures, BHI, BSI metrics and Silhouette score. As the MOO-based solutions are reasonable 
in number and pro-grammatically validated, these solutions help us to capture the interrelation between the 
solutions. On the other hand, GO-based solutions help us to incorporate gene enrichment analysis information 
within the proposed generative model. In a nutshell, these two types of solutions are of equal importance in 
enhancing the model performance. To validate the performance of our proposed generative model in terms of 
biological relevance, we have done a biological analysis of the obtained gene clusters. Here we provide a thorough 

Datasets K-means DBSCAN MODE
Best MOO 
solution

MOO-based 
Ensemble

Ensemble 
(MO + GM)

Ensemble 
(MO + PPI + GM)

B-CLL chronic 
lymphocytic 
leukemia

5.63E-053 1.85E-049 2.06E-44 2.05E-044 1.32E-044 3.98E-022 4.19E-013

ILD Interstitial 
lung disease

8.54E-036 6.87E-032 1.35E-29 3.45E-028 8.36E-028 8.08E-016 9.62E-014

Prostrate 3.43E-034 4.99E-033 5.55E-26 7.04E-025 5.01E-023 2.16E-03 2.24E-03

Table 5. p-values of the proposed technique generated by Welch’s t-test for the biological homogeneity 
index(BHI) of different methods.
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assessment of the acquired gene clusters ’ biological enrichment. by GOTERMMAPPER (https://go.princeton.
edu/cgi-bin/GOTermMapper). This finding confirms that the genes of a cluster detected by the proposed gene 
clustering method are more engaged in the same biological mechanism/function compared to the genome’s 
remaining genes.

Methods and Materials
For the proposed weakly supervised ensembling technique, the key steps are summarized as follows

•	 In the first step, we filtered out the redundant genes from the gene expression profiles. The remaining genes 
are used for the subsequent steps.

•	 The remaining genes are used to generate the base partitions(BP) by exploiting two different approaches. 

 1. In the first step, we acquired the solutions by using weak supervision technique effectively. In this 
respect, we used a clustering technique based on multi-objective optimization (MOO).

 2. In the second approach, we took Gene Ontology (GO)38 into consideration for generating partitioning 
solutions.

•	 Finally, to obtain the consensus partitioning(solution), we utilized a generative model considering the protein 
protein interaction information.

Figure 1 represents the schematic flowchart of our proposed weakly supervised ensemble based gene cluster-
ing technique. The details of the above key steps are described in the subsequent subsections.

Figure 1. An overview of the proposed weak supervision based gene clustering architecture. (1) Solutions 
obtained from MOO-based clustering which considers as a weak supervision source. (2) Solutions obtained 
by exploiting Gene Ontology. (3) Protein interaction information is integrated with the generative model to 
generate the final probabilistic label. The integration of protein interaction information with the generative 
model is further pictorially described in Fig. 3.

Figure 2. Pareto optimal fronts that contain the non-dominated solutions obtained from the multi-objective 
optimization technique. These non-dominated solutions are considered as the weak supervised solutions of the 
generative model.
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Preprocessing of the dataset. In recent years, gene expression profiles (microarray) have become one of 
the backbones for the enhancement in the computational genomics. Though there are plenty of microarray data-
sets, the main bottleneck is to get the biological insights by analyzing those datasets. Let, a gene expression profile 
(G) be represented as a 2D-matrix where ∈ ×G N F. Here, N represents the number of genes, {g1, g2, …, gN}, and 
each gene is represented as a F-dimensional feature (sample) vector. Among the N genes, not all genes are relevant 
under the pathogenic studies. The genes which are up- and down-regulated47 between different tissue samples are 
important for analyzing any disease. These down- and up-regulated genes are called differentially expressed (DE) 
genes48.

In this study, to filter out the differentially expressed (DE) genes, a statistical test is used. Firstly, we filtered out 
the genes based on the variances across the samples48. Finally, bootstrapped-p value47 is used as a threshold to 
filter out the statistically significant genes. In this work, the genes ∈ … G g g g( { , , , })

N1 2
 with bootstrapped-p 

values less than 0.05 are considered as statistically significant and used for further data analysis. We have applied 
this statistical preprocessing step on three real-life NCBI’s GEO datasets, namely B-CLL chronic lymphocytic 
leukemia49, Interstitial lung disease (ILD)50, and Prostate dataset51. Initially, B-CLL dataset (N = 12,625) contains 
11 B-CLL stable samples and 10 clinically progressive disease-related samples. Similarly, ILD dataset (N = 54,675) 
has 29 samples (6 normal and 23 ILD-related) and prostrate dataset (N = 20,000) has 104 (70 disease-related and 
34 normal) samples. After prepossessing all three datasets, the total number of differential genes of the datasets 
are 4,656 ( −

NB CLL), 18,144 (NILD), and 2,424 (Nprostrate). The prepossessed datasets are available in supporting 
online repository.

Generation of weak supervised solutions. In any ensembling technique, generating diverse base par-
titionings is one of the crucial steps to generate an improved consensus partitioning. In this study, for creating 
base partitionings, we exploited weak supervision technique. In weak supervision, rather than consulting with 
trained subject matter experts (SME), the solutions (labels) are generated programmatically by analyzing heuristic 
patterns52,53, crowd-sourced data54,55 and external knowledge base25,56. Thus data generated by weakly supervised 
sources are cheaper, noisier and have less accuracy and coverage. Ideally, to increase accuracy and coverage, weak 
supervised solutions are combined to generate the final probabilistic solution.

In this study, to maintain the diversity of weak supervision labels, we have used two approaches, first one 
is a multi-objective optimization (MOO) based clustering technique, and another approach is to exploit Gene 
Ontology. In MOO-based technique, weak supervised solutions are generated programmatically by analyzing 
data patterns, whereas the external knowledge database is exploited to generate Gene Ontology-based solutions. 
In this article, weak supervised solutions are analogous to weak supervised labels. The detailed description of crea-
tion of these two types of weak supervised solutions is presented in the subsequent subsections.

MOO-based clustering. In this step, weak supervision labels are generated by a proposed MOO-based clustering 
technique20 which determines a set of partitions by optimizing some cluster quality measures simultaneously. The 
search capability of a multiobjective based optimization strategy is utilized for the purpose of optimization. Let 
the available gene expression profiles be denoted by G( ). Let, MO represent the proposed MOO-based clustering 
technique which takes input G and generates a set of non-dominated solutions {S1, S2, …, SD} by simultaneously 
optimizing three objective functions {f1, f2, f3}. Hence, mathematically we can describe that 

MO = …G S S S O f f f( ) { , , , } ( , , ) (1)D1 2 1 2 3

 where function O, simultaneously optimizes all three objective functions. In the study, non-dominated sorting 
genetic algorithm II (NSGA-II)57 is used as the underlying multi-objective optimization technique and fuzzy 

Figure 3. The underlying factor graph of the proposed generative model.
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c-means clustering58 is used to assign labels for different genes … g g g{ , , , }
N1 2

. In order to exploit the search space 
extensively, variable length chromosomes are used along with three genetic operators. These three genetic opera-
tors are crossover, mutation and selection. After applying these three genetic operators, new population is gener-
ated. In each generation, we simultaneously optimize three objective functions and the best solutions are selected 
after application of non-dominated sorting and crowding distance operators. These three objective functions are: 
f1 := Fuzzy Partition Coefficient (FPC)58, f2 = Pakhira-Bandyopadhyay-Maulik index (PBM index)59 and f3 = DB 
index60 and finally a set of non-dominated solutions {S1, S2, …, SD} are generated. These non-dominated solutions 
are placed in the Pareto optimal front which is shown in Fig. 2.

For each non-dominated solution, a label is generated (Li) by a corresponding labeling function (λi), i.e., 

λ = ∈G L i D( ) [1, ]i i . These labels, {L1, L2, …, LD} are generated in a programmatic manner and considered as 
the weak supervised labels. These weak supervised labels are then encoded into the proposed generative model. 
The set of non-dominated solutions, which created the Pareto optimal front is shown in Fig. 2.

GO-based solutions. To maintain diversity among the weak supervision sources, along with the MOO-based 
solutions, we exploited Gene Ontology (GO) for generating the weak supervision sources. Gene Ontology (GO)38 
is the world’s largest knowledge base that contains the information about gene functionality. This knowledge base 
is both human-readable and machine-readable and is a foundation for computational analysis of large-scale 
molecular biology and genetic experiments in biomedical research. In this study, this functional knowledge base 
of genes is considered as a weak supervision source. To generate the weak supervised solutions, Gene Ontology 
performs enrichment analysis on the preprocessed gene expression profile (G). The enrichment results reveal the 
associations between gene sets and GO terms. The enrichment analysis is carried out by PANTHER(Protein 
ANalysis THrough Evolutionary Relationships)61 classification system. PANTHER classification is a result of 
subject matter expert’s (SME) annotation/curation.

In this task, PANTHER generates gene labels with respect to three biological aspects, namely, molecular func-
tion (MF), biological process (BP) and cellular component (CC). Here, these three aspects are considered as the 
three weak supervised labeling functions, i.e., λMF, λBP, λCC. In each weak supervised labeling function, a list of 
shared GO terms (GO1, GO2, …, GOL) are generated where each shared GO term consists of a set of genes, i.e., 

= … ∈GO g g g i L{( , , , ) [1, ]}i
i i

P
i

1 2
 where P represents the number of genes of a particular shared GO term. Each 

labeling function generates multi-label solutions (LMF, LBP, LCC) where the genes associated with particular GO 
term are assigned a unique label.

These solutions (LMF, LBP, LCC) are also considered as weak supervised solutions along with MOO-based solu-
tions (described in the previous subsection) and are considered for constructing the consensus partitioning using 
the proposed generative model. In these solutions, the genes are labelled according to their shared GO term 
(GOi∣i ∈ [1, L]) based classification. Since not all genes are mapped in the Gene Ontology Consortium, we have 
considered that λMF, λBP, λCC are abstaining from labelling those genes. Hence, in each of these GO-based solu-
tions (LMF, LBP, LCC), some genes are kept unlabelled. Though some of the genes are unlabelled in these solutions, 
the labels of remaining genes can be considered near to ground truth. As these GO-based solutions are generated 
by exploiting biomedical knowledge base, these solutions help in increasing the performance of the generative 
model. Also in the result section, we have shown that the addition of these GO-based solutions improves the 
performance of the generative model compared to traditional generative model.

Inception of generative model. The core concept of the proposed architecture is the generative model. The 
developed generative model takes different weak supervision sources and finally infers a list that contains probabil-
istic labels for all the samples. The key challenge of the approach is in determining how to integrate weak supervision 
labels which have unknown correlations, accuracies and different levels of granularity. Hence, this integration phase 
acts as a critical step in shaping performance of the model. In this regard, the generative model plays an essential role 
in overcoming this roadblock. The performance of such a generative model is highly dependent on its structure, as 
the proper structure helps in inferring the accurate correlations between weak supervision labels.

In this study, we developed a generative model which acts as a framework for integrating weak supervi-
sion sources to infer labels of the genes. To accomplish this, we modified a popular generative model named 
Snorkel

28 by utilizing protein protein interaction information. The workflow of Snorkel is different from tra-
ditional approaches and is built upon a new machine learning paradigm called data programming62. Snorkel 
offers a trade-off between training time and performance of the model. Also, the structure of Snorkel helps in 
predicting accurate class labels automatically. The application of Snorkel in top industries, research labs and 
government agencies show its wide-ranging capabilities in building improved models.

Motivated by the success of Snorkel in a wide range of domains, we utilized a modified version of it for 
improving gene clustering. In our case, we have modified the generative model part of Snorkel. Let, the gen-
erative model pθ integrate the weak supervision labeling function obtained from MOO-based clustering and 
Gene Ontology, i.e., λ1, λ2, …, λD, λMF, λBP, λCC. In general, the labelling function of the generative model are 
autonomous or uncorrelated to each other. But in the proposed generative model, we considered the statistical 
dependencies between the labelling functions. This dependence enhances the generative model’s predictive accu-
racy. Finally, each of the data points (gene) is generated as a latent variable by the generative mathematical model.

The proposed generative model (pθ) designed as a factored graph ()63 which is a sort of probabilistic graphic 
model that includes two kinds of nodes. These two kinds of nodes are evidence variable and factors. The factors 
describe the relationships in the factor graph between the estimate variables.

In this work, the D labels {L1, L2, …, LD} acquired from MOO-based clustering and three Gene Ontology-based 
labels {LMF, LBP and LCC} are interpreted as the evidence variables of factor graph . These D + 3 labels helps to 
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generate a label matrix Λ ∈ … × +
C{0, 1, , }N D( 3) which is further fed to the probabilistic generative model, pθ. 

This probabilistic model predicts probabilistic labels, = …∼ ∼
Y y y y{ , , , }N1 2

, using three kinds of factors. The pro-
posed generative model is represented as pθ(Λ, Y) and the three factors are defined as 

•	 Labeling propensity : ϕ Λ = Λ ≠ ∅{ }Y( , ) 1i j
Lab

i j, ,

•	 Accuracy : = ϕ Λ = Λ ≠{ }Y y( , ) 1i j
Acc

i j i, ,

•	 Pairwise correlations : = ϕ Λ = Λ = Λ{ }Y( , ) 1i j k
Corr

i j i k, , , ,

where Λi,j represent the element of the label matrix, Λ, and is defined as Λi,j = λj(gi). We calculated these three 
factors for a particular gene, gi, and concatenated into a vector φi(Λ, Y) for all D + 3 labeling functions. The pro-
posed probabilistic generative model is described as 

∑

∑ ∑

∑ ∑
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In the above Eq. 2, ξ is the normalizing constant. In case of a conditionally independent model, we estimate 
the parameter, θ, by minimizing the negative log marginal likelihood for the observed label matrix, Λ

∑− Λ
θ

θ
p Yargmin log ( , )

(3)Y

In a general generative model, the values of the parameters (θ) are estimated by Eq. 3. These parameters esti-
mate the strength of the three factors of the generative model. Among the three factors, the parameters for two 
factors (φLab, φCorr) are estimated by Eq. 3 and for the remaining factor (φAcc), the parameters are calculated by 
utilizing protein protein interaction information. In this study, the accuracy parameter values for the MOO-based 
solutions are generated by utilizing protein protein interaction information, and the accuracy parameter values 
for GO-based solutions are generated by Eq. 3. The accuracy parameter for a particular non-dominated solution 
(Si) is represented as θi

PPI. Hence the Eq. 2 can be written as 

Λ = Λ + Λ
θ θ θ

p Y p Y p Y( , ) ( , ) ( , ) (4)
MOO GO

 where Λ
θ

p Y( , )MOO  and Λ
θ

p Y( , )GO  are described as 

∑ ∑ξ θ ϕ θ ϕ θ ϕΛ =
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The integration of protein interaction with generative model along with underlying architecture is shown in 
Fig. 3. The parameter θi

PPI is generated by exploiting an updated protein-protein interaction resource named 
HitPredict64. HitPredict is a resource of experimentally determined protein-protein interactions with reliability 
scores (αij). This confidence score (αij) of proteins gi and gj denotes the reliability of the interaction and is the 
geometric mean of annotation-based score and method based score. The annotation score is calculated based on 
the GO annotations of the interacting proteins. In the method score, score is calculated by considering the exper-
imental evidence of the interactions between proteins. As αij takes into account both experimental support for the 
interaction and the genomic features of the interacting proteins, it is considered as a reliable source for exploiting 
the protein protein interactions.

For a particular non-dominated solution (Si) which consists of a set of clusters {C1, C2, …, CK}, θi
PPI is calculated by 

∑θ = ∈ =∈ =
∣ ∣{ }K

CS C C S K S
1

( ) ;
(7)i i D

PPI

r

K

r r i i[1, ] 1

 where for each Cr
th cluster, CS(Cr) is calculated as follows 

∑ α= ≤ ≤

∈

≠( )
{ }

CS C
Q

Q C( )
1

where 1

(8)

r

i j g g C

g g

i j
n

( , ) ,

, 2

i j r

i j

r

 where nr represents the number of genes present in the cluster Cr; Q represents the number of protein protein 
interactions extracted from HitPredict64 for all the genes of Cr

th cluster. As θi
PPI of a non-dominated solution (Si) 

is generated by utilizing the protein interaction information, θi
PPI helps to understand the biological significance 
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of the solution. This PPI information replaces the default weighting factor for each labelling function in order to 
improve the accuracy of results obtained from the generative model.

Scalability of the Proposed Approach
The proposed approach consists of two subtasks (generating the weak supervised solutions and inferring labels from 
those generated solutions) that correctly infer the probabilistic labels of the genes. In this section, we discuss about 
the time complexities of different subtasks and along with overall time complexity of the proposed approach. 

•	 For generating the weak supervised solutions, we use our proposed multi-objective optimization based clus-
tering technique. NSGA-II is used as the underlying multi-objective optimization technique which has a time 
complexity of O(mn2). Here n is the size of the population, and m is the number of objective functions. Here 
m equals to 3, and the complexities of computing different objective functions are as follows: Fuzzy Partition 
Coefficient(FPC) index :O(n) Pakhira-Bandyopadhyay-Maulik index(PBM index) :O(n) DB index :O(n) There-
fore the overall time complexity of the algorithm is 

≤ + + +

≤ +

≤

=

T n C n C n C n C n

C n C n

C n n

T n O n

( ) [ ( ) ( ) ( )] ( )

( ) ( )
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•	 For inferring the probabilistic label, we modified a popular generative model named Snorkel28. The time 
complexity of snorkel is T2(n) = O(nlogn)65

•	  Hence, the overall time complexity of the proposed approach is 
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Hence, the proposed approach runs in polynomial time. From this time complexity analysis, we can infer 
that the proposed approach is robust irrespective of the size of the dataset. In the current paper, the proposed 
technique are applied on the datasets with varied number of genes(range from 2000 to 18000) and samples(range 
from 21 to 104). Results also prove that the proposed system is robust irrespective of the dataset size.

Conclusion
In this paper, we properly utilize different weak supervision sources using a newly developed generative model 
for improving gene clustering. In this work, rather than using any labelled data, we utilize different weak super-
vised sources to perform the desired task. Hence, our model overcomes the bottlenecks related to subject matter 
experts and manual annotation time. The proposed generative model utilizes weak supervision sources along 
with protein interaction information for inferring the correlations and dependencies of different sources. In this 
study, for weakly supervised sources, we utilized a multi-objective optimization-based clustering technique along 
with three gene ontology-based three solutions. These GO-based solutions help to improve the performance of 
the generative model as these are generated by utilizing the biomedical knowledge base. Also, the use of protein 
interaction information as the latent variable of the proposed generative model helps to leverage the performance 
of the proposed model. The obtained results prove the superiority of the proposed method than other existing 
methods in terms of biological homogeneity index (BHI), biological stability index (BSI) and Silhouette index. 
Finally, biological analyses are conducted to validate the obtained results.

In the future, we will use the proposed ensemble method to perform various biomedical functions where the 
real class labels are not available. We will also attempt to develop an enhanced version of the ensemble method by 
modifying the generative model’s variables that will be able to perform the job more correctly.

Data availability
The source code and all datasets used in this study are available at https://github.com/sduttap16/PPI_Generative.
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