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Abstract

Network reconstructions are a common denominator in systems biology. Bottom-up metabolic
network reconstructions have developed over the past 10 years. These reconstructions represent
structured knowledge-bases that abstract pertinent information on the biochemical transformations
taking place within specific target organisms. The conversion of a reconstruction into a
mathematical format facilitates myriad computational biological studies including evaluation of
network content, hypothesis testing and generation, analysis of phenotypic characteristics, and
metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30
organisms have been published and this number is expected to increase rapidly. However, these
reconstructions differ in quality and coverage that may minimize their predictive potential and use
as knowledge-bases. Here, we present a comprehensive protocol describing each step necessary to
build a high-quality genome-scale metabolic reconstruction as well as common trials and
tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction
process.

INTRODUCTION

Metabolic network reconstructions have become an indispensable tool for studying the
systems biology of metabolism1–7. The number of organisms for which metabolic
reconstructions have been created is increasing at a pace similar to whole genome
sequencing. However, the quality of metabolic reconstructions differs considerably, which is
partially caused by varying amounts of available data for the target organisms, but also
partially by a missing standard operating procedure that describes the reconstruction process
in detail. This protocol details a procedure by which a quality-controlled quality-assured
(QC/QA) reconstruction can be built to ensure high quality and comparability between
reconstructions. In particular, the protocol points out data that are necessary for the
reconstruction process and that should accompany reconstructions. Moreover, standard tests
are presented, which are necessary to verify functionality and applicability of
reconstruction-derived metabolic models. Finally, this protocol presents strategies to debug
non- or malfunctioning models. While the reconstruction process has been reviewed
conceptually by numerous groups8–11 and a good general overview of the necessary data
and steps is available, no detailed description of the reconstruction, debugging, and iterative
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validation process has been published. This protocol seeks to make this process explicit and
generally available.

The presented protocol describes the procedure necessary to reconstruct metabolic networks
intended to be used for computational modeling, including the constraint-based
reconstruction and analysis (COBRA) approach11, 12. These network reconstructions, and in
silico models, are created in a bottom-up fashion based on genomic and bibliomic data, and
thus represent a biochemical, genetic, and genomic (BiGG) knowledge-base for the target
organism9. These BiGG reconstructions can be converted into mathematical models and
their systems and physiological properties can be determined. For example, they can be used
to simulate maximal growth of a cell in a given environmental condition using flux balance
analysis (FBA)13, 14. In contrast, the generation of networks derived from top-down
approaches (high-throughput data based interference of component interactions) is not
discussed here, as they do not generally result in functional, mathematical models.

The metabolic reconstruction process described herein is usually very labor- and time
intensive, spanning from six months for well-studied, medium genome sized bacteria, to two
years (and six people) for the metabolic reconstruction of human metabolism15. Often, the
reconstruction process is iterative, as demonstrated by the metabolic network of Escherichia

coli, whose reconstruction has been expanded and refined over the last 19 years7. As the
number of reconstructed organisms increases, the need to find automated, or at least semi-
automated, ways to reconstruct metabolic networks straight from the genome annotation is
growing. Despite growing experience and knowledge, to date, we are still not able to
completely automatically reconstruct high-quality metabolic networks that can be used as
predictive models. Recent reviews highlight current problems with genome annotations and
databases, which make automated reconstructions challenging and thus, require manual
evaluation8, 9. Organism-specific features such as substrate and cofactor utilization of
enzymes, intracellular pH, and reaction directionality remain problematic, and thus,
requiring manual evaluation. However, some organism-specific databases and approaches
exist, which can be used for automation. We describe here the manual reconstruction
process in detail.

A limited number of software tools and packages are available (freely and commercially),
which aim to assist and facilitate the reconstruction process (Table 1). The protocol
presented can, in principle, be combined with those reconstruction tools. For generality, we
present the entire procedure using a spreadsheet, namely Excel workbook (Microsoft Inc),
and a numeric computation and visualization software package, namely Matlab (Mathwork
Inc). Free spreadsheets (e.g., Open office and Google Docs) could be used instead of the
listed spreadsheet. Alternatively, MySQL databases may be used, as they are very helpful to
structure and track data. Matlab was also used to encode the COBRA Toolbox, which is a
suite of COBRA functions commonly used for simulation16. This Toolbox was extended to
facilitate the reconstruction, debugging, and manual curation process described herein.

The protocol describes in detail the process to generate metabolic reconstructions applicable
for representatives of all domains of life. The process of reconstructing prokaryotic and
eukaryotic metabolic networks is, in principle, identical, although eukaryote reconstructions
are more challenging due to size of genomes, coverage of knowledge, and the multitude of
cellular compartments. Specific properties and pitfalls are highlighted.

The described reconstruction and debugging process requires organism specific information.
The minimum information includes the genome sequence, from which key metabolic
functions can be obtained, and physiological data, such as growth conditions, which allow
the comparison of model prediction to refine the network’s content. In general, the more
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information about physiology, biochemistry, and genetics is available for the target
organism, the better the predictive capacity of the models. This property becomes obvious
considering that the network evaluation and validation process relies on comparing predicted
phenotypes (e.g., growth rate) with experimental observations. Additional cellular objectives
(other than maximal growth rate) may be compared with experimental data but they are not
detailed in this protocol15, 17–20.

Although this protocol presents the reconstruction process in terms of metabolic networks,
the same approach can, and has been, applied for reconstructing signaling21, 22 and
transcription/translation networks23. Regulatory networks have not been constructed in a
fully stoichiometric manner yet, although a pseudo-stoichiometric approach has been
proposed24, 25. The reconstruction process for these networks is not as well established as
for metabolic networks, and is thus still subject to active research.

Lastly, myriad data sources are used during the reconstruction process rendering metabolic
network reconstructions as knowledge-bases, which summarize and structure the available
BiGG knowledge about the target organism. Frequently used organism-unspecific, and some
of the organism-specific, resources are listed in Table 1. Note that the quality and wealth of
organism-specific information will directly affect the quality and coverage of the metabolic
reconstruction. Great resources are organism-specific books that have been published for a
growing number of organisms26–29. In cases where organism-specific information is scarce,
data from phylogenic neighbors may be of great help. It is important to ensure that, in cases
where the reconstruction relies extensively on relative information, the overall behavior of
the model matches the target organism. This assurance can be achieved by carefully
comparing the predictions with experimental and physiological data, such as growth
conditions, secretion products, and knock-out phenotypes.

The resulting knowledge-bases can be queried, used for mapping experimental data (e.g.,
gene expression, proteomic, fluxomic, and metabolomic data), and converted into a
mathematical format to investigate metabolic capabilities and generate new biological
hypotheses. The multitude of possible applications of BiGG knowledge-bases distinguishes
them from other, automated efforts. By introducing standards in content and format with this
protocol it will soon be possible to compare metabolic reconstructions between different
organisms, which will further enhance our understanding of the evolutionary processes and
may provide a complementary approach to comparative genomics.

GENERAL PROCEDURE

The metabolic network reconstruction process described herein consists of four major stages
followed by its prospective use in stage 5 (Figure 1). The order of steps in the different
stages is a recommendation and may be altered within each stage, and with some limitations
between stages, as long as they are completed. The quality of the reconstruction is generally
ensured by performing all steps.

Stage 1: Creating a draft reconstruction

Note that the creation of a draft reconstruction and the manual reconstruction refinement
(next stage) may be combined for bacterial reconstructions with main emphasis on
reconstruction refinement.

The first stage consists of the generation of a draft reconstruction based on the genome
annotation of the target organism and biochemical databases. This draft reconstruction, or
automated reconstruction, is thus a collection of genome encoded metabolic functions, some
of which may be falsely included while other ones are missing (e.g., due to missing, wrong,
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or incomplete annotations). Software tools such as Pathway tools30 or metaSHARK31 can be
used for the generation of the draft reconstruction but they do not replace the manual
curation.

Genome annotation (Step 1)—Genomic information is important to unambiguously
define the gene properties in respect to the organism’s genome as well as to allow data
mapping (e.g., gene expression) in subsequent studies. Since the draft reconstruction, and to
some extent the curated reconstruction, relies mainly on the genome annotation, it is
important to download the most recent version available to ensure that updates and
corrections since the genome’s original publication are accounted for. Thus, the quality and
reliability of the genome annotation is crucial to the reconstruction quality. Note that the
manual reconstruction refinement tries to identify those low confidence gene annotations by
retrieving further, experimental evidence for the presence of the gene product and its
metabolic function. The reconstruction assembly and refinement may also require re-
annotation of genes but the procedure is not further discussed here. Please refer to available
work and reviews32–36. Furthermore, in some cases, the genome-sequencing group created
organism specific database (e.g., for Helicobacter pylori37 and E. coli38), which are very
valuable during the reconstruction process. Table 1 lists some of the commonly used
databases for annotations.

Candidate metabolic functions (Step 2)—To obtain the draft reconstruction, one can
automatically retrieve metabolic genes from the genome annotation by using, for example,
key words or gene ontology (GO) catergories39 (see Supplemental methods 1, Figure S1).
Metabolic reactions catalyzed by the identified gene products can be connected with the
draft reconstruction by using the enzyme commission (E.C.) numbers40 and biochemical
reaction databases, e.g., KEGG41 and Brenda42. Note that this first stage aims to obtain a list
of candidates that will not necessarily be complete or comprehensive. Many false-positives
may be present in the list. For example, proteins involved in DNA methylation or rRNA
modification also have E.C. numbers, but their functions are normally not considered in
metabolic reconstructions. Another example involves kinases that may be involved in signal
transfer reactions or annotated as ‘histidine kinase-like’ and thus, no specific function can be
derived from this annotation. A more targeted query for metabolic annotations could be
designed to reduce the number of false-positives but it does not replace manual curation.

Stage 2: Manual reconstruction refinement

In this stage, the entire draft reconstruction will be re-evaluated and refined. For each gene
and reaction entry, two questions will be asked: 1) Should this entry be here? 2) Is there an
entry missing to connect the entry with the remainder of the network?

The second stage of the reconstruction process concentrates on curation and refinement of
the network content. We highlight in this protocol parts that need special attention. In
particular, the metabolic functions and reactions collected in the draft reconstruction are
individually evaluated against organism-specific literature (and expert opinion). This manual
evaluation is important since 1) not all annotations have a high confidence score (e.g., low e-
value), and 2) biochemical databases are mostly organism-unspecific, listing enzymes
activities found in various organisms, not all of which may be present in the target organism
(Figure 2). Including organism-unspecific reactions can affect the predictive behavior of the
resulting models. Furthermore, information about biomass composition, maintenance
parameters, and growth conditions are collected in this stage, which will provide a basis for
the simulations in stage 3 and 4.
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Reconstruction assembly—It is generally recommended to refine and assemble the
curated reconstruction in a pathway by pathway manner, starting from the canonical
pathway. Peripheral pathways and reactions/gene products without clear pathway
assignment are added in a later step. This approach has the advantage that reactions are
evaluated within their metabolomic context and missing gene annotations can be readily
identified, facilitating gap analysis and debugging in stage 4. However, this approach will
also result in identification and/or additional information for reactions that are not in the
pathway currently under investigation. One can choose to only include the main reaction(s)
associated with the pathway that is currently considered. The remaining reactions may be
noted somewhere so that they can be readily retrieved if necessary.

Verification of metabolic function (Step 6)—The draft reconstruction identified a set
of metabolic genes and functions that are thought to be present in the target organism. Due
to potential errors or incomplete in genome annotation, the presence of the annotated gene
and its function should be supported using experimental data or literature.

Use of phylogenetically close organisms (Step 6)—If no organism-specific
information can be found in the literature, information for phylogenetically close organisms
can be used and should be marked as such. If enzyme-associated reactions are included
purely based on gene annotation, they should receive with the lowest confidence score
(Table 2). In the case of problems during subsequent simulations, these low confidence
reactions can be easily identified.

Generic reaction terms (Step 6)—In some cases, it is appropriate to exclude certain
reactions to be entered in the reconstruction. Reactions containing generic terms, such as
protein, DNA, electron acceptor, etc. should not be included as they are not specific enough
and normally serve in databases as space holders until more knowledge and biochemical
evidence becomes available.

Substrate and cofactor usage (Step 6)—Substrate and cofactor specificity of enzymes
may differ between organisms. Organism-unspecific databases, such as KEGG41 and
Brenda42, list all possible transformations of an enzyme that have been identified in any
organism. Additionally, Brenda lists organism-specific information along with relevant
references and kinetic parameters. As a rule of thumb, one can assume that enzymes, which
have only one reaction associated in, for example, KEGG41do not require organism
refinement. However, enzymes that are associated with multiple reactions, with varying
substrates and/or cofactors, require manual refinement. Information about substrate and
cofactor utilization can be obtained from organism-specific biochemical studies and may
also be listed in organism-specific databases (e.g., Ecocyc43). This part of the curation
process can be very time consuming and laborious as it may be difficult to find the
necessary information. Often, this requires intensive literature search. It is important to pay
great attention as false inclusion of substrates or cofactors can greatly change the in silico

behavior (i.e., predictive potential) of the reconstruction.

Charged formula for each metabolite (Step 7 and 8)—In databases, metabolites are
generally listed with their uncharged formula. In contrast, in medium and in cells, many
metabolites are protonated or deprotonated. The protonation state, and thus the charged
formula, depends on the pH of interest. Often metabolic networks are reconstructed
assuming an intracellular pH of 7.2. However, the intracellular pH of bacterial cells may
vary depending on environmental conditions and bacteria. Also, the pH of organelles may be
different, e.g., peroxisome and lysosome. The protonated formula is calculated based on the
pKa value of the functional groups (Figure 3). Software packages, such as Pipeline Pilot and
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pKa DB, can predict pKa values for a given compound (Table 1). Figure 2 shows some
examples of charged molecules and their pKa values.

Reaction stoichiometry (Step 9)—Once the charged formula is obtained for each
metabolite, the reaction stoichiometry can be determined by counting the different elements
on the left- and right-hand side of the reaction. Protons and water may need to be added to
the reaction in this step as some databases and many biochemical textbooks omit these
molecules. Therefore, every element and the charge need to balance on both sides of the
reaction. This step is easy for many central metabolic reactions but may become challenging
for more complex reactions. Note that unbalanced reactions may lead to synthesis of protons
or energy (ATP) out of nothing (see also Figure 4 for examples).

Reaction Directionality (Step 10)—Biochemical data for the target organism are very
important for determination of reaction directionality but may not be available. New
approaches are available, such as the estimation of the standard Gibbs free energy of
formation (ΔfG

o) and of reaction (ΔrG
o) in a biochemical system44, 45. The standard Gibbs

free energy of formation (ΔfG
o) and of reaction (ΔrG

o) can be obtained for most KEGG41

reactions from Web GCM44. Another approach combines thermodynamic information with
network topology and heuristic rules to assign reaction directionality46. Biochemical
textbooks may also report reaction directionalities. Additionally one can use the following
rules of thumb: 1) all reactions involving transfer of phosphate from ATP to an accepter
molecule should be irreversible (with the exception of the ATP synthetase, which is known
to occur in reverse direction); 2) reactions involving quinones are generally irreversible.

Note that assigning the wrong direction to a reaction may have significant impact on the
model’s performance. In general, one should leave a reaction reversible if no information is
available and the aforementioned rules of thumb do not apply. However, models with too
many reversible reactions (too loose constraints) may have so called futile cycle, which
overcome the proton gradient by freely exchanging metabolites and protons across
compartments. Therefore, assigning the correct reversibility to transport reactions is
especially important (see below).

Information for gene and reaction localization (Step 11)—This information may
also be difficult to obtain. The compartments that have been considered in various metabolic
reconstructions are listed in Supplemental methods 1, Table S1. Algorithms such as
PSORT47 and PASUB48 can be used to predict the cellular localization of proteins based on
nucleotide or amino acid sequences. A recently published protocol describes the use of
internet-accessible tools to predict the subcellular location of eukaryotic and prokaryotic
proteins49. High-throughput experimental approaches are available to locate individual
proteins, including immunofluorescence50 and GFP tagging of individual proteins51. In the
absence of appropriate data, proteins should be assumed to reside in the cytosol. Incorrect
assignment of the location of a reaction can lead to additional gaps in the metabolic network
and misrepresentation of the network properties, especially, if intracellular transport
reactions need to be added for which no evidence is available either.

Gene-protein-reaction (GPR) association (Step 13)—The genome annotation often
provides information about the GPR association, i.e., it indicates which gene has what
function (Figure 5). The verification and refinement necessary in this step includes
determining: i) if the functional protein is a heteromeric enzyme complex; ii) if the enzyme
(complex) can carry out more than one reaction and iii) if more than one protein can carry
out the same functions (i.e., isozymes exist). For the first case (i), the genome annotation
often has refined information, e.g.: ‘protein X, catalytic subunit’ - which indicates that there
is at least one more subunit needed for the function of the protein complex. Furthermore,
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KEGG41 lists subunits in some cases. Often, a more comprehensive database and/or
literature search is required. Also, the protein complex composition may differ between
organisms. The second case can also be identified from biochemical databases and/or
literature. Multitasking of enzymes may also differ between organisms. Note that mistakes
or mis-assignments in the GPR associations will change results of in silico gene deletion
studies. However, discrepancies between in silico and in vivo results can be used to refine
knowledge and reconstructions (see Step 79 and 80).

Linear pathways, such as fatty acid oxidation, have often been combined into few lumped
reactions. The genes associated with these reactions are all required, with the exception of
isozymes. Subsequently, the GPR association should reflect the requirement for all genes
within the lumped reaction by using the Boolean rule AND.

Metabolite identifier (Step 14)—Metabolite identifiers are necessary to enable the use
of reconstructions for high-throughput data mapping (e.g., metabolomic or fluxomic data)
and for comparison of network content with other metabolic reconstructions. Therefore,
metabolites and reactions need to be recognizable by other scientists and by software tools.
Each metabolite should be associated with at least one of the following identifiers: ChEBI52,
Kegg41, and PubChem53. In many cases, having one of the identifiers is sufficient to
automatically obtain the other two identifiers. Furthermore, database-independent
representations of metabolites such as SMILES54 and InCHI strings55, 56 are also helpful
when associated with each metabolite. These representations represent the exact chemical
structure of compounds. Additionally, collecting Molfiles (MDL file format,
http://www.symyx.com/), which hold information about the atoms, bonds, connectivity and
coordinates of a molecule, will be very useful, e.g., if you are using online software for pKa

determination (see Step 10 for details).

Confidence scoring system (Step 15)—The confidence score provides a fast way of
assessing the amount of information available for a metabolic function, pathway, or the
entire reconstruction15, 57. Every network reaction is associated with a confidence score
reflecting the information and evidence currently available. The confidence score ranges
from 0 to 4, where 0 is the lowest and 4 is the highest evidence score (Table 2). Note that
multiple information types result in a cumulative confidence score. For example, a
confidence score of 4 may represent physiological and sequence evidence.

Spontaneous reactions (Step 19)—An excerpt of typical spontaneous reactions
included in metabolic reconstructions is listed in Supplemental methods 1, Table S2. Note
that only those spontaneous reactions should be added that have at least one metabolite
connecting them to the rest of the reconstruction. This is to avoid too many dead-end
metabolites caused by spontaneous reactions. In more recent reconstructions, spontaneous
reactions have been associated with an artificial gene (s0001) and protein (S0001). By doing
so, reaction and gene essentiality studies are easier to analyze. Furthermore, this artificial
GPR association makes it easy to distinguish between spontaneous and orphan reactions,
i.e., reactions without known gene.

Intracellular transport reactions (Step 22)—When multi-compartment networks are
constructed, intracellular transport reactions need to be added for all metabolites that are
supposed to “move” between compartments. Inner cellular transport systems are not very
well studied and many of these are not annotated in the genome. Finding experimental data
is often not easy. A general approach should be to minimize the number of intracellular
transport reactions to the ones that really need to be there. If too many transport reactions are
added in a reconstruction, they can cause cycles (futile cycles or Type III pathways). This is
a common problem in reconstructions with multiple compartments. For the directionality of
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intracellular transport reactions, one should consider the nature of the pathway in the
compartment. For instance, if the pathway is biosynthetic, it is very likely that i) the
precursor(s) is only imported, ii) the product(s) of the pathway is only exported from the
compartment, and iii) intermediates are not transported at all. Another issue is the transport
mechanism. Many transport reactions are in symport or antiport with either protons, cations,
or other metabolites. However, not much information is available for intracellular
transporters, but the mechanism used in the model may affect the predictive potential. To
minimize the error and increase consistency, one can adopt the intracellular transport
mechanism from a corresponding transport reaction from extracellular/periplasmic space to
cytoplasm when it is known (and is not an ABC transport reaction); Otherwise (facilitated)
diffusion reaction may be assumed as mechanism. In any case, these reactions should
receive a low confidence score (1 for modeling purpose) to enable easy identification (Table
2) as well as a note and references describing where the mechanism was taken from.

Identification of missing functions—The refinement stage of the reconstruction
process is also an ideal point to identify missing functions in the draft reconstruction. Using
KEGG41 maps, for example, one can analyze the metabolic “environment” of the reaction(s)
under inspections. If the genome annotation of the target organism is present in KEGG41,
one can highlight the genes on the map. This gives an estimate of the “connectivity” of the
reaction with its metabolic surrounding (Supplemental methods 1, Figure S2). Missing
reactions/functions may become evidence for which experimental/annotation evidence
should be collected (see also gap analysis). Creating organism-specific maps, using specific
drawing software, is of great use for identifying missing functions as well as for network
evaluation and debugging.

Biomass composition (Step 24–33)—The biomass reaction accounts for all known
biomass constituents and their fractional contributions to the overall cellular biomass (Table
3). The detailed biomass composition of the target organism needs to be experimentally
determined for cells growing in log phase58–60. However, it may be not possible to obtain a
detailed biomass composition for the target organism. In this case, one can estimate the
relative fraction of the precursors from the genome (e.g., by using the Comprehensive
Microbial Resource (CMR) database, Table 1). Note that we do not suggest taking the RNA
composition from E. coli, rather than estimating it using organism-specific genome data.
One reason is that the number of rRNA operons, which contains rRNA and tRNA
molecules, can differ significantly between organisms. For instance, E. coli has 7 rRNA
operons per genome61, while Mycoplasma capricolum has two62 and Halobacterium

cutirubrum has only one rRNA operon63.

In comparison to other biomass precursors, it is slightly more difficult to determine the lipid
composition of the cell. The contribution fatty acids and phospholipids needs to be
determined from experiments and/or experimental data. Note that compounds, such as
phospholipids, can consist of many different fatty acids (different chain length, saturated and
unsaturated). Available data often reports the average composition of these compounds,
listing the fraction of the fatty acids with different chain length and saturation status. Thus,
the model compounds will not represent all possible combinations but only average
compounds, consistent with the experimental data.

The composition of the biomass reaction plays an important role for in silico gene deletion
experiments. If a biomass precursor is not accounted for in the biomass reactions, the
synthesis reactions may not be required for growth (i.e., it is non-essential). Therefore, the
associated genes may not be essential either. Subsequently, the presence or absence of
metabolites in the biomass reaction may affect the in silico essentiality of reactions and their
associated gene(s). In contrast, the fractional contribution of each precursor plays a minor
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role for gene and reaction essentiality studies. When one wishes to predict the optimal
growth rate accurately, the fractional distribution of each compound plays an important role.
The unit of the biomass reaction is 1/h since all biomass precursor fractions are converted to
mmol/gDW. Therefore, the biomass reaction sums the mole fraction of each precursor
necessary to produce 1 g dry weight of cells.

Growth associated ATP maintenance reaction (GAM) (Step 32)—The GAM
accounts for the energy (in form of ATP) necessary to replicate a cell, including for
macromolecular synthesis (e.g., proteins, DNA, and RNA). The GAM is best determined in
chemostat growth experiments (see also Figure 6). Alternatively, if experimental data is not
available the GAM can be estimated by determining the energy required for macromolecular
synthesis. Therefore, the total amount of macromolecule (Protein, DNA, and RNA) is
determined from databases or other resources. Neidhardt et al.64 lists the amount of
phosphate bonds necessary to synthesize a macromolecule which is then multiplied with the
total amount of phosphate bonds necessary. These phosphate bonds are accounted for by
adding ATP hydrolysis to the biomass reaction (x ATP + x H2O → x ADP + x Pi + x H+,
where x is the number of required phosphate bonds). Note that this estimate will be too low,
as other growth-associated cellular processes also require ATP.

Non-growth associated ATP maintenance reaction (NGAM) (Step 34)—More
recent reconstructions include an ATP hydrolysis reaction (1 ATP + 1 H2O → 1 ADP + 1 Pi

+ 1 H+), which represents non-growth associated ATP requirements of the cell to maintain,
for example, Turgor pressure65. The value for the reaction rate can be estimated from
growth experiments. For example, based on such measurements, the reaction flux rate was
constrained to 8.39 mmol/gDW/h in the E. coli metabolic model65 (Figure 6).

Demand reaction (Step 35)—Demand reactions are unbalanced network reactions that
allow the accumulation of a compound, which otherwise is not allowed in steady-state
models due to mass-balancing requirement (i.e., in steady state the sum of influx equals the
sum of efflux for each metabolite) (Figure 7). Most of the demand reactions will be added in
the gap filling process (Steps 46 to 48). At this stage, demand functions should only be
added for compounds that are known to be produce by the organism, e.g., certain cofactors,
lipopolysaccharide, and antigens, but i) for which information is available about their
fractional distribution to the biomass or ii) which may be only produced in some
environmental conditions. By including a demand reaction for a particular metabolite one
can turn otherwise blocked reactions (cannot carry flux) into active reactions (can carry
flux). In general, most reconstructions contain only few demand reactions. However, during
the debugging and network evaluation process (Stage 4) demand reactions may be
temporarily added to the model to test or verify certain metabolic functions. They will be
removed from the model before versioning.

Sink reactions (Step 36)—Sink reactions are similar to demand reactions but are defined
to be reversible and thus provide the network with metabolites (see Figure 7 for examples).
These sink reactions are of great use for compounds that are produced by non-metabolic
cellular processes but need to be metabolized. Adding too many sink reactions may enable
the model to grow without any resources in the medium. Therefore, sink reactions have to be
added with care. As for demand reactions, sink reactions are mostly used during the
debugging process. They help to identify the origin of a problem (e.g., why a metabolite
cannot be produced). These sink reactions are functionally replaced by filling the identified
gap.
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Growth medium requirements (Step 37)—Information about growth-enabling media
is of great help in the following two stages. Thus, if possible, they should be collected prior
to the conversion and debugging stage. The following information should be collected: 1)
Which metabolites are present? 2) Are there any auxotrophies? 3) Define the composition of
a base medium, e.g., water, protons, ions, etc. 4) Obtain information about rich medium
composition. This data will be crucial for simulations and network evaluations. If uptake or
secretion rates are available, they should also be documented and collected. While this step
is easy for the experimentalist, researchers which cannot grow the target organism have to
identify growth requirements from literature (or genome annotation). In some cases,
research studies describe minimal, defined, or rich medium compositions. In other cases, the
culturing conditions reported in some experimental study must be sufficient.

Stage 3: Conversion from reconstruction to mathematical model

In the third stage, the reconstruction is converted into a mathematical format and condition-
specific models are defined. This stage can be mostly automated. Moreover, systems
boundaries are defined, converting the general reconstruction into a condition-specific
model. Note that the initial model may differ in scope and boundaries to the final model,
which is obtained after multiple iterations of validation and refinement, and which is used to
simulate phenotypic behavior in a prospective manner. Figure 7 illustrates the conversion of
a reconstruction into mathematical format.

Simulation constraints (Step 42)—Using the functions in the COBRA Toolbox, it is
very easy to change reaction constraints but it is sometimes difficult to keep track of all the
changes. In fact, one of the most common reasons for errors in simulation is that reaction
constraints are not correctly set (Table 4). Therefore, it is important to have an expectation
of the results before running a simulation to avoid erroneous conclusions. It is recommended
that the constraints are checked by copying the model reaction abbreviations as well as
lower and upper bounds into a spreadsheet. For most models, this is the easiest way to see
where problems are with the constraints. Similarly, copying calculated solution(s) into a
spreadsheet is very helpful.

Stage 4: Network evaluation = ‘Debugging mode’

The fourth stage in the reconstruction process consists of network verification, evaluation,
and validation. Common error modes in metabolic reconstructions are listed in Table 4. The
metabolic model created in the third step is tested, among other thing, for its ability to
synthesize biomass precursors (such as amino acids, nucleotides triphosphates, and lipids).
This evaluation generally leads to the identification of missing metabolic functions in the
reconstruction, so called network gaps, which are added by repeating partially stage 2 and 3.
This illustrates how the reconstruction process is an iterative procedure. An important issue
is to decide when to stop the iterative process and call a reconstruction “finished”. This
decision is normally based on the definition of the scope and purpose of the reconstruction.

Metabolic dead-end (Step 45)—At this point, the first iteration of manual curated
reconstruction is finished. It is expected that the network contain a significant number of
gaps, i.e., missing reactions and functions. We recommend performing a first gap analysis at
this stage of the reconstruction process as it will ease the subsequent computation and
reduce the number of “bugs” in the model. Comparing dead-end metabolites identified in
this step with the list generated in Stage 2 will accelerate the debugging process.

Candidate reactions for gap filling (Step 46 and 47)—This step will require an
intensive literature search and may include re-annotation of a genome to find candidate
genes and reactions to fill the gap (see Table 1 and supplemental methods 1, Table S3) for
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some example tools). KEGG41 maps, biochemical textbooks, or other available biochemical
maps can be used to identify the metabolic ‘environment’ of the dead-end metabolite. If the
genome annotation of the target organism is present in KEGG41, one can highlight the dead-
end metabolite on the map (Supplemental methods, Figure S2). This context analysis may
give an indication of which enzyme(s) may be able to produce or synthesize the dead-end
metabolite and thus provide a good starting point for literature and/or genome search.

Gap-filling is a tricky business. In some cases, a gap should be filled to ensure that the
model is functional, i.e., biomass precursor synthesis or a certain physiological function can
be simulated. In other cases, filling a gap may enable the model to perform a function that
the organism is not able to do (see Figure 8 for some examples). In general, if no
information supports the existence of a particular gap reaction, the gap should only be filled
if it is required for the model’s functionality. In such cases, the confidence score should be
set to 1, which corresponds to “modeling purpose” only, and allows retrieving these low
confidence reactions readily, if desired. Earlier, we highlighted that enzymes, which are
listed in biochemical databases to catalyze multiple reactions should be included in the
reconstruction with care and that it should be noted if evidence for all of the reactions could
be found. Some of the identified dead-end metabolites will originate from such secondary
reactions of these “multitasking” enzymes. Closing these gaps may affect the predictive
potential of the reconstruction, therefore, only gaps should be filled which are required for
network functionality (e.g., biomass precursor synthesis) or which have supporting data.
Keep in mind that adding new reactions to the network may cause new gaps. Therefore,
when adding reactions you should make sure that all metabolites are connected to the
network.

Stoichiometrically balanced cycles (SBCs) (Step 51–59)—SBC, or Type III
extreme pathways66, are formed by internal network reactions and can carry fluxes despite
closed exchange reactions (closed system). Examples for simple or more complex Type III
pathways in metabolic networks can be found in67, 68. These SBCs are artifacts of metabolic
reconstructions due to insufficient constraints (e.g., thermodynamic constraints and
regulatory constraints). Recent efforts have concentrated on dealing with these SBCs67.
Note that SBCs are not futile cycles. This protocol shows how to identify SBCs and
highlights some possible approaches to eliminate them. However, no systematic, universally
valid approach has been developed yet to eliminate SBCs. For practical purposes, in
simulation one can use the ‘min norm’ option for the LP solver, which will minimize the
sum of the squares of fluxes and thus, will return an optimal solution without netflux around
SBCs.

The following steps will test if the model can or cannot grow. This means that we will test
for qualitative behavior but not focus the correctness of predicted growth rates.

Biomass precursor production (Step 60–66)—The composition of the biomass
reaction was determined in stage 2. It is best to test for model’s ability to produce each
individual biomass component in standard medium condition (e.g., minimal medium M9
supplemented with D-Glucose) (Figure 4). This sequential approach will facilitate the
debugging process and make it easier to find causes of error. It is very likely that these tests
will lead to addition of further reactions by repeating steps listed in the second stage.
Furthermore, this step may lead to the addition of reactions for which no experimental
evidence and candidate genes can be identified. These reactions should be marked with the
tag “modeling purposes” only (confidence score of 1). Be careful with such reactions as too
many of them may change the overall properties of the network (in this or other simulation
conditions). Moreover, the overall performance of the model in standard medium condition
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is determined and, in some cases, corrected. This step needs great care since there may be
many possible ways of filling a gap.

Subsequently, the capability to produce biomass precursors needs to be tested in other
growth media. Therefore, the correctness of the network content is evaluated in respect to all
known growth conditions of the target organism. This includes all known carbon, nitrogen,
sulfur, and phosphor sources. Physiological information is of great value to determine all
growth conditions. For example, Gutnick et al.69 have tested about 600 compounds and have
found that 100 can serve as carbon-or nitrogen source for Salmonella typhimurium. The
model should be able to produce biomass in the majority of these instances. However, not all
known conditions may be reproduced by the model – this is not a problem as it represents a
starting point for experimental studies to identify missing metabolic functions. Nevertheless,
great attention should be given to collecting and documenting those cases and thus enabling
other researchers to pursue them.

By-product secretion (Step 70)—If such information is available, they can be used to
further refine the model. The first question is if the model can produce the secretion
product(s) given a substrate, while the subsequent question could be if a specific ratio of by-
product secretion is correct. Classical biochemical studies often reported measured secretion
products given a certain carbon source (e.g., Schroeder et al.70). This information is very
helpful to evaluate the phenotypic traits of the model with those of the target organism.

Blocked reactions (Step 76–78)—Reactions that cannot carry any flux in any
simulation conditions are called blocked reactions. These reactions are directly or indirectly
associated with dead-end metabolites, which cannot be balanced and give rise to so-called
blocked compounds71. It is good to be aware of those reactions, especially, if one expects
different results in a simulation (e.g., false-negative analysis of single gene deletion). In the
early phase of the debugging stage, the reconstruction can contain many blocked reactions
that one might decide to fill if supporting information is available or if they are required for
the overall function of the network. Targeted use of sink and demand reactions around a
pathway of block reactions will facilitate the identification of the source problem. Other
blocked reactions may remain if the terminal dead-end metabolite is beyond the scope of the
metabolic reconstruction or no information and evidence for filling the gap is available. The
easiest way to determine blocked reactions is by performing flux variability analysis72, 73.

Single gene deletion phenotypes (Step 79 and 80)—Analysis of false positive and
false negative predictions will help to further refine the network content if the information is
available or provides a basis for experimental studies otherwise (Figure 9). Numerous
reconstructions relied on phenotyping data (e.g., biolog data) or gene essentiality data to
improve the network content and thus the predictive potential74, 75.

Known incapabilities (Step 81 and 82)—So far we compared whether the model could
reproduce growth on certain substrate, secrete a particular by-product, etc. In this step, it
should be tested if known incapabilities of the organism can also be reproduced by the
model. For example, Helicobacter pylori is known to be auxotroph for certain amino acids,
subsequently, their lack in the medium should abolish in silico growth76. It is important to
use those “negative” data (incapabilities) as well as to correct for errors. Error cases can be
removed by analyzing the confidence score associated with the reactions along the pathway.
In the example of H. pylori, this would be the biosynthetic reactions leading to amino acid
synthesis76. In a more algorithmic approach, a single reaction deletion study can be carried
out and the results can be analyzed in terms of which deletions disable growth. This smaller
subset of reactions needs to be manually evaluated. Note that the deletion of a single
function may not be sufficient when alternate pathways exist in the network. Missing
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incapabilities may not only be caused by falsely added reactions in the metabolic network,
but may be a consequence of missing regulatory information. Literature may provide the
necessary data.

Comparison of predicted physiological properties with known properties
(Step 83)—The model should be also tested for known capabilities, beside the
aforementioned growth performance and secretion capability. For instance, this test can
include known carbon splits in central metabolic pathways as observed with a recently
published Pseudomonas putida network57. The P/O ratio was investigated for
Methanosarcina barkeri77, Saccharomyces cerevisiae78 and compared to known growth
data. Many more examples exist and the suite of necessary tests depends on the available
data as well as the properties of the network.

Quantitative evaluation of growth rate (Step 84–94)—Too slow growth means that
at least one precursor of the biomass function cannot be synthesized sufficiently. This
implies that the model’s biomass production is either carbon-, nitrogen-, oxygen-, sulfur-, or
phosphate-limited. Since there are generally less active uptake reactions for a particular
element than biomass precursors, it is faster to test if any of the medium components are
growth limiting. If the biomass reaction value increases when the uptake reaction flux is
increased, it means that this compound is limiting. This gives you a hint as to, where in the
network something must be missing or constraining. Furthermore analysis of shadow prices
and reduced costs, which are associated with the LP solution, can be of great help to identify
metabolites or reactions that limit the biomass rate. For example, the P. putida network57

that is not able to grow as fast as reported experimentally in silico when toluene is the
carbon source. In silico analysis suggested that oxygen is rate limiting and that more
oxygen-efficient reactions are missing in the network. Whether this discrepancy can be
resolved by iterative network refinement depends on the specific case, and thus, no general
solution can be proposed. As in the case of P. putida’s oxygen restriction, such error cases
can lead to further experimental investigation that will ultimately increase our biological
insight and the reconstruction’s quality.

When the predicted growth rate is higher than expected, many explanations are possible. 1.
The optimization for growth assumes that microbial cells maximize their growth. However,
as aforementioned, many other objective functions are possible and more appropriate
depending on the experimental setup and growth conditions of the target
organism6, 18–20, 79–82. 2. The GAM, which is part of the biomass reaction, may be
estimated wrongly and needs adjustment. 3. It can indicate that constraints are missing or
incorrect (e.g., NGAM, missing regulation). 4. Falsely included reactions increase growth
rate. Knowledge about the model and the expected flux map is crucial for identifying the
errors. Proton shuttling reactions may be present that circumvent the ATP synthetase (e.g.,
due to a futile cycle). Note that this is only the case in aerobic growth conditions. Such
shuttling reactions may be enabled by many reversible transport reactions. Reactions
associated with such loops can be readily identified (see Step 51–59). Also, looking at the
flux through the reactions of oxidative phosphorylation may indicate if they are used under
the aerobic condition or not. Alternatively, one can investigate if there is one reaction that
enables the model to grow too fast. In this case, a single reaction deletion study will push
you towards the right solution. Another approach could be to investigate the directionality of
network reactions. As indicated earlier, reaction directionality may play a role in the fast
growth. Therefore, improving reaction directionality assignments may be helpful. Make sure
that only those reactions which are known to produce ATP are allowed for ATP synthesis,
while all other reactions are set irreversible (ATP utilization). Similarly, reactions using
quinones as electron acceptor should not run reversibly. This might cause problems and may
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allow circumventing the electron transport chain. These examples are very specific to a
model and problem, and no general rule for corrections can be proposed.

Stage 5: Prospective use

Once the necessary content and desired in silico capability is reached, one can start to use
the reconstruction in a prospective manner, which represents a fifth step in the
reconstruction process that is not addressed here.

MATERIALS

EQUIPMENT

- A standard personal computer that can run Matlab.

- Matlab, version 6.0 or above (Mathwork Inc.), a numerical computation and
visualization software (http://mathworks.com).

- COBRA Toolbox (version 1.3.4 or above) is provided at
http://systemsbiology.ucsd.edu/downloads/COBRAToolbox.

- The SBML Toolbox for Matlab which allows reading models in SBML format
(http://sbml.org/Software/SBMLToolbox).

- A linear programming (LP) solver. Multiple solvers are currently supported by
the COBRA Toolbox:

i. glpk (freeware): http://www.gnu.org/software/glpk/

ii. LINDO (LINDO Systems Inc.) Matlab API (commercial):
http://www.lindo.com

iii. CPLEX (ILOG Inc.) through the Tomlab (Tomlab Optimization Inc.)
optimization environment (commercial, but best LP solver available)
http://tomopt.com/

iv. Mosek (MOSEK ApS) (commercial): http://www.mosek.com

- Extreme pathway software package, X3, provided at
http://systemsbiology.ucsd.edu/downloads/Extreme_Pathway_Analysis.

- Excel (Microsoft Inc., http://office.microsoft.com/en-us/excel/default.aspx) or
similar database programs can be used for collecting reconstruction information.

EQUIPMENT SETUP

COBRA Toolbox—The COBRA Toolbox16 should be downloaded and copied in a local
folder on the user's computer. Extract the .zip file. After opening Matlab, a path should be
set to the local folder, containing the COBRA Toolbox (Matlab → File → Set Path → Add
with Subfolder, choose the corresponding folder and save). All working files (SBML and xls
files) should also be stored in the local folder, in order to allow access to the reconstruction
and models. A full documentation of the COBRA Toolbox can be found in the "doc"
subfolder within the main Toolbox folder, which has all help files as html files. Furthermore,
help for Matlab and COBRA Toolbox functions can be accessed via Matlab's "help" facility
by typing "help function_name" on Matlab command line. See also Becker et al.16.

SBML Toolbox—Comprehensive documentation on SBML, the file format, and model
setup, can be found at the official SBML website (http://sbml.org/documents/, level 2
version 1). The SBML file describing the model has to include at least the following
information: stoichiometry of each reaction, upper/lower bounds of each reaction, and
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objective function coefficients for each reaction. Additionally, gene–reaction associations
can be added to the "Notes" section.

Spreadsheet—The first two reconstruction steps are illustrated in this protocol using
spreadsheets. It is important that the order of the columns in the spreadsheet match the
example given in Supplemental methods 2.

Variables: The imported model from the spreadsheets is contained in a model structure (see
Figure 10 for details on this structure). All functions in the COBRA Toolbox access the
information stored in the model structure. The values computed by the COBRA Toolbox are
fluxes, which represent reaction rates for all model reactions. The units for fluxes used
throughout this protocol are mmol/gDW/h, where gDW is the dry weight of the cell in grams.

Installation: The Matlab software, SBML Toolbox, and one or more of the suggested LP
solvers should be installed following the instructions of the software providers. Note that the
SBML Toolbox and the LP solver also need to be accessible in the Matlab path (see above).
Sample installation instructions for the lp_solve LP solver on Windows can be found in
Becker et al.16. The SBML Toolbox is downloaded and installed. Follow the installation
instructions. Choose ‘libsbml’ in the dialog field. Once installed, open Matlab and type
‘install’. If you get an error with ‘libsbml’ (when opening Matlab again), go to set path and
add the folder ‘libsbml’ with subfolders.

The COBRA Toolbox is initiated by typing in the Matlab command window:

1. changeCobraSolver(solverName); where ‘solverName’ is, e.g., 

2. initCobraToolbox;

 SBML Toolbox and the LP solver should be tested for functionality
following the software provider's instructions before attempting to use the COBRA Toolbox.

X3—X3 is the software package used to determine stoichiometrically unbalanced cycles, or
Type III pathways. X3.exe needs to be placed and extracted in the local folder. The help can
be accessed by opening the DOS command line, changing to the local folder, and typing X3
–h. The extreme pathway tool will be called from Matlab by the COBRA Toolbox.

KEGG—We will illustrate many steps of the protocol using KEGG41 because it is freely
accessible and very helpful for the illustrated pathway-by-pathway reconstruction process.
However, one has to keep in mind three properties of KEGG41: 1. It is NOT organism-
specific data; hence, not all reactions associated with an enzyme may be catalyzed by the
enzyme of the target organism, and 2. KEGG41 may not update the genome annotation of
the target organism on a regular basis; hence, the information may be outdated and need a
“second opinion” from another more recent resource. 3. Not all reactions in the KEGG41

database are mass- and charge-balanced as they omit protons and water molecules although
the KEGG database is continuously updated and improved83, 84.

PROCEDURE

Stage 1: Creating a draft reconstruction

1| Obtain genome annotation. The genome annotation can be obtained from
various sources, including sequencing centers (e.g., TIGR) and the National

Center for Biotechnology Information (NCBI) depository. The following
information should be retrieved for each gene: genome position, coding region,
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strand, locus name, alias, gene function (i.e., current annotation), protein
classification (e.g., Enzyme Commission (E.C.) number40).

 In eukaryotic organisms, information regarding alternate
transcripts must also be collected, since different splice forms may have distinct
functionality or cellular localization.

2| Identify candidate metabolic functions. This step is straight-forward once the
genome annotation has been obtained. Apply different approaches to collect
candidate metabolic functions including searching for E.C. numbers (complete
and partial)40 and for metabolic terms (e.g., dehydrogenase, kinase, etc.)
(Supplemental methods 1, Figure S1). If gene ontology (GO)39 or cluster of
orthologous groups of proteins (COG)85 information is obtained with the
genome annotation, they can be used as well to find metabolic enzymes.

3| Obtain candidate metabolic reactions for these functions (e.g., from
KEGG41). Use comprehensive reaction databases such as KEGG41, Brenda42,
and publically available reconstructions as a resource to combine the gene
functions with metabolic reactions.

4| Assemble draft reconstruction. Collect all candidate metabolic genes and their
potential reactions in a spreadsheet. This spreadsheet will serve as a starting
point for the manual curation process (see Figure 2, and Supplemental data 1,
for an example).

5| Collect experimental data. The manual curation process relies heavily on
experimental, organism-specific information. All possible information needs to
be retrieved. The following steps will include reviewing scientific literature
during which the information listed in Table 5 should be collected.
Alternatively, additional experimental data can be generated by growing and
measuring various metabolic capabilities and properties of the target organism.

Stage 2: Manual reconstruction refinement

6| Determine and verify substrate and cofactor usage. Use primary literature,
and to a lesser extend KEGG41 and Brenda42, to determine and verify substrate
and cofactor specificity of the enzyme in the target organism. As a rule of
thumb, one can assume that enzymes, which have only one reaction associated
in KEGG41, for example, do not require organism refinement.

 Often only biochemical data can reveal the correct cofactor and
substrate as binding sites may not be distinguishable in gene sequence for
related metabolites.

7| Obtain a neutral formula for each metabolite in the reaction. The neutral
formula can be readily obtained from various resources, including KEGG41,
Brenda42, and PubChem86. While PubChem86 is more comprehensive, KEGG41

is certainly the most accessible resource, especially, when KEGG41 is used for
obtaining the reactions.

 Check that the formula is correct (i.e., verify with other databases and
textbooks).

8| Determine the charged formula for each metabolite in the reaction. Retrieve
the molecular structure for each metabolite, if you have not already done so in
Step 7. Determine the charged formulae (e.g., for pH 7.2) based on the pKa

value of the functional groups (Figure 3). This can also be done using software
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packages such as Pipeline Pilot and pKa DB can predict pKa values for a given
compound (Table 1).

9| Calculate reaction stoichiometry. Count every element and the charge on each
side of the equation. On each side, the same number of elements and charge
must be present. Protons and water may need to be added to the reaction. This
step is easy for many central metabolic reactions but may become challenging
for more complex reactions.

10| Determine reaction directionality. Use biochemical data and literature if
available. Alternatively, the standard Gibbs free energy of formation (ΔfG

o) and
of reaction (ΔrG

o) can be calculated based on group contribution theory for most
KEGG41 reactions from Web GCM44, 45. If data reaction of interest is not
available, the following rule of thumb may be applied: 1) reactions involving
transfer of phosphate from ATP to an accepter molecule should be irreversible
(with the exception of the ATP synthetase, which is known to occur in reverse);
2) reactions involving quinones are generally irreversible.

11| Add information for gene and reaction localization. This information may be
difficult to obtain from primary literature. Consider to use algorithms such as
PSORT47 and PASUB48 if no experimental data is available.

 In the absence of appropriate data, proteins should be assumed
to reside in the cytosol.

12| Add subsystem information to reaction. This will be of great help for the
debugging and network evaluation work. The subsystem assignment can be
done either based on biochemical textbooks or KEGG41 maps. Note that a
reaction or an enzyme can appear in multiple KEGG41 maps; therefore, the
subsystem should reflect its primary function.

13| Verify gene-protein-reaction (GPR) association. Determine if the functional
protein is a heteromeric enzyme complex; if the enzyme (complex) can carry out
more than one reaction; and if more than one protein can carry out the same
functions (i.e., isozymes exist). Use KEGG41, organism-specific databases and
primary literature.

 Mistakes or mis-assignments in the GPR associations will
change results of in silico gene deletion studies.

14| Add metabolite identifier. Associate each metabolite with at least one of the
following identifiers: ChEBI52, Kegg41, and PubChem53. In addition, associate
database-independent representations of metabolites such as SMILES54 and
InCHI strings55, 56 with each metabolite.

15| Determine and add confidence score. Use the proposed confidence score
system listed in Table 2.

16| Flag reactions for which information from other organisms was used.

17| Add references and notes based on experimental information. In Steps 6 to
13 many organism-specific, experimental data is collected that needs to be
associated with the reconstruction in the form of references and notes. This
allows other users of the reconstruction to easily retrace the evidence and
supporting material for reaction and gene inclusion.

18| Repeat Steps 6 to 17 for all genes identified in the draft reconstruction. Also
repeat these steps for metabolic functions that were identified from bibliomic
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sources during the reconstruction process and whose genes could not
determined.

19| Add spontaneous reactions to the reconstruction. Use biochemical literature
and databases (KEGG41 and Brenda42) to identify candidate spontaneous
reactions to include. Only include those reactions which have at least one
metabolite present in the reconstruction to minimize the number of dead-end.
Associate the spontaneous reactions with an artificial gene (s0001) and protein
(S0001).

20| Add extracellular and periplasmic transport reactions to the
reconstruction. This addition is done based on experimental data. The rule here
is that for every metabolite that is known to be taken up from the medium or that
is known to be secreted into the medium, a transport reaction should exist (from
extracellular space to periplasm and from periplasm to cytoplasm). Include
transport reactions for metabolites that can diffuse through the membranes.
Small, hydrophilic compounds can diffuse through the outer membrane87.

21| Add exchange reactions to the reconstruction. Exchange reactions need to be
added for all extracellular metabolites. The exchange reactions represent the
systems boundaries (Figure 7).

22| Add intracellular transport reactions to the reconstruction. (For multi-
compartment reconstructions only). Use biochemical and physiological
information, however, finding experimental data is often not easy. Only include
intracellular transport reactions that really need to be there to avoid futile cycles,
or Type III pathways.

23| Draw metabolic map (optional). If appropriate drawing software is available,
the creation of organism-specific maps is very useful for gap analysis, network
evaluation, and data mapping.

Determine biomass composition

24| Determine the chemical composition of the cell, i.e., protein, RNA, DNA,
lipids, Cofactor content (see also supplemental methods 1, Figure S3A). This
information can be retrieved from experimental data or primary literature.

25| Determine the amino acid content either experimentally (option A) or by
estimation (option B).

A. Determination of amino acid content experimentally.

i. Obtain data for each amino acid.

B. Estimation of amino acid composition from genome information.
Use, for example, CMR database (Figure 11).

i. The amino acid content can be determined by selecting
the Genome Tools tab, followed by Analysis Tools, and
finally Codon Usage.

26| Use the molar percentage and molecular weight of each amino acid to calculate
the weight per mol protein. Sum the individual amino acid values to give a total
molecular weight of the protein content. Subsequently, calculate the weight
percent per amino acid. Then multiply the calculated weight percent by the
cellular content percentage of the macromolecule and divide by the molecular
weight of the individual monomer (Figure 11 and Supplemental methods 1,
Figure S3B).
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27| Determine the nucleotide content either experimentally (option A) or by
estimation (option B).

A. Determination of nucleotide content experimentally.

i. Obtain data for each deoxynucleotide triphosphate
(dATP, dCTP, dGTP, dTTP) and each nuvleotide
triphosphate (ATP, CTP, GTP, UTP).

B. Estimation of nucleotide composition from genome information.
Use, for example, CMR database (Figure 11).

i. From the Genome Tools tab (see Step 25), select
Summary Information, followed by DNA Molecule Info.
The number of each dNTP (i.e., dATP, dCTP, dGTP, and
dTTP) present in the genome is listed on the summary
page.

ii. In order to determine the RNA composition of the cell,
use the codon usage that was accessed for the amino acid
content (Step 25). Remember that RNA incorporates
uracil instead of thymine; therefore, the codon usage
needs to be read with every T replaced by a U.

iii. Tabulate the frequency of each RNA monomer.

28| Calculate the fractional distribution of each nucleotide to the biomass
composition by repeating Step 26.

29| Determine the lipid content. Determine the contributions from fatty acids and
phospholipids. Therefore, determine the average molecular weight of a fatty acid
in the cell by incorporating the average fatty acid composition of the cell
(requires experimental data, e.g., from literature). Use the average molecular
weight of each fatty acid and sum the weight contributions of each to determine
the average molecular weight for a fatty acid chain. Use this weight to calculate
the average molecular weight of various lipids within the cell. Perform such
computation by summing the molecular weight of the core structure of the
molecule and the molecular weight of the fatty acids attached to the core
structure based on the average molecular weight of one fatty acid that was
determined above. The molar percentages of the three major phospholipids,
phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin
(CL), may be found in the literature. Thus, determine the phospholipid
contributions to the biomass function (Supplemental methods 1, Figure S3C).

30| Determine the content of the soluble pool (polyamines and vitamins and
cofactors). The soluble pool contains, for example, spermidine, coenzyme A,
and folic acid (see supplemental methods 1, Table S4, for a more comprehensive
list). Use Figure 12 as a template to determine the composition of the soluble
pool for your target organism and to calculate their fractional distributions to the
biomass reaction.

31| Determine the ion content. The calculation of the molar fraction of the ions is
illustrated in Supplemental methods 1, Table S5. It assumes that concentration
data are available or can be estimated for each ion. Information about the ion
content can be obtained from different resources, including primary literature
and databases (e.g., CyberCell Database88). Convert the reported concentration
(ci) for each ion species i, into mM. Add all ion species (total ion concentration,
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ctotal). Calculate the molar fraction (fi) of each ion species i by dividing ci with
ctotal:

32| Determine growth associated maintenance (GAM). Use experimental data to
determine the GAM. Alternatively, part of GAM can be estimated by the energy
required for macromolecular synthesis, e.g., proteins. Figure 13 illustrates how
to calculate the GAM using the total amount (mmol) of macromolecule (Protein,
DNA, and RNA) and known amount of phosphate bonds necessary to synthesize
a macromolecule. Note that this estimate will be too low as other growth-
associated cellular processes also require ATP.

33| Compile and add biomass reaction to the reconstruction. In this step, all
precursors are assembled in one single reaction - the biomass reaction - which is
then added to the reaction list of the reconstruction. Add GAM to biomass
reaction as follows: x ATP + x H2O → x ADP + x Pi + x H+, where x is the
number of required phosphate bond.

 Note that some metabolites might be produced. For instance, in
the E. coli biomass reaction, proton (H+), orthophosphate (Pi) and some other
metabolites are produced65. These metabolites originate mainly from the growth
associated ATP hydrolysis (Step 32).

34| Add non-growth associated ATP maintenance reaction (NGAM). Add the
following reaction to the reconstruction reaction list: 1 ATP + 1 H2O → 1 ADP
+ 1 Pi + 1 H+.

35| Add demand reactions to the reconstruction. Add demand functions for
compounds that are known to be produced by the organism, e.g., certain
cofactors, lipopolysaccharide, and antigens, but i) for which information is
available about their fractional distribution to the biomass or ii) which may be
only produced in some environmental conditions.

36| Add sink reactions to the reconstruction. Sink reactions are of great use for
compounds that are produced by non-metabolic cellular processes but needed to
be metabolized.

 Adding too many sink reactions may enable the model to grow
without any resources in the medium. Therefore, sink reactions have to be added
with care.

37| Determine growth medium requirements. Use experimental data and primary
literature to retrieve essential nutrients and defined medium composition.
Compile a list of growth requirements.

Stage 3: Conversion from reconstruction to mathematical model

38| Initialize the COBRA Toolbox. Install Matlab, the required Toolboxes (SBML
Toolbox and COBRA Toolbox), and a LP solver16. Start Matlab as described in
the installation instruction. Within Matlab, change to the directory where the
COBRA Toolbox was installed. Initiate the COBRA Toolbox by entering the
command  in the Matlab command line. Note that the default LP
solver can be changed by editing the initCobraToolbox script or at any time
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during a Matlab session by using the  function included in the
Toolbox.

A list of frequently used COBRA Toolbox functions is given in Supplemental
methods 1, Table S6. See also the Nature protocol on the COBRA Toolbox for
details on initializing and using the Toolbox16.

39| Load reconstruction into Matlab. Save the reaction list in a spreadsheet with
the same order of columns as shown in supplemental methods 2
(‘RxnFileName’). A second file containing metabolite information needs to be
saved as well (‘MetFileName’). The following COBRA Toolbox function
should be used to read the reconstruction into Matlab:

The loaded metabolic model is stored in a structure named ‘model’ in Matlab.
This structure contains all the information about the reconstruction in the
different fields of the structure. Figure 10 provides a description of the
individual fields and their content.

40| Verify S matrix. Use

to verify the structure of the imported S matrix. This visualization should be
repeated when reactions are added to the reconstruction to ensure that they are
connected to the network.

41| Set objective function. Use the following COBRA Toolbox function to set the
objective function of the model:

The reaction(s) that should be set as the objective function is given by
‘rxnNameList’. It will receive a corresponding coefficient ‘objectiveCoeff’. This
means that a single reaction or a linear combination of multiple reactions can be
chosen as objective function.

 The COBRA Toolbox is set up in a way that the coefficient(s) for
the objective function has to be a positive number. When minimizing, the input
option to the COBRA Toolbox function optimizeCBmodel.m can be set to
‘min’. The default option of the ‘optimizeCBmodel’ function is maximizing
(‘max’) (see Supplemental methods 1, Table S6).

42| Set simulation constraints. Use the following function to set the constraints of
the model:

The list of reactions for which the bounds should be changed is given by
‘rxnNameList’, while an array contains the new boundary reaction rates
(‘value’). The type of bound can be set to lower bound (‘l’), upper bound (‘u’).
Alternatively, both bounds can be changed (‘b’). Use the following command to
lists all constrained reactions that are greater than a minimal value (‘MinInf’)
and smaller than a maximal value (‘MaxInf’):
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Additionally, there is a function available that lists all reactions and their flux
values in a solution:

Stage 4: Network evaluation = ‘Debugging mode’

Test if network is mass- and charge balanced

43| Check for stoichiometrically unbalanced reactions. All, or a subset, of the
network reactions can be given as input (‘RxnList’) along with the model
structure (‘model’):

In case of unbalanced reactions, the function returns a structure containing the
name of the unbalanced reaction and which elements are unbalanced
(‘UnbalancedRxns’).

44| Evaluate stoichiometrically unbalanced reactions. Looking at the reaction
equations and the charged formula for each metabolite will help to balance the
reactions. Normally, there are two common errors causing unbalanced reactions:
Missing proton and/or water or the stoichiometric coefficient of at least one
metabolite is wrong. If it is the latter error, repeat Step 9. If a proton as substrate
is missing, a proton donor may be necessary (e.g., NADH, NADPH). This will
require a literature search to identify a candidate proton donor. If a water
molecule is missing, keep in mind that after adding water to the equation the
proton and oxygen will need to be balanced again.

 A few network reactions are always unbalanced. These reactions
include the biomass reaction, demand, sink, and exchange reactions.

45| Identify metabolic dead-ends. Use

to identify gaps. The function will return a list of all metabolites (‘Gaps’) that
are only produced (‘Product’) or consumed (‘Substrate’) in the network. Copy
this gap list into an excel sheet where information and references can be easily
added for each dead-end metabolite.

46| Identify candidate reactions to fill gaps. Use primary literature and genome
annotation tools to find candidate genes and reactions to fill the gap (see Table 1
and 8 for some example tools). Also, use KEGG41 maps, biochemical textbooks,
or other available biochemical maps to identify the metabolic ‘environment’ of
the dead-end metabolite. If the genome annotation of the target organism is
present in KEGG41, one can highlight the dead-end metabolite on the map. This
may give an indication of which enzyme(s) may be able to produce or
synthesize the dead-end metabolite and thus provide a good starting point for
literature and/or genome search.

47| Add gap reactions to the reconstruction. If experimental and/or annotation
data support gap reactions or they are needed for modeling purposes, the
reaction(s) should be added to the reconstruction by repeating Steps 6 to 17.

 Keep in mind that adding new reactions to the network may cause
new gaps. Therefore, when adding reactions you should make sure that all
metabolites are connected to the network. Repeat Step 45, if necessary.

Thiele and Palsson Page 22

Nat Protoc. Author manuscript; available in PMC 2011 June 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



48| Add notes and references to dead-end metabolites. Each dead-end metabolite
should be documented. The note should distinguish between knowledge and
scope gap for future reference (Figure 8A).

 The more detailed and carefully the gap filling steps are done
(Steps 46 to 48) the easier and faster the debugging process will be.

49| Add missing exchange reactions to model. The gap filling process may have
resulted in the inclusion of further transport reactions. Exchange reactions thus
need to be added to the reconstruction. Repeat Step 21.

50| Set exchange constraints for a simulation condition. Determine an
environmental condition in which most network evaluation tests should be
carried out initially (‘standard condition’). Use

to set the constraints. Reactions whose bounds should be changed are listed in
‘rxnNameList’. The new value for each reaction is contained in the array
‘value’. Finally, the type of constraint has to be defined in the list ‘boundType’.
The possible types are: ‘l’ for lower bound, ‘u’ for upper bound, and ‘b’ if both
reaction bounds should be set to the specified value.

Test for stoichiometrically balanced cycles, or Type III pathways (optional)

51| Test for Type III pathways. Therefore, use the following function:

A list of indices of the exchange reactions in the S matrix (‘ListExch’) has to be
provided to the function. These exchange reactions will be set to zero and then
the flux variability of the closed model is calculated. This function requires that
X3.exe is in the working directory. The function will return if there are Type III
pathways in the model.

52| Analyze output if Type III pathways found. If Type III pathways have been
identified, there are two output files: one file (‘ModelTestTypeIII_myT3.txt’)
has all Type III pathways as a matrix, where the rows are the different pathways
and the columns correspond to the network reaction (in the same order as given
in ‘ModelTestTypeIII_myRxnMet.txt’). Note that the extreme pathway package
converts network reactions into elementary reactions (i.e., irreversible
reactions). A second file (‘ModelTestTypeIII_myT3_Sprs.txt’) contains the
Type III pathways in a sparse format, which is easier to analyze by hand.

53| Identify Type III pathways. Note that reversible reactions form Type III
pathways as well. In general, you are looking for Type III pathways that contain
three or more reactions. It is possible that multiple, complicated Type III
pathways exist in the model. Listing the corresponding reaction formulas or
even drawing a map might be helpful to understand how the reactions form the
loop(s).

54| Analyze directionality of each reaction participating in a Type III pathway. Re-
investigate the thermodynamic information if available (Step 10).

55| Analyze if any reaction participating in a Type III pathway may be falsely
included in the reconstruction by reviewing the supporting evidence.
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56| If none of the reactions or reaction directions can be corrected based on
experimental or thermodynamic information, you can try to iteratively limit the
directionality of the loop reactions. A more elaborate procedure has been
described elsewhere67.

57| Adjust directionality for all reactions identified in Step 54 to 55, note the change
and reasons.

58| After eliminating a reaction direction or a deletion of a reaction, repeat the Type
III pathway analysis. Also, make sure that the removal of directionality or
reaction does not affect growth.

 Keep in mind that such a change to the network is a hypothesis
and may cause problems under different simulation conditions (e.g.,
environmental conditions).

59| Re-compute gap list. . Again, the list ‘Gaps’ contains
remaining gaps in the network. It will be helpful to have an overview of the
remaining dead-end metabolites.

Test if biomass precursors can be produced in standard medium (set in Step
42)

60| Obtain the list of biomass components:

where the biomass reaction index is provided with ‘BiomassNumber’. The
function returns all biomass components (‘BiomassComponent’) and their
corresponding fractions in the array ‘BiomassFraction’. It also prints the results
in the command window.

61| Add demand function for each biomass precursor (‘metaboliteNameList’):

Note that ‘metaboliteNameList’ should be identical to ‘BiomassComponent’,
obtained in Step 60. The new model is returned (‘modelNew’), which has
additional demand reactions for every precursor whose abbreviations are listed
in ‘rxnNames’.

For each biomass component i, perform the following test:

62| Change objective function to the demand function (‘rxnName’):

63| Maximize (‘max’) for new objective function (Demand function)

The structure ‘FBAsolution’ contains the optimal solution vector
(‘FBAsolution.x’) and also the value for the objective reaction
(‘FBAsolution.obj’). If it is Case 1, the model can produce biomass component
(FBAsolution.obj > 0), proceed with the next biomass component. If it is Case

2, the model cannot produce biomass component (FBAsolution.obj = 0). Follow
Steps 64 and 65.

64| Identify reactions that are mainly responsible for synthesizing the biomass
component.

65| For each of these reactions, follow the wire diagram given in Figure 14.
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66| Test if biomass precursors can be produced in other growth media. Repeat
Step 60 to 65.

Test if model can produce known secretion products

67| Collect list of known secretion products and medium conditions.

68| Set the constraints to the desired medium condition (e.g., minimal medium +
carbon source). For changing the constraints use the following function:

Reactions whose bounds should be changed are listed in ‘rxnNameList’. The
new value for each reaction is contained in the array ‘value’. Finally, define the
type of constraint in the list ‘boundType’. The possible types are: ‘l’ for lower
bound, ‘u’ for upper bound, and ‘b’ if both reaction bounds should be set to the
specified value. If the model shall be required to grow in addition to producing
the by-product, set the lower bound (boundType = ‘l’) of the biomass reaction
(‘rxnNameList ‘) to the corresponding value (‘value’).

69| Change the objective function to the exchange reaction of your secretion
product:

The reaction(s) that should be set as the objective function is given by
‘rxnNameList’. They will receive a corresponding coefficient ‘objectiveCoeff’.

70| Maximize (‘max’) for the new objective function (as a secretion is expected to
have a positive flux value, see Figure 7):

If the product can be produced (FBAsolution.obj > 0), proceed with the next by-
product. If the product cannot be produced (FBAsolution.obj = 0), the
corresponding pathway is missing or incomplete and thus gap analysis must be
performed (Steps 45 to 49).

Test if model can produce a certain ratio of two secretion products

71| Set the constraints to the desired medium condition (e.g., minimal medium +
carbon source). For changing the constraints use the following function:

72| Verify that both by-products can be produced independently. Repeat Steps
67–70.

73| Add a row to the S matrix (see Figure 8B for an example of a S matrix) to
couple the by-product secretion reactions:

The two reactions that should be set to a certain ratio are listed in ‘ListOfRxns’.
Their ratio is given in ‘RatioCoeff’ by listing the corresponding coefficients in
this array. For example, 1:2 is given as [12]. If the model is required to growth
while producing the by-product, set the lower bound of the biomass reaction to
the corresponding value.
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74| Change the objective function to the exchange reaction of one of your
secretion products:

75| Maximize for the new objective function (as a secretion is expected to have a
positive flux value, see Figure 7):

If the product can be produced (FBAsolution.obj > 0), the second by-product
can be produced in the defined ratio. If the product cannot be produced
(FBAsolution.obj = 0, or problem is infeasible), i.e., the ratio cannot be
matched. The debugging is less straight-forward in this case as multiple reasons
may apply. One very likely reason is that the organism (or cell) in the
experimental condition under which the ratio was determined did not grow
optimally. However, if you set in Step 71 a lower bound on the growth rate that
may cause the discrepancy (due to competition for, e.g., carbons in by-products
and biomass reaction). You could try to set this bound lower. Alternatively,
some more elaborate tools that are currently not in the COBRA Toolbox can be
used to identify missing genes/reactions (Supplemental methods 1, Table S3).

Check for blocked reactions

76| Change simulation conditions to rich medium or open all exchange
reactions:

Note that the value of the exchange reactions (‘rxnNameList’) does not matter as
this step is testing a qualitative not quantitative property. Therefore, one can set
the value to – infinity (e.g., −1000) and + infinity (e.g., +1000). Since we are
changing upper and lower bound the boundType is ‘b’.

77| Run analysis for blocked reactions. The function returns a list of blocked
reactions (‘BlockedReactions’).

78| Connect reaction to remaining network (optional). Depends on the function
of the blocked reaction. Follow the diagram in Figure 14.

Compute single gene deletion phenotypes

79| Compute single gene deletion phenotypes. Use the following function in the
COBRA Toolbox:

This function allows the use of different methods (‘method’) for optimization,
e.g., FBA, minimization of metabolic adjustment (MOMA)6, or linear
MOMA16. The list of genes that shall be deleted is given by ‘geneList’. If no
gene list is given or the string is empty, all genes in the reconstruction will be
deleted and tested for growth capabilities of the knock-out mutant. The function
calculates the growth rate of the wild-type strain (‘grRateWT’) of each deletion
strain (‘grRateKO’) as well as the relative growth rate ratios (‘grRatio’).

80| Compare with experimental data. The evaluation of inconsistencies will lead
to further reconstruction refinement (Figure 9). Repeat the gap analysis as
necessary (Steps 45 to 49).
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Test for known incapabilities of the organism

81| Set simulation condition. Change objective function. Test for incapability by
maximizing for objective function. If incapable, no solution or zero flux should
be returned.

82| Use single reaction deletion to identify candidate reactions that enable the
model’s capability despite known incapability:

This smaller subset of reactions needs to be manually evaluated. Note that the
deletion of a single function may not be sufficient when alternate pathways exist
in the network.

 Missing incapabilities may not only be caused by falsely added
reactions in the metabolic network, but may be a consequence of missing
regulatory information. Literature may provide the necessary data.

Test if the model can predict the correct growth rate or other quantitative
properties

83| Compare predicted physiological properties with known properties. Use the
suite of functions in the COBRA Toolbox along with experimental data (e.g.,
phenotypic, physiological, genetic data).

Test if the model can grow fast enough

84| Optimize for biomass reaction in different medium conditions and compare with
experimental data. If the model does not grow at all, follow option A. If the
model does not grow fast enough, follow option B.

A. If the model does not grow at all.

I. Check your boundary constraints. If these are correct, it is
possible that the simulated condition does not support
growth (compare with experimental data) or your network
is incomplete. In the latter case, return to Steps 45 to 48 to
identify missing links in the network.

B. If the model does not grow fast enough.

I. Check your boundary constraints. If these are correct, the
possibilities of error modes are quite numerous. It is
advised to verify the constraints applied to the model. Use
the function which lists all constrained reactions that are
greater than a minimal value (‘MinInf’) and smaller than
a maximal value (‘MaxInf’):

85| Test if any of the medium components are growth limiting. Therefore, increase
the uptake rate (‘value’) of one substrate (‘rxnNameList ‘) at a time by using:

 and setting the bound type to
lower bound ‘l’ (‘boundType’).

86| Maximize for biomass. If the biomass reaction value increases, it means that
this compound is limiting. This gives you a hint as to, where in the network
something must be missing.
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87| Determine reduced cost associated with network reactions when optimizing
for objective function. Use

Set primalOnlyFlag to ‘false’ to get the reduced cost returned with the optimal
solution. When maximizing the objective function ‘osenseStr’ will be ‘max’
while minimization is defined by ‘min’.

Find reactions with lowest reduced cost values. Increase flux through those
reactions, if possible, by removing upper bounds. This will lead to increase flux
through the objective reaction.

Test if the model grows too fast

88| Optimize for biomass reaction in different medium conditions and compare with
experimental data.

89| Verify that the model constraints are set as intended. Use the function which
lists all constrained reactions that are greater than a minimal value (‘MinInf’)
and smaller than a maximal value (‘MaxInf’):

Perform one or more of the following test, to identify possible errors in the network:

90| Verify that all fractions and precursors in the biomass reaction are consistent
with current knowledge. This may include that the GAM in the biomass reaction
is not correct.

91| Identify shuttling reactions, e.g., proton shuttling, by repeating Step 51–58. You
are looking for reactions associated with loops.

92| Re-investigate the thermodynamic information associated with the network
reaction, i.e., reaction directionality, supporting evidence, and uncertainty
associated with thermodynamic data.

93| Use single reaction deletion to identify single reactions that enables the model
to grow too fast. Use the following function by setting the ‘method’ to ‘FBA’
and the ‘rxnList’ should contain one or more reactions to be deleted. If all
network reactions shall be tested ‘rxnList’ does not need to be defined:

The function will return the wild-type growth rate (‘grRateW’), the growth rate
of the reaction deleted network (‘grRateKO’), and the relative growth rate ratio
(‘grRatio’). However, it is most likely that multiple reactions contribute to this
observation and thus they are not identified by this method.

94| Reduced cost. The reduced cost analysis can be used to identify those reactions
that can reduce the growth rate (positive cost value). Use:

Set primalOnlyFlag to ‘false’ to get the reduced cost returned with the optimal
solution. When maximizing the objective function ‘osenseStr’ will be ‘max’
while minimization is defined by ‘min’.

 Changes to the model may be condition-specific and should be
well documented.
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 An unconstrained ATPM reaction can change the model
prediction in some cases. For example, if the computed growth rate of the model
is too high, check the flux value through the ATPM in the optimal solution.

Data assembly and Dissemination

95| Print Matlab model content. Make the final reconstruction available to the
research community in at least 2 formats: 1. as a spreadsheet containing all
information collected during the reconstruction process (as shown in
supplemental methods 2); and 2. in SBML format which is a transportable
format of the models and can be used with other modeling tools. To export the
reconstruction from Matlab into Excel format, use:

To export a model in SBML format, use the same function but change the
format to ‘sbml’. The output file name is defined by ‘FileName’.

 Note that the SBML format will not contain all identifiers,
references and notes. It is therefore crucial to distribute the reconstruction in a
different format. Ideally, the reconstruction content is made available through a
web page, such as BiGG (See Table 1), which facilitates queries.

96| Add gap information to the reconstruction output. In Steps 45 to 48
information regarding the remaining and resolved network gaps were collected.
These should be associated with the output of the final reconstruction (e.g., in
Excel format).

TIMING

The timing of the entire reconstruction process depends on the properties of the target
organism (prokaryote vs. eukaryote, genome size), the quality of the genome annotation, and
the availability of experimental data. The timing listed below represents an average and can
be used to plan the different stages. All COBRA Toolbox functions described in this
protocol finish with a couple of seconds to some few hours on a newer personal computer
(Intel Core 2 Duo 6600 2.4 GHz with 4Gb of memory running Windows Vista).

Step 1| through 4| (Stage 1, draft reconstruction): days to a week.

Step 5| (Stage 1, collection of experimental data): ongoing throughout the
reconstruction process

Step 6| through 23| (Stage 2, reconstruction refinement): months to a year (if debugging
and gap filling is done along the way)

Step 24| through 32| (Stage 2, biomass determination): days to weeks, depending on
data availability

Step 34| through 36| (Stage 2, biomass determination): days to a week.

Step 37| (Stage 2, growth requirements): days to weeks, depending on data availability

Step 38| through 42| (Stage 3, conversion): days to a week.

Step 43| through 94| (Stage 4, network evaluation/debugging): week to months.

Step 95| and 96| (Data assembly): days to weeks, depending how much and in which
format data was collected.
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TROUBLESHOOTING

Step 38| See installation instructions of the COBRA Toolbox16 for details on how to
install and setup Matlab, SBML and COBRA Toolbox.

Step 39| The script may fail during the loading of the model from the xls files. Check:

- if headers are correct (supplemental methods 2)

- if all necessary information is available

- if metabolic reaction is written correctly → example; if multiple spaces in
the reaction, the script does not work. Separator for left hand side and right
hand side can be -->, ->, <==>, <=>

- Mixing number and string can cause problems as well. See Ecoli_core.xls
as example on how the input file should look like.

Step 51| Make sure that you are working in the directory were the X3.exe script was
copied to. The .expa file produced by the function must be in the same directory as
X3.exe.

ANTICIPATED RESULTS

This protocol will result in a reconstruction that covers most of the known metabolic
information of the target organism and represents a knowledge database. This reconstruction
can be used as a resource for information (query tool), high-throughput data mapping
(context for content), and a starting point for mathematical models. Table 6 lists a subset of
published reconstructions which were constructed based on the presented protocol.

To facilitate the use of the presented COBRA Toolbox commands (Steps 43 to 94), we listed
examples of their use in the Supplementary Method 1.

Box 1: Glossary
Bibliome – A bibliome is a collection of primary and review literature as well as
textbooks.

Biochemical, Genetic and Genomic (BiGG) knowledge base – A BiGG knowledge
base is a genome-scale reconstruction, which incorporates in a structured manner
genomic, proteomic, biochemical and physiological information of a particular organism
or cell.

Biomass reaction – The biomass reaction lumps all known biomass precursors and their
fractional distribution to a cell into one network reaction.

Blocked reactions – Network reactions that cannot carry any flux in any simulation
condition are called blocked reactions. Generally, these blocked reactions are caused by
missing links in the network.

Constraint-based reconstruction and analysis (COBRA) – COBRA is a modeling
approach in which manually curated, stoichiometric network reconstructions are
constructed. Subsequently, models can be obtained and analyzed by applying equality
and inequality constraints and by computing functional states. Constraints include mass
conservation and thermodynamics (for directionality) as well as constraints reflecting
experimental conditions and regulatory constraints

Dead-end metabolite A dead-end metabolite that is only produced or consumed in the
network.
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Demand reaction – When the consumption reaction(s) of a metabolite is not known or
outside the scope of the reconstruction it can be represented by this unbalanced,
intracellular reaction (e.g., 1 A -->).

Exchange reactions These reactions are unbalanced, extra-organism reactions that
represent the supply to or removal of metabolites from the extra-organism “space”. (See
Box 3).

Extreme pathways (ExPa’s) – ExPa’s are a unique and minimal set of flux vectors
which lie at the edges of the bounded null space. Biochemically meaningful steady-state
solutions can be obtained by nonnegative linear combination of ExPa’s.

Flux-balance analysis (FBA) – FBA is a formalism that defined the metabolic network
as a linear programming optimization problem. The main constraints in FBA are imposed
by the steady state mass conservation of metabolites.

Futile cycles – Stoichiometrically unbalanced cycles, which are associated with energy
consumption.

Gene-protein-reaction (GPR) association – GPR association connect genes, proteins
and reactions in a logical relationship (AND, OR).

Genome-scale model (GEM) – A GEM is derived from a GENRE, by converting it
into a mathematical form (i.e., an in silico model) and by assessing computationally its
phenotypic properties.

Genome-scale network reconstruction (GENRE) – A GENRE formed based on an
organism-specific BiGG knowledge base. A GENRE is a collection biochemical
transformation derived from the genome annotation and the bibliome of the target
organism. A network GENRE is unique to an organism, as its genome is.

Flux variability analysis (FVA) – FVA is a frequently used computational tool for
investigating more global capabilities under a given simulation condition (e.g., network
redundancy). Therefore, every network reaction will be chosen as an objective function
and the minimal and maximal possible flux value through the reaction is determined by
minimizing and maximizing the objective function.

Linear programming (LP) – LP is an optimization technique, in which a linear
objective function is optimized (i.e., minimized or maximized) subject to linear equality
and inequality constraints.

Network gap – A network gap is a missing reaction or function in the network, which
can connect one or more dead-end metabolites with the remainder of the network.

Objective function – An objective function is a network reaction, or a linear
combination of network reactions, for which is optimized in the linear programming
problem.

Sink reaction – When the synthesis reaction(s) of a metabolite is not known or outside
the scope of the reconstruction its discharge can be represented by this unbalanced,
intracellular reaction (e.g., 1 A <-->)

P/O ratio – This ratio represents the number of ATP molecules (P) which are formed per
oxygen atom (O) consumed during respiration.

Reduced cost A parameter associated with linear programming. It can be used to
investigate properties associated with the calculated optimal solution. Each network
reaction has a reduced cost values associated, which represents the amount the objective
value would increase if the flux through the reaction would be increased by one unit.
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Note that by definition reduced costs values that can increase the objective value are
negative numbers.

Type III extreme pathway – These stoichiometric balanced cycles (SBC) are a subset of
ExPa’s that are only composed of intracellular reactions, i.e., that all exchange reactions
(i.e., systems boundaries) have zero flux.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the procedure to iteratively reconstruct metabolic networks
In particular stages 2 to 4 are continuously iterated until model predictions are similar to the
phenotypic characteristics of the target organism and/or all experimental data for
comparison are exhausted.
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Figure 2. Refinement of reconstruction content
The draft reconstruction is converted into a curated reconstruction by re-evaluation of the
content. In particular, the metabolic reactions, obtained from biochemical databases or the
literature, need to be tested for mass- and charge balancing. Many resources omit protons
and water. Furthermore, adjusting metabolites to a particular pH may change their charged
formulae and thus may require correction of the network reaction. For instance, the reaction
catalyzed by the glucokinase which was obtained from KEGG86 is not mass- and charge-
balanced when charged metabolite formula at pH 7.2 is considered. The right hand side
(RHS) is missing an H and the charge is unbalanced. Adding a proton to the RHS balances
both sides of the equation in terms of protons and electrons/charge. Abbreviations: glc – D-
glucose, g6p – D-glucose-6-phosphate, atp – adenosine-triphosphate, adp – adenosine-
diphosphate, H+ - proton. CS – confidence level.
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Figure 3.
List of functional groups, their charge formula and the corresponding pKa.
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Figure 4. Examples of network evaluation
The network evaluation and debugging stage (stage 4) includes various QC/QA tests, some
of which are illustrated in this figure. For instance, mass-and charge-balancing of the
network reaction is crucial to ensure similar properties of the model and the cell or
organism. A standard test for most metabolic reconstructions is to verify that each biomass
precursor, which makes up a new cell, can be produced by the model in different growth
conditions (e.g., minimal medium, different carbon sources, etc.). Other QC/QA tests may
include the capability to secrete certain metabolites given a particular growth condition. At
its end, the models will have similar properties as the cell and error cases can be used to
systematically refine the models and thus the reconstruction content.
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Figure 5. Gene-protein-reaction (GPR) associations
Examples of GPR associations and their representation in Boolean format are shown for E.

coli.
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Figure 6. Growth associated maintentance (GAM) and non-growth associated maintenance
(NGAM)
The best way to obtain accurate information regarding the GAM and NGAM is by plotting
growth data obtained from chemostat growth experiments. GAM and NGAM can be directly
read from the plot.
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Figure 7. Conversion of reconstruction into a condition-specific model
This conversion requires three main steps. 1. The first step involves the mathematical
representation by a stoichiometric matrix, S, of the network reaction list. The columns of S
correspond to the network reactions, while the rows represent the network metabolites. The
substrates in a reaction are defined to have a negative coefficient, while products have a
positive value. The metabolites participating in a reaction have non-zero entry in the S
matrix. 2. Now that the reconstruction is in a computer-readable format, the systems
boundaries need to be defined. In particular, this means that for all metabolites that can be
consumed or secreted by the target cell a so-called exchange reaction needs to be added to
the reconstruction. The exchange reactions can be employed in later simulation to define for
example environmental conditions (e.g., carbon source). 3. As a last step, constraints will be
added to the reconstruction, thus rendering it to a condition-specific model. Mass
conservation is a basic physical law. All steady-states can be thus described by S.v = 0
where v is a vector of reaction fluxes. Adding further constraints such as thermodynamics
(reaction directionality), enzyme capacity or regulation (i.e., presence or absence of an
enzyme) to the model will lead to a smaller, more confined set of feasible steady-states flux
solutions.
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Figure 8. Gap analysis
The gap analysis includes the identification and the tentative filling of network gaps. A.
While many dead-end metabolites that create network gaps can be connected to the network
by re-evaluating genomic and experimental data, some dead-end metabolites will remain in
the refined, curated reconstruction. These dead-end metabolites can be grouped into two
groups, depending on which type of reactions could connect them to the remaining network:
knowledge gaps and scope gaps. While knowledge gaps represent missing biochemical
knowledge for the target organism, the scope gaps include reactions and cellular processes,
which are currently not accounted for in the metabolic reconstruction (e.g., DNA
methylation). B. There are at least two approaches to identify gaps in the reconstruction. In
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the connectivity based approach, one can count the non-zero entries in each row of the S
matrix and identify those metabolites, which are only produced or consumed. In the
example, metabolite D is only produced by reaction v3 and the S matrix contains only one
entry in the row corresponding to metabolite D. A second approach is based on model
functionality: In this approach the models capability to carry flux through every network
reaction is tested. This approach identifies blocked reactions, which are directly or indirectly
associated with one or more dead-end metabolites. In the shown example, one would not
identify metabolite E as a dead-end metabolite with the connectivity based approach as it is
produced and consumed in the network. However, testing for flux through reactions
containing E will show that reaction v3 and b3 cannot carry any flux in this model. C. Two
sample cases are shown which address the question of filling a gap or not.
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Figure 9. in silico gene essentiality study as network evaluation tool
While agreement of gene essentiality between experimental and in silico data is very helpful
to validate the reconstruction content and model setup, analysis of the inconsistencies will
enable discovery of new biological knowledge
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Figure 10. Components of the model structure in Matlab
The reconstruction is imported into Matlab (Step 39). The entire reconstruction content is
stored in a structure array. The screen shot illustrates the main fields contained in the model
structure. The information is stored in subarrays in these fields. Note that the order of the
reactions and metabolites corresponds to the order of columns and rows in the S matrix,
respectively.
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Figure 11. Flow chart to calculate the fractional contribution of a precursor to the biomass
reaction
This approach can be used for amino acids, nucleotide triphosphates (ATP, GTP, CTP,
UTP), and deoxy-nucleotide triphosphates (dATP, dGTP, dCTP, dTTP). The steps are
illustrated for L-alanine (Ala). (A) The fractional contribution of alanine to the proteome is
obtained from experimental data or estimated from genome sequence. (B) To convert the
molar percentage into weight of alanine per mole protein, the molar percentage is multiplied
by the molecular weight of alanine. Note that the polymerization of amino acid leads to the
loss of a water molecule, which needs to be considered when calculating the molecular
weight. Once the weight of amino acid per mole protein is obtained for all amino acids, they
are summed to obtain the weight of protein per mole protein. (C) The weight of alanine per
mole protein is converted into weight alanine per weight protein by multiplying with the
sum of all amino acids’ weight. (D) Finally, the weight of alanine is multiplied by the
cellular content of protein (see Figure 13A) and divided by its molecular weight to obtain
the mole alanine per cell dry weight. Multiplying this molar contribution by a factor of 1000
will result in a final unit of mmol alanine per gram dry weight.
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Figure 12. Determination of the content of soluble pool
Depending on the available information from literature, measurements or database entries
the conversion into mmol/gDW and g/gDW is shown. The value in the purple box
corresponds to the stoichiometric coefficient in the biomass reactions for the precursor. a

Information was obtained from Cybercell Database (CCDB, see Table 1 for the link).75
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Figure 13. Determination of growth associated maintenance (GAM) cost
A. Calculation of growth-associated maintenance cost. B. Sample calculation for E. coli65.
The energy necessary for the synthesis of the macromolecules from the building blocks were
obtained from Table 5 – 6 of Chapter 3 in Neidhardt et al.64. The coefficient cP, cD, cR were
calculating the total energy necessary for the macromolecules divided by the total number of
building blocks (See Neidhardt et al.64).
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Figure 14. Flow chart on debugging network reactions that cannot carry flux
‘rxn ‘ stands for reaction. ‘conf’ stands for confidence score. ‘met’ stands for metabolite.
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Table 1

Data sources frequently used for metabolic reconstructions.

Name Link Comment

Genome Databases

Comprehensive Microbial Resource
(CMR)

http://cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi. The

Genomes OnLine Database (GOLD) http://www.genomesonline.org/

TIGR http://www.tigr.org/db.shtml

NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/sites/entrez

SEED database32 theseed.uchicago.edu/FIG/index.cgi Comparative genomics tool.

Biochemical Databases

KEGG41 www.genome.jp/kegg/

BRENDA42 www.brenda-enzymes.info/

Transport DB89 http://www.membranetransport.org/

PubChem86 http://pubchem.ncbi.nlm.nih.gov/

Transport Classification Database
(TCDB)

http://www.tcdb.org/ TCDB is a curated database of
factual information from over
10,000 published references.

pKa Plugin http://www.chemaxon.com/product/pka.html Free for academic users

pKa DB http://www.acdlabs.com/products/phys_chem_lab/pka/ Commercial software package
to determine acid-base
ionization/dissociation
constant, pKa.

Organism-specific databases

Ecocyc43 http://ecocyc.org/ Escherichia coli database

PyloriGene37 http://genolist.pasteur.fr/PyloriGene Helicobacter pylori database

Gene Cards www.genecards.org/ Human gene database

Protein Localization databases

PSORT47 http://www.psort.org/psortb/ Support vector machine (SVM)
based.

PA-SUB48 http://www.cs.ualberta.ca/~bioinfo/PA/Sub/ Proteome Analyst Specialized
Subcellular Localization Server
(SVM based).

Bio-numbers

CyberCell Database (CCDB)88 http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi

B10NUMB3R5 http://bionumbers.hms.harvard.edu/

Available reconstruction software packages

Simpheny http://www.genomatica.com/technology/technologySuite.html Commercial software

COBRA simulation environments

CellNetAnalyzer90/FluxAnalyzer91 http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html Matlab is required

COBRA Toolbox16 http://systemsbiology.ucsd.edu/Downloads/Cobra_Toolbox Matlab is required

FluxExplorer92

MetaFluxNet93, 94 http://mbel.kaist.ac.kr/lab/mfn/ Stand alone package
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Table 2

Confidence score system that is currently employed for metabolic reconstructions.

Evidence type Confidence score Examples

Biochemical data 4 Direct evidence for gene product function and biochemical reaction: Protein purification,
biochemical assays, experimentally solved protein structures, and comparative gene-expression
studies (e.g., Chhabra et al. 95).

Genetic data 3 Direct and indirect evidence for gene function: Knock–out characterization, knock-in
characterization, and over-expression.

Physiological data 2 Indirect evidence for biochemical reactions based on physiological data: secretion products or
defined medium components serve as evidence for transport and metabolic reactions.

Sequence data 2 Evidence for gene function: Genome annotation, SEED annotation32.

Modeling data 1 No evidence is available but reaction is required for modeling. The included function is a
hypothesis and needs experimental verification. The reaction mechanism may be different from the
included reaction(s).

Not evaluated 0

Nat Protoc. Author manuscript; available in PMC 2011 June 28.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Thiele and Palsson Page 54

Table 3

Chemical composition of cells. Here is listed the cellular content of E. coli taken from Neidhardt et al.64.

Cellular Component Cellular Content %(w/w)

Protein 55%

RNA 20.5%

DNA 3.1%

Lipids 9.1%

LPS 3.4%

Peptidoglycan 2.5%

Glycogen 2.5%

Polyamines 0.4%

Other 3.5%

Total 100.00%
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Table 4

General error modes in metabolic networks.

Error mode Action

Wrong reaction constraints. Check reaction constraints if they are applied correctly.

Missing transport reactions. Add transport reactions.

Missing exchange reactions. Add exchange reactions.

Cofactor cannot be consumed or produced. Follow Figure 13.

Shuttling of compounds across compartment. Adjust reversibility of transport reactions.
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