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A proteomics landscape of circadian clock in
mouse liver
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As a circadian organ, liver executes diverse functions in different phase of the circadian clock.

This process is believed to be driven by a transcription program. Here, we present a tran-

scription factor (TF) DNA-binding activity-centered multi-dimensional proteomics landscape

of the mouse liver, which includes DNA-binding profiles of different TFs, phosphorylation, and

ubiquitylation patterns, the nuclear sub-proteome, the whole proteome as well as the tran-

scriptome, to portray the hierarchical circadian clock network of this tissue. The TF DNA-

binding activity indicates diurnal oscillation in four major pathways, namely the immune

response, glucose metabolism, fatty acid metabolism, and the cell cycle. We also isolate the

mouse liver Kupffer cells and measure their proteomes during the circadian cycle to reveal a

cell-type resolved circadian clock. These comprehensive data sets provide a rich data

resource for the understanding of mouse hepatic physiology around the circadian clock.
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T
he mammalian circadian clock includes a “master clock”
within the suprachiasmatic nucleus (SCN) of hypothala-
mus and “peripheral clocks” within other tissues of the

body. The “master clock” functions as an “orchestra conductor”
to direct “peripheral clocks” through yet-to-be defined pathways1,
allowing animals to adapt their feeding, activity, and metabolism
to predictable daily changes in the environment.

Circadian clocks orchestrate physiological rhythms via the
temporal regulation of gene expression to control core clock
genes and rhythmic output programs. A network of
transcriptional–translational feedback loop comprised of core
transcriptional activators (Bmal1 and Clock) and repressors (Per
and Cry), to control the rhythmicity in gene expression2,3. Tp53
and Myc, which are well-characterized cancer driver genes, and
several multi-functional nuclear receptors (NRs) including Rev-
erb, Ror, and Ppar family4–6, have also been shown as important
regulators of the circadian clock. These studies demonstrate the
critical roles of TFs in regulating circadian rhythm.

Liver plays a fundamental role in circadian clock system. Tran-
scriptome profiling of the liver has demonstrated the circadian
variation in the expression of genes related to oxidative metabolism,
mitochondrial functions, and amino acid turnover7, and that tran-
scriptional regulation drives the circadian mRNA rhythms8. In
contrast, much less is known on the protein level. With rapid
development of analytical techniques9, particularly mass
spectrometry-based proteomics, it is increasingly feasible to measure
proteins in order to understand the diverse biological processes.
Recently, Robles et al.10 and Wang et al.11 reported proteome studies
in circadian clock of the mouse liver10,11. However, due to the
technical limitations in proteomics techniques applied, the dynamics
of transcription factors—the key drivers of gene regulations around
the circadian clock, were still poorly understood.

It is expected that a hierarchical circadian regulation network
might exist, which may include different regulatory layers that
facilitate signal transductions around the clock. The TF DNA-
binding activities (DBA), which play key roles in regulating tran-
scriptome, would impact the nuclear sub-proteome and in turn, the
whole proteome; post-translational modifications, including phos-
phorylation and ubiquitylation, may also impart another layer of
regulation. The complicated relationships among different layers
raise many questions that remained to be answered, for instance: (1)
how diurnal rhythmic phosphorylation of signaling transduction
regulates the rhythm of TF DBA; (2) is there correlation between
nuclear TF protein expression and TF DBA; (3) how diurnal
rhythmic TF DBA correlates with the diurnal rhythm of down-
stream genes’ transcription; (4) is there correlation between diurnal
rhythms of mRNA expression and protein expression; and (5) how
the ubiquitylation system controls the proteome oscillation.
Answers to these questions will be informative in portraying a
panoramic view of the circadian transcription regulation that gov-
erns the temporal switch of physiology in the mouse liver.

We previously developed an approach that enables the iden-
tification and quantification of endogenous TFs at the proteome
scale. With a synthetic DNA containing a concatenated tandem-
array of the consensus TFREs (catTFRE) as an affinity reagent, we
can identify almost all expressed TFs in cell lines and tissues12. In
this study, we employ this catTFRE approach to profile the
dynamic of the TF sub-proteome during the circadian cycle of the
mouse liver13. A total of 297 TFs are quantitatively identified, and
80 of which show circadian oscillations (p < 0.1). In addition to
TF DBA, we also measure the nuclear sub-proteome, whole-liver
transcriptome, whole-liver proteome, phosphorylation, and ubi-
quitylation patterns to build a TF DBA-centered multi-dimen-
sional proteomics landscape of circadian regulation in the mouse
liver. Four major biological processes, including immune
response, fatty acid metabolism, cell cycles, and glucose

metabolism, are found to be oscillating in this TF DBA centric
view, facilitating our further understanding of the physiological
regulations of the circadian clock in the liver.

Results
Multi-dimensional liver proteome of the circadian clock. To
map the molecular landscape of circadian clock using mouse liver
as a model system, we took advantage of several current techni-
ques to measure (1) TF DBA patterns (DBAP); (2) post-
translational modifications (PTM) including phosphorylation
and ubiquitylation; (3) transcriptome, and (4) protein abundance,
including the nuclear sub-proteome and the whole proteome
(Fig. 1a). We aimed to provide a multi-dimensional data set for
the investigation and understanding of circadian clock system
within the framework of a TF-centric paradigm.

In-depth TF DBAP during circadian cycle of mouse liver. We
first profiled the diurnal rhythm of the TF DBA (Methods section;
Supplementary Fig. 1a). Using the TF data set reported by Ravasi
et al.14, we identified 617 DNA-binding proteins (DBPs), among
which, 297 were defined as TFs. We also detected 247 tran-
scription co-regulators (TCs) (Fig. 1b; Supplementary Data 1).
The same time points in the two consecutive circadian cycles
showed high correlation coefficient with an average Pearson’s r of
greater than 0.96 (Supplementary Fig. 1b). An average of 206 TFs
were quantified for the 16 time points, ranging from 150 TFs in
the ZT12 (Zeitgeber time) to 230 TFs in the ZT0. Oscillations of
TF numbers as well as numbers of DBP and TC numbers were
evident (Fig. 1c, d) during the consecutive circadian cycles.

Diurnal oscillations of mouse liver transcription factors. We
grouped the ZT points into four time phases (TP) in 6 h intervals
based on the oscillation patterns of the TF DBA. We then selected
TFs whose DBA in any specific TP that were more than twofolds
greater than that in the rest of the TPs. These TFs may perform
specific functions in the specific TP and were therefore named as
TP-specific TFs (Fig. 2a). GO/pathway analyses of TP-specific
TFs identified the following enrichments: immune response in
TP1, lipid metabolism in TP2, cell cycle in TP3, and glucose
metabolism in TP4 (Fig. 2b), suggesting a clear division of labor
for hepatic functions during the circadian cycle.

We then investigated diurnal rhythmicity of DBA of the TP-
specific TFs. Diurnal rhythmicity was identified according to
JTK_CYCLE8 method (Methods), in which 159 DBPs, 80 TFs,
and 59 TCs were found as diurnal rhythmic proteins (p < 0.1),
accounting for 26%, 27%, and 24% of the total identifications in
its functional group, respectively (Fig. 2c; Supplementary Data 1).
Importantly, Bmal1, Clock, Cry2, and Bhlhe40 were found with
significant diurnal rhythms. Interestingly, they were not found to
be diurnal rhythmic in protein abundance from previous
studies15,16 (Fig. 2d). We also found that the circadian
transcription activator protein complex, Clock/Bmal1, showed
high synchrony in DBA (Pearson’s r 0.96), while the activity of
the transcription repressor Cry was negatively correlated with the
Clock/Bmal1 complex.

We identified the diurnal rhythmic TFs (p < 0.1) within TP-
specific TFs, in which 11/48 TP-specific TFs in TP1, 8/33 TP-
specific TFs in TP2, 2/12 TP-specific TFs in TP3, and 5/41 TP-
specific TFs in TP4 were diurnal rhythmic, respectively. The GO/
pathway enrichments of diurnal rhythmic TFs in each TP were
highly consistent with the functions enriched by the TP-specific
TFs, suggesting that the hepatic gene transcription and
physiology functions are dominated by the diurnal rhythmic
TFs (Fig. 2e; Supplementary Data 2).
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As previously reported, the NRs have been known as a typical
diurnal rhythmic TF family on the mRNA level17,18. In our study,
we detected 36 of the 49 NRs (Supplementary Fig. 2a,
Supplementary Data 1), including core clock regulators such as
Rev-erbα and Rorα, (Supplementary Fig. 2c) and 10 NRs that
showed diurnal rhythm (Supplementary Fig. 2b). While the

diurnal rhythms of the 7 NRs passed the JTK_CYCLE test, Mlr,
Vdr, and Esr1 displayed single-pulse. Compared with the
previous work on mRNA level conducted by the Nuclear
Receptor Signaling Atlas (NURSA), we found that Pparσ, Trα,
Rev-erbα, and Tr2 were diurnal rhythmic on both transcription
level and DBA level, while Rorα, Lxrβ, Rxrβ were only diurnal
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rhythmic on the DBA level, probably because they functioned as a
partner of heterodimer with regulatory genes involved in liver
metabolism19,20. Vdr, which was not detected in the liver on mRNA
level, was detected with a single-pulse in the ZT0 and ZT24 during
the two consecutive cycles in this study (Supplementary Fig. 2a),
highlighting the unique value of our TFRE approach.

Diurnal rhythmic TF DBA was not originated from nuclear
TF. To determine whether the diurnal rhythms of TF DBA were
originated from the diurnal rhythmic expression levels of the
nuclear TFs, we measured the liver nuclear proteome. We iden-
tified 4038 (Supplementary Fig. 3a) proteins from purified nuclei
in the two diurnal cycles including 105 TFs (Supplementary
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Data 3). While 79 were detected in the TFRE (DBA profiling)
data set, only 10 TFs (p < 0.1) were diurnal rhythmic based on the
JTK_CYCLE analysis (Supplementary Fig. 3b). The Pearson’s
correlation coefficient was low (r= 0.179) between TF DBA and
TF protein abundance (Supplementary Fig. 3c). Consistent with
the pervious study10, Bmal1 and Clock did not demonstrate
diurnal rhythmicity on the protein expression level. We then
performed parallel reaction monitoring (PRM) and western
blotting on several TFs protein expression level to validate these
findings. Protein expression levels of TFs such as Bmal1/Arntl,
pparδ, Rorα did not demonstrate oscillations throughout the
circadian cycle (Supplementary Fig. 3d, e). Thus, pronounced
diurnal oscillation of TF DBA is unlikely originated from oscil-
lation of TF abundance during the circadian cycle.

Diurnal rhythmic DBA was closely related with phosphoryla-
tion. Phosphorylation plays an important role in TF DNA-
binding21,22. We next carried out phosphorylation profiling fol-
lowing the TiO2 enrichment23 (Supplementary Fig. 4a). We
identified 9465 phosphorylated peptides, representing 1657
phosphoproteins in the 16 time points across the diurnal cycles.
Phosphorylation level of 89 proteins were judged as diurnal
rhythmic (p < 0.1) (Fig. 3a; Supplementary Data 4). Of the 72 TFs
in the phosphoproteome data set, 55 was identified in the DBA
profiling, and 22 of them were diurnal rhythmic in DBA (p < 0.1),
accounting for 40% (22/55) of the phosphorylated TFs. The high
concordance between phosphorylation pattern and DBA of many
TFs was highlighted by the master circadian clock TFs including
Bmal1, Dbp, and Clock (Fig. 3b; Supplementary Fig. 4b, Sup-
plementary Data 4).

We tried to classify the phosphoproteome into four TPs as we
observed in the TF DBA, but failed to find clear functional
enrichments. When we separated the phosphorylated proteins
into two groups (daytime and nighttime group) based on their
peak time, we found that the daytime group was enriched in
immune response and lipid metabolism, whereas the nighttime
group was enriched in the cell cycle and glucose metabolism
(Supplementary Fig. 4c, d, Supplementary Data 5). These results
suggest that the phosphorylation pattern provides lower time
resolution than the TF DBA did in functional enrichments. We
then constructed a computational model for the diurnal rhythmic
signaling pathways using a recently published data10 and used the
kinase-substrates relationship database24 to infer the kinases and
used a protein–protein interaction database to find TFs that may
be targeted by the kinases. As shown in Fig. 3c, the diurnal
rhythmic expressed phosphoproteins turned out to be enriched in
four bioprocesses: the immune response kinase-TF (K–T) axis
mediated by Akt/Pdk1/Erk2–Stat1/Stat3/Nfkb1, and the lipid
metabolism K–T axis mediated by Ampka1/Ck2a1–Nr2f2/Pparδ/
Vdr at daytime, the cell cycle K–T axis mediated by Pkcd/
Ck1d–Smad4/Smad3 and glucose metabolism K–T axis mediated
by Mtor–Rorα/Mef2c/Srebf1 at nighttime.

Nomination of the dominant rhythmic TFs. As TF DBA may
dictate downstream gene transcription, we set out to correlated the
diurnal rhythmic mRNA oscillation with the perspective of TFs. We
profiled the transcriptome during the circadian cycles and found
that 2349 of the 11,120 identified mRNAs showed diurnal rhythm
(p < 0.05), which include the core clock TFs Bmal1, Per1, and Dbp
(Fig. 4a, b; Supplementary Data 6). Similar to the TF DBA, the
rhythmic gene transcripts were enriched in the immune response,
cell cycle, lipid metabolism, and glucose metabolism. However, the
enrichment of these four bioprocesses were not apparent in a 4-TP
rhythm, but in a 2-group rhythm (Fig. 4c; Supplementary Data 7),
with lipid metabolic and immune processes in the daytime group,
and cell cycle and glucose metabolic processes in the nighttime
group. This pattern of behavior is similar to the phosphorylation
but different from the TF DBA.

Next, we identified TFs that may control the diurnal rhythm of
gene expressions in the mouse liver, and designated these TFs as
“dominant rhythmic TFs” (DR-TFs). We reasoned that DR-TFs
should exhibit diurnal rhythmic DBA, and also control the diurnal
rhythmicity of their downstream target genes. To nominate DR-
TFs, we used the TF and downstream TG (target gene) correlation
database from the CellNet25 to integrate the TF DBA and the
transcriptome data. This analysis allowed us to identify 46 DR-TFs
out of the 80 diurnal rhythmic TFs (Supplementary Data 8),
including the well-characterized master clock proteins Bmal1,
Clock, Dbp, Bhlhe40, and several other TFs that include Stat1,
Mlxip, Mef2c, Cebpb (Fig. 4d). These DR-TFs may provide a
framework to understand circadian regulation of transcription as
exemplified in Fig. 4e. For example, the Stat1 and Stat3, which are
the DR-TFs that peak in the daytime, control the transcription of
immune-related genes such as Irf5 and Dhx58, which are also
peaked in the daytime (Fig. 4e; Supplementary Fig. 8b).

We defined transcriptional “activators” as TFs whose DBA are
positively correlated with transcripts of their target genes
(Pearson’s r > 0.5), and “repressors” whose activities are nega-
tively correlated with transcripts of their target genes (Pearson’s r
<−0.5). It is interesting to note that DR-TFs peak in a TP tend to
“activate” TGs enriched in the dominant bioprocess of this TP,
and to “repress” TGs enriched in the dominant bioprocess of
other TPs (Supplementary Fig. 5a, b, Supplementary Data 11).

Comparison of diurnal rhythm of transcriptome with pro-
teome. Previous studies have demonstrated poor correlation
between the transcriptome and the proteome16,26,27. We performed
whole proteome profiling using the same batch of liver samples
(three mice were killed every 3 h for 48 h)28 (Supplementary
Fig. 6a). We identified a total of 6780 proteins, in which 575 pro-
teins were diurnal oscillating (p < 0.1), accounting for 8% of the
total proteins (Fig. 5a; Supplementary Data 9). The GO bioprocess
enrichment of diurnal rhythmic proteins showed the consistency of
the dominant diurnal pathways, the gene transcription regulation
and protein expression in, namely immune response, cell cycle, lipid

Fig. 3 Diurnal phosphoproteome of mouse liver. a Numbers of phosphosites, phosphopeptides, and phosphoproteins detected in our diurnal

phosphoproteome of mouse liver. The distribution of diurnal rhythmic phosphoproteins in the total phosphoproteins. Hierarchical clustering of the cycling

phosphoproteins ordered by the phase of the oscillation. Values for each phosphoprotein at all analyzed samples (columns) are color code based on the

intensities, low (blue) and high (yellow) z-scored normalized iBAQ. The upper white to black bar indicates the 2 days’ cycle. Daytime is shown in white,

while nighttime is shown in black. b Temporal abundance of DNA-binding activity of Bmal1, Clock, Dbp, and Nr1d1/Rev-erbα and their correlated

abundance of their phosphorylated forms. X axis represents the sampled time points, Y axis represents the z-scored abundance. c Time-resolved map of

signaling cascades regulated by diurnal changed phosphoproteins. Proteins (kinases, phosphoproteins, TFs) were colored based on their peak time,

daytime-peaked proteins are yellow (detected in this study) or orange (detected in the study by Robles et al.10), while nighttime-peaked proteins were blue

(detected in the study by Robles et al.10) or green (detected in this study). Diurnal rhythmic proteins (this study: JTK_CYCLE p < 0.1, Robles et al.10:

q (adjusted p) < 0.1) were shown with red border. Box plots show the path from substrates to pathway-specific TFs were shorter than the path from

substrates to all detected TFs (pair tailed Student’s t test p < 0.05). For the box plot, the bottom and top of the box are the first and third quartiles, and the

band inside the box is the median of the paths between TFs and substrates
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metabolism, and glucose metabolism (Fig. 5a, b; Supplementary
Fig. 6c), (Supplementary Data 10). Specifically, the core proteins of
innate immune response, the key enzymes of the glucose metabo-
lism were dominant during the daytime, while the key enzymes in
the lipid metabolism and TCA cycle were upregulated during the
nighttime (Supplementary Fig. 6d).

In the proteome data set, we found that, while the mean
coefficient variation during the circadian cycle is 0.68, 30% of
proteins have coefficient variations larger than 0.9 (Supplemen-
tary Fig. 6b). We then compared the CVs (coefficient variation)
between proteome and transcriptome, and found that genes
whose transcriptome varies greatly than proteome were mainly
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enriched in metabolism(Supplementary Fig. 7a). The correlation
coefficients between transcriptome and proteome in all 16 time
points were between 0.5 and 0.6 (Supplementary Fig. 7b), which
is consistent with previous reports29,30. Of the 2349 diurnal
rhythmic gene transcripts, 1256 of them were identified in the
proteome, and only 133 of them displayed diurnal rhythm on
both mRNA (p < 0.05) and protein levels (p < 0.1). The diurnal
rhythmicity of 2216 mRNAs and 442 proteins were detected in
mRNA or protein only. Interestingly, transcript-specific diurnal
rhythmic genes were enriched in RNA processing/splicing, while
protein-specific diurnal rhythmic genes were enriched in toxin
transport and lysosomal transport (Fig. 5c). These results suggest
that the diurnal rhythm of transcriptome is not necessarily
translated to the proteome, and the diurnal rhythm can be better
understood by measuring both transcripts and proteins.

We also nominated “dominant diurnal rhythmic TFs (DR-TFs)”
from the protein profiling data using the similar criteria as we did
with the transcriptome data set. Surprisingly, 41 “DR-TFs” were
found using the proteome data set, covering 40 of the 46 DR-TFs
identified from the transcriptome data set (Supplementary Fig. 8a,
Supplementary Data 8). A substantial overlap of TGs of the DR-TFs
at proteome level were also observed (Supplementary Fig. 8c).
Together, these results indicated that, while the overall diurnal
rhythm cannot be directly translated from mRNA to protein, DR-
TFs derived from the transcriptome and the proteome data sets are
more consistent, suggesting that TF DBA may be the major driver
in governing circadian regulation in mouse liver.

The dynamic ubiquitylated pattern during the circadian cycle.
To gain further insight into the circadian clock in mouse liver, we
measured another PTM—ubiquitylation to survey another
dimension of the protein landscape during the circadian cycle
(Fig. 5d). We identified 3424 ubiquitylated sites on 1144 proteins
during one circadian cycle (Fig. 5e; Supplementary Data 12). The
number of the detected ubiquitylated proteins appeared to be
more in daytime than in nighttime, while the number of total
proteins detected in the proteome was similar (Fig. 5e). Clustering
analyses also revealed that ubiquitylated proteins that peaked in
the daytime and were enriched in immune response and lipid
metabolism, while the ubiquitylated proteins that peaked in the
nighttime were enriched in glucose metabolism (Fig. 5f).

In the ubiquitylation data set, it appeared that 5% of the
diurnal rhythmic TFs, particularly DR-TFs, such as Stat1 and
Stat3, were ubiquitylated, while 2% of the non-diurnal-rhythmic
TFs were ubiquitylated. We also compared the ubiquitylation
patterns of their TGs. We found that 8% of the TGs of the diurnal
rhythmic TFs were ubiquitylated, while 6% of the TGs of the non-
diurnal rhythmic were ubiquitylated (Fig. 5g). Additionally, the
number of ubiquitylated TGs of the diurnal rhythmic TFs was
significantly higher than the number of ubiquitylated TGs of the
randomly selected TFs (Fig. 5h), indicating that target gene
products (GPs) were also further regulated by ubiquitylation, in
addition to their regulation by TFs. The GO analysis revealed that
the ubiquitylated diurnal rhythmic proteins were significantly
enriched in the major diurnal rhythmic pathways, including

glycolysis/gluconeogenesis, fatty acid degradation, PPAR signal-
ing, but the enrichment was not observed in non-ubiquitylated
diurnal rhythmic proteins (Fig. 5i). Proteins involved in the
innate immune response, which include the receptors (Il23r,
Fcer1g, Fcgr2b et al.), the enzymes and adaptors (Rac1, Trim25,
Ikk, Trafd1 et al.), and the effector TFs (Stat1 and Stat3) were all
ubiquitylated. The same phenomenon was also found in the fatty
acid metabolic process (Fig. 5j).

We also found consistency in the diurnal rhythmicity of
protein expression and their ubiquitylation level, including
Trim25, Iκb, Irgm1 in the immune pathway, Me1, Slc27a5, and
Apoa2 in the fatty acid metabolic pathway (Supplementary
Fig. 9). These results collectively suggest that ubiquitylation is
another important mechanism in the regulation of diurnal
rhythm in addition to transcription regulation.

The diurnal rhythmic regulatory network of the Med complex.
In addition to TF, co-regulator is another class of proteins that play
important roles in transcription regulation. The multi-subunit
Mediator complex appeared to be a hub of transcription regula-
tion31. In our TFRE data set, we detected 19 of the 30 components
of the Med complex and found that many of them exhibited diurnal
oscillating pattern. For instance, Med1 and Med27 peaked in the
daytime, while Med12 and Med24 peaked in the nighttime (Fig. 6a;
Supplementary Data 1). DBA of Med1 and Med27 showed strong
diurnal rhythmic oscillation (p < 0.1). This observation was con-
firmed by manually extracting XIC (extracted ion chromatogram)
and western blotting (Supplementary Fig. 10a and b).

An interaction between Med1 and Clock has been reported
previously32. We then calculated the correlation coefficient
between components of Med complex with the diurnal rhythmic
TFs. The diurnal rhythmic DBA of many TFs, including Bmal1,
Clock, Naps2, Elf2, and Nf-κb1 were significantly correlated with
that of Med1 (Supplementary Fig. 10c, Supplementary Data 1). It
is interesting to note that TFs whose DBA peaked in different
time of the clock tends to correlate with different components of
the Med complex (Fig. 6b), suggesting that different components
of the Med complex may be recruited by the diurnal rhythmic
TFs during the circadian clock.

We constructed a computational model for a hierarchal network
centered around the Mediator complex (Fig. 6c). We focused on the
four essential diurnal rhythmic biological processes, namely the
immune response, lipid metabolism, cell cycle and glucose
metabolism, to implicate the role of the Mediator complex in these
biological processes. We found that the correlation between the
Med complex and pathway-specific TFs (TFs enriched in a pathway
or bioprocess) is significantly higher than that with all detected TFs
(average Pearson’s r 0.78 vs 0.19, p value 1.6e−6) (Fig. 6c).
Furthermore, the correlations were even higher in the pathway’s
dominant TP as defined by TFRE analysis than in the other phases,
suggesting that the Med complex serves as a gene regulatory hub in
the diurnal regulation network.

The diurnal switch of the proteome of Kupffer cells. Liver is an
organ with predominant innate immunity, which can specifically

Fig. 4 Diurnal transcriptome of the mouse liver. a Distribution of diurnal rhythmic transcripts. b Hierarchical clustering of the cycling transcripts ordered by

the time of the oscillation. Values for each transcript at all analyzed samples (columns) are color code based on the intensities, low (blue) and high

(yellow) z-scored normalized FPKM. The upper white to black bar indicates the 2 days’ cycle. Daytime is shown in white, while nighttime is shown in black.

Temporal abundance of transcripts of Bmal1, Dbp, Per1, and Bhlhe40 in 2 consecutive cycles. X axis represents the sampled time points; Y axis represents

z-scored FPKM. c Area graph shows the normalized abundance of transcripts that peaked in different time of the day (red: daytime, green: nighttime). Bar

plots shows the GO terms enriched by diurnal peaked transcripts (black), and GO terms enriched by diurnal rhythmic transcripts (JTK_CYCLE, p < 0.1)

(red). d The hierarchical pyramid shows the number of TFs, diurnal rhythmic TFs, transcriptome nominated DR-TFs. The Rose diagram shows the number

of transcriptome nominated DR-TFs of each time phase, TFs were colored based on their peaked phase, (TP1 shows in yellow, TP2 shows in red, TP3 shows

in green, TP4 shows in blue). e The regulation network of DR-TFs to their TGs (target genes), TFs were colored based on their peak phase
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detect infection through pattern-recognition receptors (PRRs)
that recognize specific structures, called pathogen-associated
molecular patterns (PAMPs)33. Toll-like receptor (TLR) signal-
ing is the dominant PAMPs of the liver34. We detected large
number of proteins in TLR signaling pathways, including the
receptors (Tlr3, Tlr6), the adaptor (Myd88), signal transducers

(Irf3, 5, 6, and 9), TFs (Nf-κb2) and the effector cytokines (Il23r,
Tnfα). Their abundance varied diurnally with peak phase in the
daytime and valley phase in the nighttime. Two Tnfα inducible
proteins, Tnfaip3 and Tnfaip8, were expressed higher in the
nighttime, suggesting a temporal regulation of the TLR signaling
(Supplementary Fig. 6d). The expression level of the Nf-κbib was
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negatively correlated with that of Nf-κb2 in the circadian clock,
consistent with its role as an Nf-κb inhibitor.

Since Kupffer cells (KCs), known as liver-resident macro-
phages, may be the cell-type responsible for the innate immunity
in the liver35, we asked whether the daytime and nighttime
variations of immune response in the liver was attributable to
variations in KCs. To this end, we isolated primary KCs from
liver at four different time points of the circadian clock (ZT0,
ZT6, ZT12, and ZT18), and performed MS-based proteome
analysis (Fig. 7a). Interestingly, the number of KCs seemed to
vary during the circadian cycle, peaking at ZT6 (1.8e6/liver), and
falling at ZT12 (4.56e5/liver) (Fig. 7b). Among the 4684 identified
KC proteins, 690 showed diurnal rhythm (p < 0.1) (Fig. 7c;
Supplementary Data 13); however, the diurnal rhythmicity of
only 61 of them were observed in the whole-liver proteome,
suggesting that the cell-type-resolved KC proteome provided
more information than the whole-liver proteome (Fig. 7d).
Further analyses indicated that as many as 1078 proteins showed
strong oscillation between daytime and nighttime with fold
changes >5, although they failed to pass the JTK_CYCLE test.
They included many well-characterized immune-related proteins,
such as Tmem173 and Mavs. A selected group of proteins with
diurnal expression differences between the KC proteome and the
whole-liver proteome were confirmed by MS measurement and
western blotting (Supplementary Fig. 11). The GO analysis
demonstrated that the diurnal differential expressed proteins in
the KC were much more significantly enriched in the immune
response pathways than the whole-liver proteome (Fig. 7e).
Furthermore, the abundance of the major immune response
pathway appeared to peak in the daytime, as exemplified by the
major components of the TLR pathway including Tlr4, Myd88,
Irak4, and Tak1 (Fig. 7f, g).

We further constructed interaction networks between KC and
whole-liver proteins around the circadian clock. The connections
between KC and whole-liver proteins in immune response
pathway were more dominant in the daytime than the nighttime
(p= 1.5e68), while the opposite phenomenon was observed for
the metabolism process, and more connections between KC
proteins and whole-liver proteins were observed in the nighttime
(p= 1.5e18) than in the daytime (Fig. 7h, i). These results
suggested a potential cooperation between KC and the liver
organ.

We then employed a TLR-induced liver injury model to test
whether the diurnal rhythm of innate immune has any biological
consequences using LPS treatment36,37. We administrated LPS/
D-GalN to the mice in two ZT points, ZT0 and ZT12, and then
measured the survival rate, serum ALT (alanine

aminotransferase) and AST (aspartate aminotransferase) levels
and histology of the liver. As shown in Fig. 8a, the group treated
with LPS at ZT0 had lower survival rate, higher ALT/AST levels,
and more sever liver damage compared to the group that were
treated at ZT12. These results suggest that the immune systems in
the liver may have differences during the daytime and nighttime
and is consistent with reports that temporal differences of
macrophages were found in serum, spleen, and lymph nodes38–40.

We next injected the LPS/D-GalN to the mice in two ZT
points, ZT0 and ZT12, then isolated KCs 2 h after co-injection,
and profiled their proteomes (Fig. 8b). We observed that the
abundance of proteins of the innate immune pathway were higher
in the daytime than in the nighttime (Fig. 8c). We then focus on
the Tlr4 signal transduction pathway, which directly responds to
LPS. We found that abundance of proteins including Myd88, Nf-
κb, Irak4 were highly expressed in the daytime than at nighttime
(Fig. 8c), indicating that the Tlr4 signaling transduction pathway
were elevated and may be more sensitive to LPS during the
daytime.

Discussion
As the major metabolic organ, liver plays an important role in
regulating metabolism homeostasis around the circadian clock. A
number of transcriptome and metabolome studies on circadian
clocks have illustrated the remarkable roles of circadian clock on
cellular and organismal physiology41,42, but relatively little is
known about the temporal regulation of gene expressions and its
driving force at the proteome level. Two previous studies by
Daniel Mauvoisin et al.15 and Robles et al.16 quantified 5000 and
3000 proteins, respectively. These studies revealed the dynamics
of diurnal liver proteome. However, due to technical limitations,
these studies failed to identify the core clock transcription
factors15,16.

In this study, we employed catTFRE12 to profile the dynamics
of TF sub-proteome during circadian cycle. As the result, 80 out
of 297 identified TFs were determined as diurnal rhythmic TFs
(JTK_CYCLE, p < 0.1) during two circadian cycles. Bioinformatic
analysis indicated that the diurnal rhythmic TFs could be grouped
into four major pathways, namely the immune response, glucose
metabolism, fatty acid metabolism and the cell cycle, based on
oscillation patterns of their DBA.

The quantification method for the proteome now is mostly
label-free quantification (LFQ). Compared with label-based MS
quantification, the LFQ can quantify unlimited number of sam-
ples for comparison and may also offer higher dynamic range to
detect low abundance proteins43, the LFQ using the iBAQ

Fig. 5 Diurnal proteome of mouse liver. a Distribution of pathway-specific diurnal rhythmic proteins. Yellow, green, and purple cycle represent the number

of proteins enriched in lipid metabolism, immunity, and glucose metabolism. Hierarchical clustering of the total (left) and GO specific diurnal

rhythmic proteins (right) ordered by the phase of the oscillation. b The bar plot shows the major GO terms enriched by diurnal rhythmic transcripts

(yellow), and diurnal rhythmic proteins (green). c The bar plot shows the GO terms enriched by the genes whose diurnal rhythm were inconsistent in

transcript and protein level. d Systematic workflow of the ubiquitylation proteome during the circadian cycle in mouse liver. e The total number of

ubiquitylated sites and proteins, and the number of ubiquitylation proteins detected at different ZT points. Bar plot shows the comparison between the

numbers ubiquitylated proteins with the number of whole-liver proteins detected at different ZT points. f Hierarchical clustering of the ubiquitylated

proteins ordered by the phase of the oscillation. g Bar plots show the percentage ratio between ubiquitylated rhythmic TFs and rhythmic TFs versus the

percentage ratio between ubiquitylated non-rhythmic TFs and non-rhythmic TFs (left). The percentage ratio between ubiquitylated rhythmic TFs’ TGs and

rhythmic TFs’ TGs versus the percentage ratio between ubiquitylated non-rhythmic TFs’ TGs and non-rhythmic TFs’ TGs (right). h The number of

ubiquitylated TGs of the diurnal rhythmic TFs versus the number of ubiquitylated TGs of the randomly selected TFs. i Scatterplot shows statistically

enriched GO/KEGG pathways by ubiquitylated diurnal rhythmic proteins versus pathways enriched by non-ubiquitylated diurnal rhythmic proteins. j

Systematic overview of signal transduction participated by ubiquitylated proteins. Ubiquitylated proteins were colored based on their peak time.

Ubiquitylated proteins peaked in the daytime were shown with red border, Ubiquitylated proteins peaked in the nighttime were shown with green border.

For all the Hierarchical clustering heatmap, values for each protein at all analyzed samples (columns) are color code based on the intensities, low (blue)

and high (yellow) z-scored normalized iBAQ. The upper white to black bar indicates the diurnal cycle. Daytime is shown in white, while nighttime is shown

in black
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algorism may suffer from lower accuracy and in general was able
to quantify a change of more than a factor of 2, which was
adequate for the characterization of many biological processes
including circadian rhythm studies published previously10,11.

We aimed to provide multi-dimensional proteomics data sets
to portrait the landscape of circadian clock in the mouse liver.
While centered at TF DBA, our data sets also contain phospho-
proteome, ubiquitylation proteome, nuclear proteome, whole
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proteome, and the whole transcriptome measured from the same
batch of samples. These data sets would allow other researchers in
the field to perform in-depth mining of different layers of regulation
of the circadian clock, which should lead to eventual construction of
the hierarchal circadian rhythmic regulation network.

In summary, we have built a TF DBA-centered multi-dimen-
sional proteomics landscape to illustrate the hierarchal gene
expression network in the circadian clock of mouse liver. Our
data sets include TF DBA, protein phosphorylation, ubiquityla-
tion, transcriptome, nuclear protein profiling, and whole pro-
teome profiling as well as the whole proteome of the Kupffer cells.
We offered the most comprehensive data sets of the diurnal
rhythm in the mouse liver by far and provided the richest data
resource for the understanding of mouse liver physiology around
the circadian clock.

Methods
Animals and tissue collection. Eight-week-old C57BL/6, SPF (specific pathogen-
free) male mice (weight 20–25 g) were housed in pathogen-free, temperature-
controlled environment, scheduled with 12–12 h light–dark cycles. All mice were
maintained with free access to food and water for 2 weeks. To collect tissues, three
mice were killed every 3 h for 48 h. We grouped animals randomly, to ensure that
the investigator was blinded to the group allocation during the experiment. This
study is under the guidelines of the animal care regulations of Fudan University,
and received ethical and scientific approval from Fudan University.

Kupffer cell isolation and protein extraction. Normal eight-week-old C57BL/6
male mice were housed, and scheduled with 12–12 h light–dark cycles for 2 weeks.
At each time point three mice were used for KCs’ isolation. We used two-step liver
perfusion digestion in situ followed the previously described protocol44. KCs were
first isolated simultaneously with LSECs using collagenase-based density gradient
centrifugation. Cells between 11.2% and 17% in optiprepTM density gradient were
carefully collected. Then cells were labeled with phenotypic markers (FITC-con-
jected CD11b and PE-conjected F4/80) and purified with FACS analysis (BD
Biosciences, Franklin Lakes, NJ). Collected KCs were then quickly frozen with
liquid Nitrogen and transferred to −80 °C refrigerator for storage.

Protein sample preparation. Three mice livers collected at each zeitgeber time
point were pooled together to extract nuclear protein and whole-tissue protein.

Nuclear extractions: 0.3 g pooled tissues were homogenized with 800 μl
Cytoplasmic Extraction Reagent I (CER I) buffer (NE-PER™ kit Thermo Fisher
Scientific), and 8 μl protease inhibitor (Pierce™, Thermo Fisher Scientific). Nuclear
proteins were extracted following the protocol provided by the manufacturer.
Protein concentrations were measured using Bradford method (Eppendorf
Biospectrometer).

Whole-tissue protein extractions: An aliquot of 0.1 g pooled tissues were lysed
with 400 μl urea lysis buffer (8 M urea, 100 mM Tris-HCl pH 8.0), 4 μl protease
inhibitor (Pierce™, Thermo Fisher Scientific) was added to protect protein from
degradation and protein concentrations were measured using Bradford method
(Eppendorf Biospectrometer).

KCs protein extractions: In total, 100 μl cell pellets were lysed with 400 μl urea
lysis buffer (8M urea, 100 mM Tris-HCl pH 8.0), 4 μl protease inhibitor (Pierce™,
Thermo Fisher Scientific) was added to protect protein from degradation and
protein concentrations were measured using Bradford method (Eppendorf
Biospectrometer).

CatTFRE pull-down and trypsin digestion. We referred to TF-binding database
JASPAR to select consensus TFREs for different TF families. To design the
catTFRE construct, we used 100 selected TFREs and placed two tandem copies of
each sequence with a spacer of three nucleotides in between, resulting in a total

DNA length of 2.8 kb. An aliquot of 1 mg NEs (nuclear extractions) were then
performed catTFRE pull-down. 2.8 kb catTFRE DNA and biotinylated catTFRE
primers were synthesized by Genscript (Nanjing, Jiangsu Province, China). In total,
3 pmol biotinylated DNA pre-bound to Dynabeads (M280 streptavidin, Thermo
Fisher scientific), and then incubated with NEs in 4 °C for 2 h. After incubation, the
supernatant was discarded, and the NETN buffer (100 mM NaCl, 20 mM Tris-HCl,
0.5 mM EDTA, and 0.5% [vol/vol] Nonidet P-40) and PBS was used to wash the
Dynabeads beads twice respectively. An aliquot of 20 μl of 2× SDS (sodium dodecyl
sulfate) loading buffer was used to re-suspend beads. The resuspended beads were
then boiled at 95 °C for 5 min. As for SDS-PAGE separation, samples were stained
with Coomassie Brilliant Blue, and sliced into six bands equally according to the
molecular weight ranges, followed by in-gel digestion overnight at 37℃ with
trypsin, referring to the protocol described before12.

Protein trypsin digestion and first dimension RPLC. For whole-tissue proteome,
and nuclear sub-proteome, KCs sub-proteome 100 μg whole-tissue proteins were
digested by the FASP procedure45. Namely, the protein samples were supple-
mented with 1M dithiothreitol (DTT) to a final concentration of 5 mM and
incubated for 30 min at 56℃, then added iodoacetamide (IAA) to a 20 mM final
concentration, and incubated in the dark at room temperature. After half an hour
incubation, samples were added 5 mM final concentration of DTT and keep in dark
for another 15 min. After these procedures, protein samples were loaded into 10 kD
Microcon filtration devices (Millipore) and centrifuged at 12,000 × g for 20 min and
washed twice with Urea lysis buffer (8M Urea, 100 mM Tris-HCl pH 8.0), twice
with 50 mM NH4HCO3. Then the samples were digested using trypsin at an
enzyme to protein mass ratio of 1:25 overnight at 37 °C. Peptides were extracted
and dried (SpeedVac, Eppendorf).

As for the whole-liver proteome, the digested peptide then performed first
dimension RPLC before LC-MS/MS. The dried peptides were loaded into a
homemade Durashell RP column (2 mg packing (3 μm, 150 Å, Agela) in a 200 μl
tip), then eluted sequentially with nine gradient elution buffer which contains
mobile phases A (2% acetonitrile (ACN), adjusted pH to 10.0 using NH3.H2O) and
6%, 9%, 12%, 15%, 18%, 21%, 24%, 30%, 35% mobile phase B (98% ACN, adjusted
pH to 10.0 using NH3.H2O). The nine fractions then were combined into six
groups (6%+ 24%, 9%+ 30%, 12%+ 35%, 15%, 18%, 21%) and dried under
vacuum for sub-sequential MS analysis.

Phosphoproteome sample preparation. A total of 1 mg whole-liver protein lysates
were digested with trypsin for the TiO2 enrichment. To the digested peptides, 0.25ml
binding buffer (80% ACN, 5% trifluoroacetic acid (TFA (Sigma-Aldrich)), and 1M
lactic acid (Sigma-Aldrich)) was added, peptides were mixed at room temperature for
1 min at 2000 rpm, cleared by centrifugation, and transferred to a clean 0.5ml tube.
TiO2 beads were subsequently added to peptides at a ratio of 4:1 beads/protein, and
incubated at room temperature for 30min on rotor with middle speed. Beads were
subsequently pelleted by centrifugation for 2 min at 2000 × g, and the supernatant
(containing non-phosphopeptides) was collected to repeat the enrichment for twice
and then discarded. Beads were suspended in wash buffer (80% ACN and 5% TFA),
transferred to a clean 0.5 ml tube, and washed a further four times with 0.5ml wash
buffer. After the final wash, beads were suspended in 0.05 ml wash buffer, three batch
beads were all transferred onto a 0.2ml StageTip with two pieces of C8, and cen-
trifuged for 3min at 500 × g or until no liquid remained on the StageTip. Bound
phosphopeptides were eluted two times with different gradient of elution buffer (0%,
3%, 6%, 9%, 12%, 40% ACN, and 15% NH4OH) and collected by centrifugation into
six 0.5ml tube, then combined them into three tubes (0%+ 40%, 3%+ 12%, 6%+
9%). Peptide samples were concentrated in a SpeedVac. Peptides were resuspended in
buffer containing 5% MeOH and 10% FA for liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis. Peptides from catTFRE tandem in-gel digestion were
detected by Q Exactive Plus (Thermo Fisher Scientific) and peptides used for
detecting proteome, nuclear proteome, phosphoproteome, and ubiquitylation
proteome and KC sub-proteome were detected by Orbitrap Fusion Lumos
(Thermo Fisher Scientific).

Fig. 6 The diurnal rhythm of the Mediator complex. a Hierarchical clustering of the proteins ordered by the phase of the oscillation. Values for each protein

at all analyzed samples (columns) are color code based on the intensities, low (blue) and high (yellow) z-scored normalized iBAQ. The upper white to black

bar indicates the 2 days’ cycle. Daytime is shown in white, while nighttime is shown in black. b Modular structure of Mediator complex recruited by diurnal

rhythmic TFs that regulated different bioprocess, subunits colored in yellow or green represent subunits’ high or low DNA-binding activity, respectively.

c The regulation network of Mediators, TFs, and TGs in four major pathways. For each pathway, the network on the left shows the TFs recruited

components of Mediator to regulate TGs’ expression, proteins (TFs, components of Mediator, TGs) were colored based on their abundance (proteins

peaked in the daytime are yellow, in the nighttime are green), and diurnal rhythmic ones were shown with red border (JTK_CYCLE p < 0.1). The upright box

plot shows the correlation between pathway-specific TFs with Mediators is higher than the average correlation between Mediators with total TFs (pair

tailed Student’s t test p < 0.05). For the box plot, the bottom and top of the box are the first and third quartiles, and the band inside the box is the median of

the correlation between TFs and Mediators. The Heat map on the down-right shows the diurnal difference of the correlation between pathway-specific TFs

with Mediators (pair tailed Student’s t test p < 0.05)
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Q Exactive Plus LC-MS/MS analyses were performed on an Easy-nLC 1000
liquid chromatography system (Thermo Fisher Scientific) coupled to an Q-Exactive
Plus via a nano-electrospray ion source (Thermo Fisher Scientific). The peptides
from in-gel trypsin digestion were dissolved with 10 μl loading buffer (5%
methanol and 0.2% formic acid), and 5 μl was loaded onto a 360 μm I.D. × 2 cm,
C18 trap column at a maximum pressure 280 bar with 12 μl solvent A (0.1% formic
acid in water). Peptides were separated on 150 μm I.D. × 14 cm column (C18, 1.9

μm, 120 Å, Dr. Maisch GmbH) with a linear 5–35% Mobile Phase B (ACN and
0.1% formic acid) at 600 nl/min for 75 min. The MS analysis was performed in a
data-dependent manner with full scans (m/z 300–1400) acquired using an Orbitrap
mass analyzer at a mass resolution of 70,000 at m/z 400. The top twenty precursor
ions were selected for fragmentation in the HCD cell at normalized collision energy
of 30%, and then fragment ions were transferred into the Orbitrap analyzer
operating at a resolution of 17,500 at m/z 400. The automatic gain control (AGC)
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for full MS was set to 3e6, and that for MS/MS was set to 5e4, with maximum ion
injection times of 20 and 60 ms, respectively. The dynamic exclusion of previously
acquired precursor ions was enabled at 18 s.

Orbitrap Fusion Lumos LC-MS/MS analyses were performed on an Easy-nLC
1000 liquid chromatography system (Thermo Fisher Scientific) coupled to an
Orbitrap Fusion Lumos via a nano-electrospray ion source (Thermo Fisher Scientific).
Fractions from the first dimension RPLC were dissolved with loading buffer (5%
methanol and 0.2% formic acid), and loaded onto a 360 μm I.D. × 2 cm, C18 trap
column at a maximum pressure 280 bar with 12 μl solvent A (0.1% formic acid in
water). Peptides were separated on 150 μm I.D. × 14 cm column (C18, 1.9 μm, 120Å,
Dr. Maisch GmbH) with a series of adjusted linear gradients according to the
hydrophobicity of fractions with a flow rate of 600 nl/min. The MS analysis was
performed in a data-dependent manner with full scans (m/z 300–1400) acquired
using an Orbitrap mass analyzer at a mass resolution of 120,000 at m/z 200. The top
speed data-dependent mode was selected for fragmentation in the HCD cell at
normalized collision energy of 32%, and then fragment ions were transferred into the
ion trap analyzer with the AGC target at 5e3 and maximum injection time at 35ms.
The dynamic exclusion of previously acquired precursor ions was enabled at 12 s.

Label-free based MS quantification for proteins. Raw MS files were processed
with the MaxQuant software (version 1.5.3.30), using the integrated Andromeda
search engine with FDR < 1% at peptide and protein level. As a forward database,
the mouse refseq protein database (2013.07.01) was used. A reverse database for the
decoy search was generated automatically in MaxQuant. Enzyme specificity was set
to ‘Trypsin’, and a minimum number of seven amino acids were required for
peptide identification. For label-free protein quantification, the ‘Match Between
Runs’ option were used with a matching window of 3 min to transfer MS1 iden-
tification between Runs. For raw MS files from catTFRE sub-proteome, proteome
and nuclear proteome, default settings were used for variable and fixed modifica-
tions (variable modification: acetylation (Protein-N terminus) and oxidation
methionine (M), fixed modification: carbamidomethylation (C)). For raw MS files
from phosphoproteome, setting for variable and fixed modifications included
variable modifications for oxidation (methionine), acetylation (protein N-term),
and phos-pho (STY) and fixed modifications for carbamidomethyl (C). For raw MS
files from ubiquitylation proteome, setting for variable and fixed modifications
included variable modifications for oxidation (methionine), acetylation (protein N-
term), and GlyGly (K) and fixed modifications for carbamidomethyl (C). We used
MaxQuant LFQ algorithm46 to quantitate the MS signals, and the proteins’
intensities were represented in iBAQ.

The iBAQ30 (intensity-based absolute protein quantification) of each sample
were transferred into FOT (a fraction of total protein iBAQ amount per
experiment), and calculated z-score using the equation z= (x−μ)/σ, (μ stands for
the mean of the samples’ FOT of one cycle, and σ stands for the standard deviation
of the samples’ FOT of one cycle).

Parallel reaction monitoring analysis for KC. Data-dependent acquisition. Pep-
tides were eluted from a 150 μm I.D. × 2 cm, C18 trap column and separated on a
homemade 150 μm I.D. × 30 cm column (C18, 1.9 μm, 120 Å, Dr. Maisch GmbH)
with a 150 min non-linear 5–35% ACN gradient at 600 nl/min. The combined
method consisted of an MS1 scan at a resolution of 120,000 (at 200m/z) with an
AGC value of 3e6, max injection time of 80 ms and scan range from m/z 300–1400,
top30 precursor ions from MS1 were selected for MS2 scans with higher-energy
collision dissociation detected in the Orbitrap first (R= 15,000 at 200 m/z, AGC
target 2e4, max injection time 20 ms, isolation window 1.6 m/z, normalized colli-
sion energy of 27%, The dynamic exclusion of previously acquired precursor ions
was enabled at 25 s).

Peptides of target GPs were identified and focused in the exact RT windows by
data-dependent acquisition (DDA) scan (Supplementary Data 14). The parent ions
in the table were monitored on an Easy-nLC system (Thermo Fisher Scientific,
USA) coupled with Q-Exactive HF (Thermo Fisher Scientific, USA). Peptides were
separated on a homemade 150 μm I.D. × 30 cm column (C18, 1.9 μm, 120 Å, Dr.
Maisch GmbH) with a 150 min non-linear 5–35% ACN gradient at 600 nl/min.

The peptides were analyzed using full scan plus PRM modes. The full mass within
the range of 300 to 1400 m/z was collected. The MS1 resolution was set at 120,000
(at 200 m/z), MS2 methods were controlled with a timed inclusion list containing
the target precursor m/z value, charge, and a 3 min retention time window that was
determined from DDA results. All of the raw files were processed using Skyline 3.1.
The intensities of three fragment ions were summed for peptide quantification. The
intensities of up to three peptides were summed and used for GP quantitative
comparison.

RNA-Seq. About 0.1 g tissues were pooled together and extract total RNA using
Trizol regent (Thermo Fisher Scientific). Total RNAs were subsequently enriched
for polyadenylated RNA with the Oligotex mRNA Mini Kit (QIAGEN). For
sequencing, we used Illumina HiSeqX platform with Pair End 150 reads, and
sequence at depth averaging 50 million reads per sample. The results were aligned
to mouse genome (UCSC version mm10) using tophat2 (v2.0.12), and transcript
abundance was calculated using cuffnorm (v2.2.1), showed as FPKM (fragments
per kilobase of exon model per million mapped reads) value.

The FPKM of each sample were calculated z-score using the equation z= (x
−μ)/σ, (μ stands for the mean of the samples’ FPKM of one cycle, and σ stands for
the standard deviation of the samples’ FPKM of one cycle).

TF classification. Proteins identified by DBA profiling were categorized into DBPs,
TFs, and TCs. We extracted DBPs by filtering the genes’ description “DNA-binding”.
And we extracted TFs and TCs by filtering the gene symbols, using the gene symbols
list of TFs and TCs, from public databases described in previous studies14.

Bioinformatics and statistical analysis. To determine the subset of cycling TFs,
proteins, and transcripts. We performed JTK_CYCLE test with period range:
20–28 h and the amplitude and phase as free parameters. A statistical cut-off of p <
0.1 was used to define the cycling proteome, and p < 0.05 was used to define the
cycling transcripts. Hierarchical clustering was performed using the pheatmap
(Pretty Heatmaps) function in the R package (pheatmap, version 1.0.8). The GO
terms that were enriched in the sets of enriched genes were determined using the
Database for Annotation, Visualization and Integrated Discovery (DAVID)
Bioinformatics Resource v 6.7 with Fisher’s exact test.

Bioinformatic analysis of kinase signaling pathway. We extracted pathway-
specific phosphorylated proteins and pathway-specific TFs by filtering their GO terms.
The hierarchical network of kinase, phosphoproteome, and TFs were constructed
based on multiple layers. The network among kinase and substrates were annotated
using information accessed from PhosphoSitePlus24, and the protein interaction net-
work among TFs and phosphorylated proteins were generated with the STRING v10.0
using medium confidence (0.4) and experiments and database as active interaction
sources. The network was visualized using Cytoscape v 3.3.0. The shortest path from
pathway-specific phosphorylated proteins to TFs were based on the protein interaction
data from STRING, and calculated using Rscript: shortest.paths.r.

Bioinformatic analysis of Mediator-centered network. We extracted pathway-
specific TFs and TGs by filtering their GO terms. The hierarchical network of
Mediators, TFs and TGs were constructed based on multiple layers. The protein
interaction network among Mediators were performed with the STRING v10.0
using medium confidence (0.4) and “experiments and database” as active inter-
action sources. The network between Mediators and pathway-specific TFs were
based on their Pearson’s correlation coefficient, we linked each pathway-specific TF
to three Mediators with highest Pearson’s correlation coefficient with it. The net-
work among TFs and TGs was obtained from CellNet25, Data visualization was
done with Cytoscape v 3.3.0.

Bioinformatic analysis of KC and whole-liver protein network. We extracted
pathway-specific proteins by filtering their GO terms. The interaction between KC

Fig. 7 The diurnal switch of the immune response in mouse liver. a Systematic workflow of the diurnal KC sub-proteome. b Diurnal oscillation of the

number of KCs during the circadian cycle. c Bar plot shows distribution of the diurnal oscillated proteins of KCs at each ZT point. d Venn plot shows the

overlap among diurnal rhythmic whole-liver proteins (JTK_CYCLE p < 0.1) and diurnal rhythmic KC proteins (JTK_CYCLE p < 0.1). e Scatterplot shows

statistically enriched GO/KEGG pathways by diurnal rhythmic KC proteins and diurnal rhythmic whole-liver proteins. f Box plots shows the pathway-

specific KC proteins’ abundance of expression at ZT0 versus their expression at ZT12 (pair tailed Student’s t test p < 0.05). For the box plot, the bottom

and top of the box are the first and third quartiles, and the band inside the box is the median of the proteins’ abundance. g Schematic representation of

diurnal changed TLR pathway-related proteins; for each protein, the corresponding expression level was represented by color. The color bar indicates

normalized z-scored iBAQ. h Box plots show the stronger connection (more interactions) among immune-related KC proteins and whole-liver proteins in

the daytime and stronger connection (more interactions) among lipid-related KC proteins and whole-liver proteins in the nighttime (pair tailed Student’s

t test p < 0.05). For the box plot, the bottom and top of the box are the first and third quartiles, and the band inside the box is the median of the interactions

between KC proteins and whole-liver proteins. i Diurnal interaction network among KC proteins and whole-liver proteins. KC upregulated proteins were

colored in green, whole-liver upregulated proteins were colored in red. Diurnal rhythmic proteins (whole-liver proteins: JTK_CYCLE p < 0.1, KC proteins:

JTK_CYCLE p < 0.1) were shown with red border, diurnal changed KC proteins (fold change > 5) were shown with black border
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proteins and whole-liver proteins were calculated based on information from
protein–protein interaction database STRING (v10.0, medium confidence (0.4) and
“experiments and database” as active interaction sources).

Western blotting. Denatured nuclear extractions or proteins were loaded onto
polyacrylamide gels, and after electrophoresis, proteins were transferred onto
PVDF membranes (Millipore), then blocked in 5% non-fat milk for 1 h at 25 °C.
Incubation of primary antibodies was done overnight at 4 °C in 5% non-fat milk on
TBS with 0.1% Tween-20. Primary antibodies were as follows: Med1 (CRSP1/
TRAP220) (Bethyl, Cat.: A300-793A, 1:1000), Bmal1 (Cell Signaling Technology,
Cat.: 14020 S, 1:1000), Rora (Proteintech, Cat.: 10616-1-AP, 1000), Pparδ (Pro-
teintech, Cat.: 60193-1-Ig, Clone No.: 1B10E1, 1:1000), Tmem173 (Proteintech,
Cat.: 19851-1-AP, 1:1000), Nfκb2 (Proteintech, Cat.: 10409-2-AP, 1:1000). The
uncropped scans of blots of Bmal1, Rora, Pparδ, Med1, Tmem173, and Nfκb2 were
represented in Supplementary Fig. 12.

Data availability. All Mass Spectrum raw data and the MaxQuant output tables
have been deposited to iProX and can be accessed with the iProX accession:
IPX0001145000, (TF DBA pattern and whole-liver proteome), IPX0001158000,
(Nuclear proteome, phosphoproteome, ubiquitylation proteome and KC sub-pro-
teome). RNA-seq data have been deposited to Sequence Read Archive (SRA), with
accession number: SRP133633.

Received: 3 July 2017 Accepted: 20 March 2018
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