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An efficient ‘soft docking’ algorithm is described to assist
the prediction of protein–protein association using three-
dimensional structures of molecules. The basic tools are
the ‘simplified protein’ model and the docking algorithm
of Wodak and Janin. The side chain flexibility of Arg, Lys,
Asp, Glu and Met residues at the protein surface is
taken into account. The complex type-dependent filtering
technique on the basis of the geometric matching, hydro-
phobicity and electrostatic complementarity is used to
select candidate binding modes. Subsequently, we calculate
a scoring function which includes electrostatic and desolva-
tion energy terms. In the 44 complexes tested including
enzyme–inhibitor, antibody–antigen and other complexes,
native-like structures were all found, of which 30 were
ranked in the top 20. Thus, our soft docking algorithm has
the potential to predict protein–protein recognition.
Keywords: binding free energy/molecular flexibility/
molecular recognition/protein docking/protein–protein
interactions

Introduction

Recently, experimental and computational efforts have increas-
ingly been devoted to the investigations of protein–protein
interactions, which is very significant for understanding bio-
chemical processes, e.g. signal transduction, cell regulation
and immune response. Given the difficulties in experimentally
determining the structures of protein complexes, the docking
method to predict potential binding modes computationally is
currently of great interest. The principles of docking and the
progress that has been made during the last decade have been
described (Cherfils and Janin, 1993; Lengauer and Rarey,
1996; Sotriffer et al., 2000; Halperin et al., 2002). Many
promising algorithms, such as the fast Fourier transform (FFT)-
based matching (Katchalski-Katzir et al., 1992; Gabb et al.,
1997), Geometric Hashing (Fischer et al., 1995; Norel et al.,
1999a) and BIGGER (Palma et al., 2000), have been developed.
However, because of the complexity of the problem, protein–
protein docking is still largely at the theoretical stage and there
is still considerable scope for the development of methodology.

In protein–protein docking, because of the large number of
atoms and degrees of freedom involved, it would be impractic-
able to treat molecular flexibility in an explicit way. Currently,
the solutions to this problem are mainly limited to the tech-
niques that may tolerate a limited degree of molecular flexibility
by using a ‘soft’ representation of the molecular surface (Jiang
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and Kim, 1991; Walls and Sternberg, 1992; Sandak et al.,
1995; Vakser, 1995; Palma et al., 2000; Ritchie and Kemp,
2000). Jiang and Kim used a cube representation of the
molecular surface and volume in their docking procedure
(Jiang and Kim, 1991). Ritchie and Kemp introduced a
‘soft’ model of electrostatic complementarity in the algorithm
(Ritchie and Kemp, 2000). Palma et al. proposed a surface-
implicit method in which the surface is represented by values
0 and 1 on two grids, the surface and core grids (Palma et al.,
2000). This digitization introduces the first level of ‘softness’
in the algorithm. In this paper, the flexible amino acid residues
Arg, Lys, Asp, Glu and Met at the protein surface are softened
on the basis of the ‘simplified protein’ model (Levitt, 1976).
This softness treatment improves the effect of unbound docking
to some degree.

A search procedure may produce millions of docked struc-
tures. How to reduce these solutions drastically by filtering to
a range manageable by the scoring functions is a serious and
challenging topic of current research. The docking method is
generally based on the idea of complementarity between the
interacting molecules. This complementarity may be geometric,
electrostatic or hydrophobic, or all three. Most docking algo-
rithms developed so far used the extent of geometric comple-
mentarity of the protein surfaces as the filtering criterion to
eliminate a large number of solutions with poor surface
matching. It is generally recognized, however, that a single
filtering criterion is not sufficient to discriminate between the
native-like and incorrect docked structures except in a very
few cases (Shoichet and Kuntz, 1991). Recently, investigations
on the interfaces of known protein–protein complexes (Jones
and Thornton, 1996; Betts and Sternberg, 1999; Lo Conte
et al., 1999; Norel et al., 1999b; Decanniere et al., 2001) have
revealed that enzyme–inhibitor, antibody–antigen and other
complexes present important differences in the interface residue
composition, hydrophobicity and electrostatics. Jackson
compared protein–protein interactions in these different types
of complexes and concluded that enzyme–inhibitor interfaces
are more static and hence more easily predicted than antibody–
antigen interfaces (Jackson, 1999). This suggests that different
filtering criteria should be applied to different types of com-
plexes. In this paper, we focus on the type-dependent filtering
technique in which, in addition to the geometric matching, we
also take hydrophobicity and electrostatic complementarity
into account.

Materials and methods

The selected test set
A collection of 44 protein–protein complexes from the Protein
Data Bank (PDB) was used as test sets (Table I). They
were chosen from different types of complexes, including 23
enzyme–inhibitor, 11 antibody–antigen and 10 other com-
plexes. For 24 systems, docking was performed with the
unbound experimental structures of both the receptor and the
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Table I. The selected 44 protein–protein complexes used to test the docking algorithm

Complex Description Receptor PDB Ligand PDB Cα r.m.s.d.a receptor/ligand

Enzyme–inhibitor
1ACB α-Chymotrypsin/Eglin C 5cha 1cse 0.69/0.63
1BRC Trypsin/APPI 1bra 1aap 0.40/0.43
1BRS Barnase/Barstar 1a2p 1a19 0.49/0.44
1CHO α-Chymotrypsin /Ovomucoid 3rd domain 5cha 2ovo 0.47/1.16
1CGI α-Chymotrypsinogen/Human pancreatic secretory trypsin inhibitor 1chg 1hpt 1.12/1.78
1CSE Subtilisin Carlsberg/Eglin C 1scd 1acb 0.36/0.63
1FSS Acetylcholinesterase/Fasciculin II 2ace 1fsc 0.48/0.78
2KAI Kallikrein A/Trypsin inhibitor 2pka 6pti 0.69/2.01
1MAH Mouse acetylcholinesterase/inhibitor 1maa 1fsc 0.65/0.74
2PTC β-Trypsin/Pancreatic trypsin inhibitor 2ptn 6pti 0.34/0.36
1UGH Human uracil–DNA glycosylase/inhibitor 1akz 1ugi 0.39/0.64
2SNI Subtilisin novo/Chymotrypsin inhibitor 2 1sup 2ci2 0.25/0.46
1TGS Trypsinogen/Pancreatic secretory trypsin inhibitor 2ptn 1hpt 1.19/1.88
1BTH Thrombin mutant/Pancreatic trypsin inhibitor 2hnt 6pti 0.89/0.48
2SIC Subtilisin BPN/Subtilisin inhibitor 1sup 3ssi 0.25/0.64
1FQ1 CDK2/KAP 1b39 1fpz 3.29/0.80
1TABc Trypsin/BBI 2ptn 1tabb 0.34/0.00
1PPEc Trypsin/CMT-1 2ptn 1ppeb 0.35/0.00
1UDIc Virus uracil–DNA glycosylase/inhibitor 1udh 1udib 0.47/0.00
2TECc Thermitase/Eglin C 1thm 2tecb 0.23/0.00
1STFc Papain/Stefin B 1ppn 1stfb 0.32/0.00
4HTCc α-Thrombin/Hirudin 2hnt 4htcb 0.65/0.00
1EFUc E.coli EFtu/Efts 1d8t 1efub 2.60/0.00

Antibody–antigen
1WEJ IgG1 E8 Fab fragment/Cytochrome c 1qbl 1hrc 0.34/0.35
1AHW Antibody Fab 5G9/Tissue factor 1fgn 1boy 0.60/0.82
1BVK Antibody Hulys11 Fv/Lysozyme 1bvl 3lzt 0.51/1.22
1DQJ Hyhel63 Fab/Lysozyme 1dqq 3lzt 0.50/0.84
1FBIc IgG1 Fab fragment/Lysozyme 1fbib 1hhl 0.00/0.68
2JELc Jel42 Fab fragment/A06 phosphotransferase 2jelb 1poh 0.00/0.70
1JHLc IgG1 Fv fragment/Lysozyme 1jhlb 1ghl 0.00/0.51
2VIRc IgG1-lambda Fab/Hemagglutinin 2virb 2viu 0.00/0.64
1QFUc IgG1-kappa Fab/Hemagglutinin 1qfub 2viu 0.00/0.32
1NMBc Fab NC10/Neuraminidase 1nmbb 7nn9 0.00/0.28
1BQLc Hyhel5 Fab/Lysozyme 1bqlb 1dkj 0.00/0.84
Others
1MDA Methylamine dehydrogenase/Amicyanin 2bbk 1aan 1.53/2.60
1WQ1 RAS activating domain/RAS 1wer 5p21 0.97/0.48
1AVZ HIV-1 NEF/FYN tyrosine kinase SH3 domain 1avv 1shf 0.68/1.00
1FIN CDK2 cyclin-dependent kinase 2/Cyclin 1hcl 1vin 3.50/0.41
1A0Oc Che A/Che Y 1chn 1a0ob 1.45/0.00
1IGCc IgG1 Fab fragment/Protein G 1igcb 1igd 0.00/1.05
1ATNc Actin/Deoxyribonuclease I 1atnb 3dni 0.00/0.41
1GLAc Glycerol kinase/GSF III 1glab 1f3g 0.00/0.42
1SPBc Subtilisin/Subtilisin prosegment 1sup 1spbb 0.59/0.00
3HHRc Human growth hormone/Receptor 3hhrb 1hgu 0.00/3.59

aThe r.m.s.d. (units Å) of the atom Cα between the docked receptor or ligand and corresponding bound structure.
bThe proteins with the bound structures (not free form).
cThe complexes are reconstructed from the structures of unbound/bound or bound/unbound proteins.

ligand. For the remaining 20 systems, the unbound experi-
mental structure of only one molecule was available, and
therefore the bound structure was taken for the other molecule.

Treating molecular flexibility

For docking, we used the ‘simplified protein’ model (Levitt,
1976) with one sphere per residue and radii listed in the
reference (Levitt, 1976) except for Arg, Lys, Asp, Glu and
Met at the protein surface. As conformational changes often
affect their flexible side chains (Cherfils and Janin, 1993;
Lo Conte et al., 1999; Zhao et al., 2001), these residues were
represented with spheres centered on the Cβ atom with a small
radius of 1.5 Å, making the molecular surface ‘softer’ to some
extent at these positions than elsewhere in the protein.
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Searching

We used Wodak and Janin’s docking algorithm (Wodak and
Janin, 1978) implemented in the program DOCK (Cherfils
et al., 1991). The six parameters that defined the position and
orientation of one molecule relative to the other were five
Euler rotation angles (θ1, ϕ1, θ2, ϕ2 and χ) and an intermolecular
distance ρ. Angles θ1 and ϕ1 located the center of the ligand
relative to the receptor; θ2 and ϕ2 located the center of the
receptor relative to the ligand; χ was a spin angle about the
center line. The five angles were systematically searched in
steps of 7.5°. We explored the full range of θ2 (�90°), ϕ2 and
χ (�180°), that is, the full surface of the ligand. For the
receptor, we restrict the search range of the θ1 and ϕ1 to �30°
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around the active site. With a 7.5° step, about 4.86�106

different docked structures were generated for each complex.
Filtering
In this work, the docked structures with an interface area not
less than 500 Å2 were retained and subjected to filtering. The
filtering technique based on geometric matching, hydro-
phobicity (Zhang et al., 1997) and electrostatic complementar-
ity was from the analysis in the Combined filtering section in
Results and discussion (see below). We used interface areas
to score geometric and electrostatic energy for electrostatic
complementarity.

For the enzyme–inhibitor complexes, first the top 500 docked
structures were sorted according to descending interface area.
For the following ones, their interface area values were
compared with the sorted lookup list containing those of the
500 best geometric matching solutions found so far. If its
surface matching is poorer than that of the worst solution in
the list, it will be discarded. Otherwise, it will be saved and
inserted in the list at the same time the worst element is
eliminated. In this way, 500 solutions were retained by geo-
metric matching. Then, in the solutions left, in the same way,
those of the 500 least desolvation free energy solutions were
added. Finally, the total 1000 solutions retained by geometric
matching and hydrophobicity were combined as the last
retained solutions.

For the antibody–antigen complexes, the 500 solutions first
retained by geometric matching and the 500 solutions then
retained by electrostatic complementarity were combined as
the final retained solutions. For the other complexes, the total of
1500 solutions retained by geometric matching, hydrophobicity
and electrostatic complementarity were combined as the final
retained solutions.

Finally, for every system, several binding modes with similar
structure were replaced with an average conformation (Cherfils
et al., 1991).
The scoring functions
After clustering, the following scoring function was evaluated:

score � ∆Eelec � ∆Gdes(ACE) (1)

where ∆Eelec denoted the changes in the electrostatic energy.
A soft-core Coulombic potential was used to calculate electro-
static energy:

qiqj∆Eelec� k· (2)
4(rij � c)2

where k was a constant including the electrical permittivity of
vacuum and rij was the distance between atoms i and j. The
constant c was set to 1.2 Å. The charge parameters were from
the CHARMM force field (Brooks et al., 1983). ∆Gdes(ACE)
was the desolvation free energy based on the atomic contact
energy (ACE) (Zhang et al., 1997, 1999):

∆Gdes(ACE) � Σ
i
Σ

j

nijeij (3)

where eij denoted the ACE between atoms i and j, and nij was
a switch function (Zhang et al., 1999) applied to eij in the
range 6–10 Å in order to avoid a sharp distance cutoff. The
sum was taken over all atom pairs less than 10 Å apart.

Results and discussion
Treatment of conformational flexibility
In order to examine the effect of the molecular flexibility
treatment in our molecular model, we compared the docked
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Fig. 1. Detail at the interface of the experimental structure of 1BRC and the
structure docked starting from the enzyme trypsin (1bra) and inhibitor APPI
(1aap) using the modified molecular model. Thin lines correspond to the
experimental structure of 1BRC and thick lines show the conformations of
the docked structure.

structure with our modified molecular model with the experi-
mental structure. Figure 1 shows results obtained from the
comparisons above for the complex 1BRC. The docking was
performed starting from the superimposed structures (reference
structure) of the enzyme trypsin (1bra) and its inhibitor APPI
(1aap) upon the complex 1BRC, but far apart (200 Å). Actually,
in the association of the two molecules, an obvious conforma-
tional change occurs on the Arg15 side chain of the inhibitor
APPI, which can be found by comparing the bound and
unbound structures of the inhibitor APPI. From Figure 1, the
docking using the modified molecular model tolerates the
appropriate overlap between the Arg15 side chain of APPI
and Trp215 of trypsin, whereas a major clash would be
expected to appear if the docking is performed with the original
molecular model. This means that our modified molecular
model can reasonably allow the side chain flexibility of the
surface residues.

Combined filtering
Since different types of the complexes have important differ-
ences in interface hydrophobicity and electrostatics, we
attempted to apply different filtering criteria to different types
of the complexes. In order to compare the filtering effect
of the geometric matching, hydrophobicity and electrostatic
complementarity for different types of the complexes, the
numbers of native-like structures in the three lists containing
those of the 1000 best interface matching, 1000 least desolva-
tion free energy and 1000 best electrostatic complementarity
solutions are listed in columns S, A and E (under Filtering)
in Table II. The ratio of the number of native-like structures
to that of the retained solutions is a key factor in evaluating
the filtering effect. A docked structure is considered a native-
like structure if the root mean square deviation (r.m.s.d.) of
the backbone atoms (N, Cα, C, O) from the reference structure
is not greater than 4.0 Å.

From Table II, for the enzyme–inhibitor complexes, in most
cases native-like solutions selected by electrostatic comple-
mentarity are fewer than those selected by geometric matching
and by hydrophobicity. Furthermore, it is clear that only if the
native-like solutions selected by these two criteria are combined
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Table II. Results of molecular docking calculations for 44 protein–protein complexesa

Complex Filtering Scoring Complex Filtering Scoring

S A E Rank R.m.s.d. S A E Rank R.m.s.d.

Enzyme–inhibitor
1ACB 9 143 19 16 3.64 1TGS 39 57 9 15 2.01
1BRC 0 107 19 1 3.84 1BTH 146 64 32 15 3.98
1BRS 21 7 19 89 3.73 2SIC 9 77 6 4 2.12
1CHO 25 208 58 19 3.04 1FQ1 9 0 0 321 3.41
1CGI 44 122 36 7 3.85 1TABb 68 66 20 17 3.39
1CSE 31 159 8 1 3.68 1PPEb 464 280 186 1 2.03
1FSS 60 51 106 1 3.89 1UDIb 48 7 19 49 3.50
2KAI 14 38 19 4 2.33 2TECb 20 80 12 13 2.91
1MAH 70 148 17 3 1.55 1STFb 19 32 6 4 2.56
2PTC 4 60 9 13 1.45 4HTCb 35 6 0 19 2.72
1UGH 27 6 12 164 1.55 1EFUb 0 8 7 10 4.00
2SNI 30 66 27 9 2.12

Antibody–antigen
1WEJ 13 0 17 17 2.38 1JHLb 3 0 14 103 3.66
1AHW 5 0 38 15 2.32 2VIRb 9 4 4 221 2.92
1BVK 8 2 6 200 3.48 1QFUb 7 5 9 273 2.39
1DQJ 9 2 6 198 3.61 1NMBb 3 3 3 205 3.14
1FBIb 22 0 3 18 3.54 1BQLb 6 0 0 57 1.02
2JELb 33 0 9 20 3.62

Others
1MDA 9 56 8 1 2.72 1IGCb 42 93 9 17 2.64
1WQ1 20 3 9 19 3.23 1ATNb 4 5 0 3 1.82
1AVZ 8 0 7 131 3.73 1GLAb 6 52 7 7 3.38
1FIN 4 22 3 9 3.78 1SPBb 52 9 8 12 1.09
1A0Ob 6 8 31 176 3.68 3HHRb 17 3 7 350 4.00

aThe Filtering column gives the number of native-like docked structures retained according to the different filtering criteria: S, geometric matching filter; A,
hydrophobicity filter; E, electrostatic complementarity filter. Interface area, electrostatic energy (Equation 2) and atomic contact energy (Equation 3) are used
to evaluate the geometric matching, electrostatic complementarity and hydrophobicity, respectively. Scoring presents the highest ranking position of a native-
like docked structure and the corresponding r.m.s.d. (units Å) relative to the reference structure.
bThe complexes are reconstructed from the structures of unbound/bound or bound/unbound proteins.

Fig. 2. Superposition of the experimental structure of protein complex
1BRC and the best ranked native-like prediction reported in Table II. Thick
lines, Cα trace of experimental structure; thin lines, Cα trace of predicted
mode.

as the retained solutions is the approach universal. For example,
for 1BRC, the native-like solutions obtained by geometric
matching are zero, but 107 native-like structures are selected
by hydrophobicity. For 1FQ1, however, we find no native-like
structures by hydrophobicity and nine native-like structures
by geometric matching. Therefore, the combined filtering
criterion based on geometric matching and hydrophobicity is
implemented for enzyme–inhibitor complexes. For antibody–
antigen complexes, the filtering effect of the hydrophobicity
is bad and that of geometric matching and electrostatic comple-
mentarity seems to be relatively good. For the other complexes,
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it is clear that the three filtering criteria are all important in
different cases.

As we know, the principles governing protein–protein recog-
nition have obvious differences for different types of com-
plexes. Probably it is the biological function that determines
those differences. From an evolutionary perspective, enzyme–
inhibitor complexes have evolved over a long period to
optimize the interfaces performing their biological functions,
which makes the interfaces more like the interior of proteins.
Therefore, hydrophobic interaction is prominent in the associ-
ation. In contrast, the antibody–antigen recognition is a ‘hap-
penstance’ not subject to evolutionary optimization over more
than a few days. The contribution of the hydrophobic interaction
to antibody–antigen association is relatively poor, whereas the
electrostatic interaction seems to be very important. There
could be some other biological principles governing antibody–
antigen recognition. For other complexes, since the biological
functions are diverse, there are no evident principles of
recognition observed in the analysis above. Perhaps the other
complexes can be divided into homodimers and heterocom-
plexes based on their structures. This can be done with the
increasing structures of those complexes.

Scoring putative complexes

Table II summarizes the docking results (under Scoring). The
ranking position of the first native-like structure is listed for
each of the 44 complexes, followed by the corresponding
r.m.s.d. relative to the reference structure. There are 30 cases
in which the first native-like structures are ranked within the
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top 20. These cases include the complexes 1CHO, 1CGI, 1TGS,
1EFU*, 1MDA, 1FIN and 1IGC*, in which the relatively large
integral conformational changes of the receptors or ligands
occur during the complex formation (see the last column for
Cα r.m.s.d. in Table I). It should be noted, however, that the
native-like structures do not always correspond to the best
scoring solutions and, often, incorrect docked structures are
ranked first. Perhaps the effect of evaluating native-like struc-
tures will be better if in the scoring function, H-bond and van
der Waals energies are taken into account in addition to
electrostatic and desolvation energies after energy minimiza-
tion. Additionally, properly combined with experimental
information on the complex, the method will increase the
successful probability of predicting the complex structures.

Figure 2 shows a comparison between the experimental
structure of the complex 1BRC and the best-ranked native-
like prediction reported in Table II. Although there is a major
clash between the Arg15 side chain of APPI and Trp215 of
the enzyme trypsin (see Figure 1), the native-like structure is
ranked first and it is clear that the binding site is satisfactorily
identified.
Conclusions
It should be pointed out that the docking simulations in this
paper are based on the assumption that the binding region on
one of the two proteins is known. In the spherical polar
coordinates used in this work, this information is given as a
simple constraint in just one or two of the angular degrees of
freedom. The computation time is much reduced. Ritchie and
Kemp also used the same coordinates in their docking algorithm
and successfully predicted the structures of some protein–
protein complexes (Ritchie and Kemp, 2000). In their test,
when the search ranges of two angle degrees of freedom are
limited to �30° around the active site, the first native-like
structures of 11 out of 18 complexes are ranked the top 20
(Ritchie and Kemp, 2000). In this paper, the first native-like
structures of 30 out of 44 tested complexes are ranked the top
20. This indicates that our algorithm captures some important
factors in the protein–protein association and can provide
useful help for the study of molecular recognition.

The guidance of docking by the characters on protein–
protein interfaces will be important. Currently, many important
features of antibody–antigen interfaces have been reported.
For example, tyrosine residues represent over a quarter of the
total interaction energy donated by the antibody (Jackson,
1999). Therefore, we might add this information to filtering
or scoring just for antibody–antigen docking.

In summary, our soft docking algorithm has several advant-
ages: (1) the modified molecular model can improve the
simulation result for the unbound protein–protein docking; (2)
the type-dependent filtering technique can retain much more
native-like structures and increase the successful probability
of predicting complex structures; and (3) the scoring function
based on the binding free energy can effectively distinguish
the correct from the incorrect structures. However, the main
shortcoming of this algorithm is that only a partial binding
space is searched. This is obviously a limitation for the docking
simulations in which no information about the binding site is
known. Work on improving our docking algorithm is in
progress.
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