
I E E E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATR.INSACTIOSS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOX COMMUNIC~LTIOKS, VOL. COM-22, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 5, MAY 1974 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Protocol For Packet Network Intercommunication

VINTON G. CERF AND ROBERT E. ICAHN, MEMBER, IEEE

637 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Absfract-A protocol that supports the sharing of resources that

exist in different packet switching networks is presented. The proto-

col provides for variation in individual network packet sizes, trans-

mission failures, sequencing, flow control, end-to-end error checking,

and the creation and destruction of logical process-to-process con-

nections. Some implementation issues are considered, and problems

such as internetwork routing, accounting, and timeouts are exposed.

INTRODUCTION

I" 1 THE LAST few years considerable effort has been

expended on the design and implementation of packet

switching net\vorl<s [l]-[7],[14],[17]. A principle reason

for developing such not\vorks has been to facilitate the

sharing of computer resources. A packet communication

network includes a transportation mechanism for dcliver-

ing data between computers or between computers and

terminals. To make the data meaningful, computers and

tcrminals share a common protocol (i.c., a set of agreed

upon conventions). Several protocols have already been

developed for this purpose [S]-[12],[16]. However,

these protocols have addressed only the problem of com-

munication on the same nct\vork. I n this paper we prcscnt

a protocol design and philosophy that supports the sharing

of resources that exist in different packct switching net-

works.

After a brief introduction to internetwork protocol

issues, we describe the function of a GATEWAY as an intcr-

face bctwccn nctn-orks and discuss its role in the protocol.

We then consider thc various det,ails of the protocol,

including addressing, formatting, buffering, scquoncing,

floxv control, error control, and so forth. Wc close with a

description of an interprocess communication nxchanism

and show how i t can be supported by the internet\\-ork

protocol.

Even though many different and complex problems

must be solved in the design of an individual packet

switching network, these problems are manifestly com-

pounded when dissimilar networks arc interconnected.

Issues arise which may have no direct counterpart in an

individual network and which strongly influence the way

in which internetwork communication can take place.

A typical packet switching network is composed of a

tions of the IEEE Communications Society for publication without
Paper approved by the Associate Isditor for Data Communica-

oral presentation. Manuscript received Novemtxr 5, 1973. The
research reported in this paper was supported in part hy the Ad-
vanced Research Projects Agency of the Department of Ihfense
under Contract DAHC 15-73-C-0370.

trim1 Engineering, Stanford University, Stanford, Calif.
V. G. Cerf is with the Department of Computer Science and Elec-

It. E. Kahn is with the Information Processing Technology
Office, Advanced Research Projects Agency, Department of De-
fense, Arlington, Va.

set of computer resources called HOSTS, a set of one or

more zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApacket switches, and a collcction of communication

media that interconnect the packct switches. Within

each HOST, wc assume that there exist processes which

must communicate with processes in their own or other

HOSTS. Any current definition of a process will be adequate

for our purposes [13]. These processes are generally the

ultimate source and destination of data in the network.

Typically, within an individual network, there exists a

protocol for communication between any source and

destination process. Only the source and destination

processes require kno\\-ledge of this convention for com-

munication to ta lx place. Processes in two distinct nct-

works would ordinarily use different protocols for this

purpose. The ensemble of packet switches and com-

munication media is called the paclxt 'switching subnet.
Fig. 1 illustrates these idcas.

In a typical packet switching subnet, data of a fixed

maximum size arc accepted from a source HOST, togethcr

with a formatted destination address which is used to

route the data in a store and forward fashion. The transmit

time for this data is usually dependent upon internal

net\\-ork paramctcrs such as communication media dat>a

ratcs, buffering and signaling strategies, routing, propa-

gation delays, etc. In addition, somc mechanism is gen-

erally prcscnt for error handling and determination of

status of the networks components.

Individual pacltct switching nctn;orl<s may differ in

their implementations as follows.

1) Each net\vorlt may have distinct ways of addressing

the rcccivcr, thus requiring that a uniform addressing

schemc be created Tvhich can be undcrstood by each

individual nctworlt.

2) Each nct\vorl< may accept data of different maximum

size, thus requiring nct\vorl<s to deal in units of the

smallest maximum size (which may he impractically

small) or requiring procedures which allow data crossing

a network boundary to bc rcformatted into smaller

picccs.

3) The success or failure of a transmission and its pcr-

formancc in each network is governed by different time

dclays in accepting, delivering, and transporting the data.

This requires careful development of intersetwork timing

procedures to insurc that data can be successfully dc-

livcred through tho various nctworlts.

4) Within each nct\vorl;, communication may be dis-

ruptcd due to unrccoverahlc mStation of the data or

missing data. End-to-cnd restoration proccduros are

desirable to allow complete recovery from these con-

ditions.

636 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRAKSACTIONS ON COMMUNICATIONS. MAY 1074 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/n\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPACKET-SWITCHING SUBNETWORK (-) PS I PS

intact the internal operation of each individual network

This is easily achieved if two networks interconnect a:

if each were a HOST to the other network, but withoul

utilizing or indeed incorporating any elaborate H O S ~

protocol transformations.

It is thus apparent that the interface between network;

must play a central role in the development of any net

work interconnection strategy. We give a special name tc
this interface that performs these functions and call i t :
GATEWAY.

THE GATEWAY NOTION

PACKET-SWiTCHING NETWORK PS = PACKET SWITCH

Fig. 1. Typical packet switching network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5) Status ,information, rout,ing, fault detection, and

isolation are typically different in each network. Thus, to

obtain verification of certain conditions, such as an in-

accessible or dead destination, various kinds of coordi-

nation must be invoked between the communicating net-

works.

It would be errtremely convenient if all the differences

between networks could be economically resolved by

suitable interfacing a t .the network boundaries. For

many of the differences, this objective can be achieved.

However, both economic and technical considerations lead

us to prefer that the interface be as simple and reliable

as possible and deal primarily with passing data between

networks that use different packet switching strategies.

The question now arises as to whether the interface

ought to account for differences in HOST or process level

protocols by transforming the source conventions into the

corresponding destination conventions. We obviously

want to allow convcrsion between packet switching

strategies at the interface, to permit interconnection of

existing and planncd networks. However, the complcxity

and dissimilarity of the Hosl7 or process level protocols

makes it desirable to avoid having to transform between

them at the interface, even if this transformation were

always possiblc. Rather,, compatible HOST and process

levcl protocols must bc developed to achicvc effective

intcrnctxork resourcc sharing. The unacceptable al-

ternative is for every HOST or process to implcmcnt every

protocol (a potentially unbounded number) that may be

needed to cornmunicatc with other networks. We there-

fore assume that a comnmn protocol is to be used between

HOST'S or processes i n diffcrcnt networks and that the

interface bctn-ccn networks should takc as small a role as

possiblc in this protocol.

To allow nc:tworl<s under diffcrcnt ownership to inter-

cunncct, somc accounting will undoubtedly be needed for

traffic that passcs across the interface. In its simplest

tcrnms, this involves an accounting of packets handled by

mch not for n-hich charges arb passcd from net to net

until thc buck finally stops at the user or his rcprescnta-

tivcb. Ihrthcrmorc~, the interconnection must prcserve

In Fig. 2 we illustrate three individual networks labelec

A , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, and C which are joined by GATEWAYS M and N
GATEWAY A// interfaces network A with network B, anc

GATEWAY N interfaces network B to network C. W

assume that an individual network may have more t,ha~

one GATEWAY (e.g., network B) and that there may b
more than one GATEWAY path to use in going between I

pa,ir of networks. The responsibility for properly routin1

data resides in the GATEWAY.

In practice, a GATEWAY between two networks may b

composed of two halves, each associated with it,s ow1

network. It is possible to implement each half of a GATE

WAY so it need only embed internetwork packets in loca

packet format or extract them. We propose that th

GATEWAYS handle internetwork packet,s in a standarc

format, but me are not proposing any particular trans

mission procedure between GATEWAY halves.

Let us now trace the flow of data through the inter

connected networks. We assume a packet of data fron

process X enters network A destined for process Y il

network C. The address of Y is initially specified b:
process X and the address of GATEWAY M is derked fron

the address of process Y. We nmakc no attempt to spccif:

whether the choice of GATEWAY is made by process X
its HOST, or one of thc packet switches in network -4. Thl

packet traverses network A until it reaches GATEWAY iI4

At the GATEWAY, the packet is reformatted to meet thl

requirements of network B, account is taken of this uni

of flow between A and B, and the GATEWAY delivers ths

packet to network B. Again the dcrivation of the nex

GATEWAY address is accomplished based on the address o

the destination Y . In this case, GATEWAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA T is the next one

Thc packet traverscs network R until i t finally rcache

GATEWAY N whcrc i t is formattcd to mcet the requirement

of network C. Account is again taken of this unit of f l o ~

betwccn networks B and C. Upon entering network C

the packet is routed to the Hosr in which process I
resides and there it is delivered to its ultimate desbination

Since the GATEWAY must understand the address of t h

source and destination HOSTS, this information must b

available in a standard format in every packet whicl

arrives at the GATEWAY. .This information is containec

in an internetzoork header prefixed to the packet by t h

source HOST. The packet format, including the internet

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N

W
GATEWAY GATEWAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Three networks interconnected by two GATEWAYS.

(may be null) b- Internetwork Header

LOCAL HEADER SOURCE DESTINATION SEQUENCE NO. BYTE COUNTIFLAG FIELD\ TEXT ICHECKSUM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 3. Internetwork packet format (fields not shown to scale).

worlc header, is illustrated in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 . The source and desti-

nation entries uniforndy and uniquely identify the address

of every HOST in the composite network. Addressing is a

subject of considerable complexity which is discussed

in greater detail in the next section. Thenext two entries in

the header provide a sequence number and a byte count

that may be used to properly sequence the packets upon

delivery to the dest'ination and may also enable the

GATEWAYS to detect fault conditions affecting the packet.

The flag field is used to convey specific control information

and is discussed in the sect.ion on retransmission and

duplicate detection later. The remainder of the packet

consists of text for delivery to the destination and a trailing

check sum used for end-to-end software verification. The

GATEWAY does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot modify the text and merely forwards the

check sum along without computing or recomputing it.

Each nct\r-orlr may need to augment the packet format

before i t can pass t'hrough the individual netu-ork. We

havc indicated a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal header in the figure which is prefixed

to the beginning of the packet. This local header is intro-

duced nlcrely t'o illustrate the concept of embedding an

intcrnetworlc packet in the format of the individual net#-

work through which the packet must pass. It will ob-

viously vary in its exact form from network to network

and may even be unnecessary in some cases. Although not

explicitly indicated in the figure, i t is also possiblc that a

local trailer may be appended to the end of the packet.

Unless all transnlitted packets are legislatively re-

stricted to be small enough to be accepted by cvcry in-

dividual network, the GATEWAY may be forced to split a

packet int,o two or more smaller packets. This action is

called fragmentation and must be done in such a way that

the destination is able to piece togcthcr the fragmcntcd

packet. It is clear that the internct\vorl; header format

imposes a minimum packet size which all networks

must carry (obviously all networks will want to carry

packets larger than this minimum). We believe the long

rangc growth and development of internctworl; com-

munication would be seriously inhibited by specifying

how much larger than the minimum a paclcct sizc can bc,

for tjhc follo\\-ing reasons.

1) If a maximum permitted packet size is specified then

i t bccomos impossible to completely isolate the internal

packet size parameters of one network from the internal

packet size parameters of all other networks.

2) It would be very difficult to increase the maximum

permitted packet size in response to new technology (e.g.,

large memory systems, higher data rate communication

facilities, etc.) since this would require the agreement and

then implen-rentation by all participating networks.

3) Associative addressing and pa.clcet encryption may

require the size of a particular pa'ckct to cxpand during

transit for incorporation of new information.

Provision for fragmentation (regardless of where i t is

performed) permits packet sixc variations to be handled

on an individual network basis without global admin-

istration and also permits HOSTS and processes to be

insulated from changes in the pa,ckct sizes permitted in

any networks through which their data must pass.

If fragmentation must be done, i t appears best to do it

upon entering the nest netu-orlc at the GAPEWAY since only

t.his GATEWAY (and not the other netLvorlcs) must be awarc

of the int.ernal packet size parameters which made the

fragmentation necessary.

If a GATEWAY fragnwnts an incoming packet into t'T1-o or

more paclcet,s, they must eventually be passed along to the

destination HOST as fragnxnts or reassembled for the

HOST. It is conceivable that one might desire the GArrEwAY

to perform the rea.ssenlbly t o simplify the task of the desti-

nation HOST (or process) and/or to take advantage of a

larger packet size. We take the position tJhat GATEWAYS

should not perform this function since GATEWAY re-

assen-rbly can lead to serious buffering problems, potential

deadlocks, the necessity for all fragments of a packet to

pass through the same GArrEwA>r, and increased dclay in

transmission. Furthermore, i t is not sufficient for the

may also have to fragment a paclxt for transmission.

Thus the destination HOST must be prepared to do this

task.

Let us now turn briefly to the somewhat unusual ac-

counting effect 11-hich arises when a packet may be frag-

mented by one or more GATEWAYS. We assume, for

simplicity, that each network initially charges a fixed rate

per paclrct transmitted, regardless of distancc, and if one

network can handle a larger packet size t lml another, i t

charges a proportionally larger price per paclcct. We also

assume tha t a subsequent increase in any network's

packet size docs not result in additional cost per packet to

its users. The charge to a uscr thus remains basically

constant through any net which must fragmcnt a packet.

The unusual cffcct occurs when a paclcct is fragmented into

smaller packets which must individually pass through a

subsequent nctxvork with a larger packet size than the

original unfragmented packet. We expect that most net-

works \vi11 naturally selech packet sizes close to one

anot'her, but in any case, an increase in packet size in one

net, even when it causes fragmentation, will not increase

the cost of transnlission and may actually decrease it. I n

the event that any other packet charging policies (than

GATEWAYS to provide this function since the final GATEWAY

G40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAON COMMUNICATIONS, MAY 1974

the one me suggest) are adopted, differences in cost can be

used as an economic lever toward optimization of indi-

vidual network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate in full

duplex with their correspondent’s using unbounded but

finite length messages. A single character might constitute

the text of a message from a process to a terminal or vice

versa. An entire page of characters might constitute the

text of a message from a file to a process.- A data stream

(e.g., a continuously generated bit string) can be repre-

sented as a sequence of finite length messages.

Within a HOST we assume the existence of .a transmission

control program (TCP) which handles the transmission

and acceptance of messages on behalf of the processes it

serves. The TCP is in turn served by one or more packet

switches connected to the HOST in which the TCP resides.

Processes that want to communicate present messages

to the TCP for transmission, and TCP’R deliver incoming

messages to the appropriate destination processes. We

allow the TCP to break up messages into segments be-

cause the destination may restrict the amount of data that

may arrive, because the local network may limit the

maximum transmission size, or because the TCP may

need to share its resources among many processes con-

currently. Furthermore, me constrain the length of a

segment to an integral number of 8-bit bytes. This uni-

formity is most helpful in simplifying the software needed

with HOST machines of different natural word lengths.

Provision at the process level can be made for padding a

message that is not an integral number of bytes and for

idcntifying which of the arriving bytes of text contain

information of interest t o the receiving process.

Multiplexing and demultiplexing of segments among

processes are fundamental t.asks of the TCP. On trans-

mission, a TCP must multiplex together segments from

different source processes and produce internetwork

packets for delivery to one of it.s serving packet switches.

On reception, a TCP will accept a sequence of packets

from its serving packet switch(es). From this sequence

of arriving packets (generally from different HOSTS),

the TCP must be able to reconstruct and deliver messages

to the proper destination processes.

We assume that every segment is augmented with ad-

ditional information that allows transmitting and re-

ceiving TCP’s t o identify destination and source processes,

respectively. At this point, we must face a major issue.

How should the source TCI’ format segments destined for

the same destination TCP? We consider two cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Case 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: If we take t.he position that segment boundaries

are immaterial and that a byte stream can be formed of

segments destined for the same TCP, then we may gain

improvcd transmission efficiency and resource sharing by

arbitrarily parceling the stream into packets, permitting

many stgments t o share a single internetwork packet

headcr. Howcver, this position results in the need to re-

construct exactly, and in order, the stream of text bytes

produced by the source TCP. At the destination, this

stream must first be parsed into segments and these in

turn must be used to reconstruct messages for delivery to

the appropriate processes.

There are fundamental problems associated with this

strategy due to the possible arrival of packets out of order

at the destination. The most critical problem appears

to be the amount of interference that processes sharing the

same TCP-TCP byte stream may cause among them-

selves. This is especially so at the receiving end. First,

the TCP may be put to some trouble to parse the stream

back into segments and then distribute them to buffers

where messages are reassembled. If it is not readily ap-

parent that all of a segment has arrived (remember, it

may come as several packets), the receiving TCP may

have to suspend parsing temporarily until more packets

have arrived. Second, if a packet is missing, i t may not be

clear whether succeeding segments, even if they are identi-

fiable, can be passed on to the receiving process, unless the

TCP has knowledge of some process level sequencing

scheme. Such knowledge would permit the TCP to decide

whether a succeeding segment could be delivered to its

waiting process. Finding the beginning of a segment when

there are gaps in the byte stream may also be hard.

Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) : Alternatively, we might take the position that

the destination TCP should be able to determine, upon

its arrival and without additional information, for which

process or processes a received packet is intended, and if

so, whether i t should be delivered then.

If the TCP is to determine for which process an arriving

packet is intended, every packet must contain a proces6
header (distinct from the internetwork header) that com-

pletely identifies thc destination process. For simplicity,

we assume that each packet contains text from a single

process which is destined for a single process. Thus each

packet need contain only one process header. To decide

whether the arriving data is deliverable to the destination

process, the TCP must be a.ble to determine whether the

data is in the proper sequence (we can make provision

for the destination process to instruct its TCP to ignore

sequencing, but this is considered a special case). With thc

assumption that each arriving packet contains a process

header, the necessary sequencing and destination procesf

ident)ification is immediately available to the destinatior

TCP.

Both Cases 1) and 2) provide for the demultiplexing

and delivery of segments to destination processes, but

only Case 2) does so without the introduction of potential

interprocess interference. Furthermore, Case 1) introduceE

extra machinery to handle flow control on a HOST-to-

HOST basis! since there must also be some provision for

proccss level control, and this machinery is little used since

the probability is small that within a given HOST, two

processes d l be coincidentally scheduled to send messages

to the same destination HOST. For this reason, we select

the method of Case 2) as a part of the internetwork
transmission QrOtOCOl.

CERF AND KAHN: PACKET NETWORK INTISRCOMMUNICATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ADDRESS FORMATS

The selection of address formats is a problem between

networks because the local network addresses of TCP's

may vary substantially in format and size. A uniform in-

ternetwork TCP address space, understood by each

GATEWAY and TCP, is essential to routing and delivery

of internetwork packets.

Similar troubles are encountered when we deal with

process addressing and, more generally, port addressing.

We .introduce the notion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAports in order to permit a

process to distinguish between multiple message streams.

The port is simply a designator of one such message stream

associated with a process. The means for identifying a port

are generally different in different operating systems, and

therefore, to obtain uniform addressing, a standard port

address format is also required. A port address designates

a full duplex message stream.

TCP ADDRESSING

TCP addressing is intimately bound up in routing

issues, since a HOST or GATEWAY must choose a suitable

destination HOST or GATEWAY for an outgoing int,ernetworl<

packet. Let us postulate the following address format for

the TCP address (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). The choice for network identi-

fication (8 bits) allows up to 256 distinct networks. This

size seems sufficient for the forseeable future. Similarly,

the TCP identifier field permits up to 65 536 distinct

TCP's to be addressed, which seems more than sufficient

for any given network.

As each packet passes through a GATEWAY, the GATEWAY

observes the destination network I D to determine how

to route the packet. If the destination network is con-

nected to the GATEWAY, the lower 16 bits of the TCP address

are used to produce a local TCP address in the destination

network. If the destination network is not connected to the

GATEWAY, the upper S bits are used to select a subsequent

GATEWAY. We malx no effort to specify how each in-

dividual network shall associate the internetwork TCP

identifier with its local TCP address. We also do not rule

out the possibility that the local network understands the

internetwork addressing scheme and thus alleviates the

GATEWAY of the routing responsibility.

PORT ADDRESSING

A receiving TCP is faced with the task of demultiplex-

ing the stream of internetwork packets it receives and

reconstructing the original messages for each destination

process. Each operating system has its own internal

means of identifying processes and ports. We assume that

16 bits are sufficient to serve as intcrnctwork port identifiers.

A sending process nccd not know how the destination

port identification will be used. The destination TCP
will be ablc to parse this number appropriately to find

the proper buffer into which it will place arriving packets.

We permit a large port number field to support processcs

which want to distinguish bctween many different

messages streams concurrently. In reality, we do not care

how the 16 bits are sliced up by the TCP's involved.

641 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16

NETWORK TCP IDENTIFIER

Fig. 4. ',TCP address.

Even though the transmitted port name field is large,

it is still a compact external name for the internal repre-

sentation of the port. The use of short names for port

identifiers is often desirable to reduce transmission over-

head and possibly reduce packet processing time at the

dehnation TCP. Assigning short names to each port,

however, requires an initial negotiation between source

and destination to agree on a suitable short name assign-

ment, the subsequent maintenance of conversion tables

a t both the source and the destination, and a final trans-

action to release the short name. For dynamic assignment

of port names, this negotiation is generally necessary in

any case.

SEGMENT AND PACKET FORMATS

As shown in Fig. 5, messages are broken by the TCP
into segments whose format is shown in more detail in

Fig. 6. The field lengths illustrated are merely suggestive.

The first two fields (source port and destination port in

the figure) have already been discussed in the preceding

section on addressing. The uses of t.he third and fourth

fields (window and acknowledgment in the figure) will

be discussed later in the section on retransmission and

duplicate detection.

We recall from Fig. 3 that an internetwork header con-

tains both a sequence number and a byte count, as well as

a flag field and a check sum. The USCS of these fields are

explained in the following section.

REASSEMBLY AND SEQUENCING

The reconstruction of a message at the receiving TCP

clearly requires' that each internetwork packet carry a

sequence number which is unique to its particular desti-

nation port message stream. The sequence numbers must

be monotonic increasing (or decreasing) since thcy are

used to reorder and reassemble arriving packets into a
mcssage. If the space of sequence numbers were infinite,

we could simply assign the next one to each new packet.

Clearly, this space cannot be infinite, and we will consider

what problems a finite sequence number space will cause

when we discuss retransmission and duplicate detection

in the next section. We propose the following scheme for

performing the sequencing of packets and hence the re-

construction of messages by the destination TCP.

A pair of ports will exchange one or more messages over

a period of time. We could view the sequence of messages

produced by one port as if it were embedded in an in-

finitely long stream of bytes. Each byte of the message has

a unique sequence number which we takc to be its byte

location relativc to the beginning of the stream. When a

In the case of encrypted packets, a preliminary stage of re-
assembly may be required prior to decryption.

643 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON COMMUNICATIOKS, MAY 197' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
byte identification-sequence number

First Message

(SEQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= k)

Fig. 7. Assignment of sequence numbers.

LH = Local Header
IH = InternetwolX Header

CK = Checksum
PH = Process Header

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . Creation of segments and packets from messages.

32 32 16 16 En

Source Port DertinatianIPort Wmdow ACK Text (Field sizes in bits1 ,+JPlOLIIl Hed..LJ
Fig. 6. Segment format (process header and text).

segment is extracted from the message by the source

TCP and formatted for internetwork transmission, the

relative location of the first byte of segment text is used as

the sequence number for the packet. The byte count

field in the internetwork header accounts for all the text

in-the segment (but docs not include the check-sum bytes

or t'he bytes in either internetxork or process header).

We emphasize that the sequence number associated with

a given packet is unique only to the pair of ports that are

communicating (see Fig. 7). Arriving packets are ex-

amined to determine for which port they are intended.

The sequence numbers on each arriving packet are then

used to determine the relative location of the packet text

in the messages under reconstruction. We note that this

allows the exact position of the data in the reconstructed

message to be determined even n-hen pieces 'are still

missing.

Every segment produced by a source TCP is packaged

in a single internetwork packet and a check sum is com-

puted over the text and process header associated with the

segment.

The splitting of messages into segments by the TCP

and the potential splitting of segments into smaller pieces

by GATEWAYS creates the necessity for indic,ating to- the

destination TCP when the end of a segment (ES) has

arrived and when the end of a message (EM) has arrived.

The flag field of the internetwork header is used for this

purpose (see Fig. S) .
The ES flag is set by the source TCP each time it prc-

pares a segment for transmission. If it should happen that

the message is completely contained in the segment, then

the EM flag would also be set. The EM flag is also set on

the last segment of a message, if the message could not

be contained in one segment, These two flags are used

by the destination TCP, respectively, to discover the

presence of a check sum for a given segment and to discover

that a complete message has arrived.

The ES and EM flags in the internetwork header are

known to the GATEWAY and are of special importance when

packets must be split apart for propagation through the

next local network. We illustrate their use with an ex-

ample in Fig. 9.

The original message -4 in Fig. 9 is shown split into two

segments A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAz and formatted' by the TC1' into a pair

16 bits

Y E S M
S

N L

_ . . E E R

I l l I
L End of Message when set = 1

End of Segment when set = 1
Release Use of ProcessIPort when set=l

Synchronize to Packet Sequence Number when set = 1

Fig. 8. Internetwork header flag field.

- 1000 bytes .
100 101 102 . . .

I TEXT OFMESSAGE A

SEQ CT ES EM 500 2

SRC CK TEXT 0 PH 1 500 100 DST

1- internetwork header --+ segment 1
split by
source
TCP . -.

SEQ CT ES EM 500 2

SRC CK TEXT 1 PH 1 500 600 DST

250 2

SRC packet A1 TEXT 0 / PH 0 250 100 DST

~~~ ~ 

split 
by 
GATEWAY 

SRC packet A12 CK TEXT 0 PH 1  250 350 DST 

SRC TEXT packet AZ1 0 PH 0 250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 DST 

SRC packet A22 CK TEXT 1 PH 1 250 850 DST 

Fig. 9. Message splitting  and  packet  splitting. 

of internetwork  packets.  Packets A1 and A2 have the 

ES bits  set,  and A2 has  its En1 bit  set  as well. Whe 

packet A1 passes through the GATEWAY, it is split  into t w  

pieces: packet A 11 for which neither EM nor ES bits a1 

xt ,  and  packet A12 whose ES bit is set. Similarly, packt 

A ,  is split  such that  the first piece, packet A21, has neithe 

bit  set, but packet A22 has  both  bits  set.  The scyuenc 

number field (SEQ) and  the  byte  count field (CT) of eac 

packet is modified by  the GATEWAY to properly identif 

the t'ext  bytes of each  packet.  The GATEWAY need on1 

cxamine the internetmork  header to do  fragmentation. 

The destination TCP, upon  reassembling  segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
will detect  the ES flag and will verify the check sum 

knows is contained  in  packet i z12 .  Upon  rcceipt of pack( 

A z 2 ,  assuming  all other  packets  have  arrived,  the  dest 

nation TCP detects that  it  has reassembled  a complel 

message and can now advise the destination process of  il 

rcceipt,: 



CRRF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND KAHX: PACKET NETWORK INTERCOMMUNICATION 643 

RETRANSMISSION  AND  DUPLICATE 

DETECTION 

No transmission  can  be 100 percent reliable. We 

propose  a timeout  and  positive  acknowledgment mecha- 

nism  which will allow TCP’s  to recover  from packet losses 

from  one HOST to  another.  A  TCP  transmits  packets  and 

waits for replies (acknowledgements) that  are carried in 

the reverse packet  stream. If no  acknowledgment for a 

particular  packet is received, the  TCP will retransmit. 

It is  our  expectation that  the HOST level retransmission 

mechanism,  which is described in  the following para- 

graphs, will not  be called upon  very  often  in  practice. 

Evidence  already exists2 that individual  networks  can  be 

effectively constructed  without  this  feature.  However, the 

inclusion of a HOST retransmission  capability  makes i t  

possible to recover  from  occasional  network  problems and 

allows  a  wide  range of HOST protocol strategies  to be in- 

corporated. We envision it will occasionally be invoked to 

allow HOST accommodation  to  infrequent  overdemands for 

limited  buffer resources, and otherwise not used  much. 

Any  retransmission policy requires  some  means by 

which the receiver can  detect  duplicate  arrivals.  Even if 

an infinite  number of distinct  packet sequence  numbers 

were  available, the receiver mould still  have  the problem 

of knowing how long to remember  previously  received 

packets  in  order to  detect  duplicates.  Matters  are compli- 

cated  by  the  fact  that  only  a  finite  number of distinct 

sequence  numbers are  in  fact  available,  and if they  are 

reused,  the receiver must be  able to distinguish  between 

new  transmissions  and  retransmissions. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwindow strategy, similar to  that used by  the  French 

CYCLADES system  (voie  virtuelle  transmission  mode [SI) 
and  the ARPANET very  distant HOST connection [lS], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is proposed  here  (see Fig. 10). 

Suppose that  the sequence number field in  the  inter- 

network  header  permits  sequence  numbers to range  from 

0 to n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1. We assume that  the sender will not  transmit 

more  than w bytes  without receiving an acknowledgment. 

The w bytes  serve  as  the window (see Fig. 11). Clearly, 

w must  be less than n. The rules for sender  and receiver 

are  as follows. 

Sender: Let L be  the sequence number associated with 

the left  window edge. 

1) The  sender  transmits  bytes  from  segments whose 

text lies between L and  up  to L + w - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 )  On timeout  (duration  unspecified),  the  sender 

retransmits unacknowledged bytes. 

3) On  receipt of acknowledgment consisting of the 

receiver’s current  left window edge, the sender’s,  left 

window  edge is advanced  over  the aclrnowledged bytes 

(advancing  the  right window  edge implicitly). 

Receiver: 
1) Arriving  packets  yhose sequence  numbers coincide 

with  the receiver’s current  left window  edge are acknowl- 

edged  by  sending to  the source the  next  sequence  number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Left Window Edge 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn- 1 a+w- 1 a 

1- window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4 

I< packet sequence number space -1 
Fig. 10. The window  concept. 

Source 
Address 

I Address 
Destination I 

6 

7 

8 

9 

10 

Next Read Position 

End Read  Position 

Timeout 

Fig. 11. Conceptual TCB  format. 

expected.  This effectively acknowledges bytes  in between. 

The  left window  edge is advanced  to  the  next sequence 

number  expected. 

2) Packets  arriving  with  a sequence number  to  the  left 

of the window  edge (or, in  fact,  outside of the window) are 

discarded,  and  the  current  left window  edge  is returned  as 

acknowledgment. 

3) Packets whose  sequence  numbers lie within  the 

receiver’s window but do  not coinicide with  the receiver’s 

left  window  edge are  optionally  kept or  discarded, but 

are  not acknowledged. This is the case when  packets  arrive 

out of order. 

We make some  observations  on  this  strategy.  First, all 

computations  with  sequence  numbers  and  window  edges 

must  be  made modulo n (e.g.,  byte 0 follows byte n - 1). 

Second, w must be less than n/Y;  otherwise  a retrans- 

mission may  appear  to  the receiver to be  a new trans- 

mission in the case that  the receiver has  accepted  a 

window’s worth of incoming  packcts, but  all acknowledg- 

ments  havc been  lost.  Third,  the receiver can  either  save 

or  discard  arriving  packets whose  !sequence numbers  do 

not coincide with  the receiver’s left  window. Thus,  in  the 

simplest  implementation,  the receiver need not  buffer 

more than one  packet  per  message  stream if space is 

critical. Fourth,  multiple  packets  can be aclrnowledgcd 

simultaneously.  Fifth,  the receiver is able  to deliver 

messages t o  processes in  their  proper  order as a  natural 

result of the reassembly  mechanism. Sixth, when  dupli- 

cates  arc  detected,  the acknowledgment  method  used 

naturally works t o  rcsynchronizc  scndcr and receiver. 

Furthermore, if the rcccivcr accepts  packets whose 

sequcnce  numbcrs lie within  the  current window but 

The ARPANET is one such example. required that a retransmission not  appear to be a new transmission. 
Actually n/2  is  merely a convenient number t o  use; it is only 



644 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIOM ON COMMUNICATIONS, MAY 1974 

which are  not coincident with  the  left window edge, an 

acknowledgment consisting of the  current  left window 

edge  would act  as  a  stimulus  to cause  retransmission of the 

unacknowledged  bytes.  Finally, we mention an overlap 

problem  which  results  from  retransmission, packet 

splitting,  and  alternate  routing of packets  through dif- 

ferent GATEWAYS. 

A  600-byte packet  might pass through one GATEWAY 

and  be  broken  into  two  300-byte  packets. On retrans- 

mission, the same  packet  might be  broken  into  three 

200-byte packets going through  a  different GATEWAY. 

Since  each byte  has  a sequence  number, there is no  con- 

fusion at  the receiving TCP. We leave for later  the issue 

of initially  synchronizing the  sender  and receiver left 

window edges and  the window size. 

FLOW  CONTROL 

Every  segment  that  arrives at  the  destination  TCP is 

ultimately acknowledged by  returning  the sequence 

number of the  next  segment which must  be passed to  the 

process (it  may  not  yet  have  arrived). 

Earlier we described the use of a  sequence number 

space  and window to aid  in  duplicate  detection. Ac- 

knowledgments are carried in the process  header  (see 

Fig. 6)  and- along with  them  there is proviqion for a 

“suggested  window”.which the receiver can  use to control 

the flow of data from the sender.  This is intended  to  be 

the  main  component of the process flow control  mecha- 

nism. The receiver is frcc to  vary  the windo& size accord- 

ing to  any algorithm it desires so long  as the window 

size never  exceeds half thc sequence number space.3 

This flow control  mechanism is exceedingly  powerful 

and flexible and does not  suffer from  synchronization 

troubles that  may  be  encountered  by  incremental buffer 

allocation  schemes [9],[lO]. Hoivever, it relies heavily 

on an effective retransmission  strategy.  The receiver can 

reduce the window  even  while packets  are en route from 

the sender  whose  window is presently  larger.  The  net 

effect of this  reduction will be that  the receiver may 

discard  incoming  packets (they  may  be  outside  thc 

window) and  reiterate  thc  current window size along with 

a current window  edge as  acknowledgment.’By  the  same 

token,  the  sender  can,  upon occasion, choose to send  more 

than a  window’s worth of data on the possibility that  the 

reccivcr will expand the window to accept it (of course, the 

sender  must  not send  more, than half the sequence number 

space at  any  time). Normally, we would  expect the sender 

to  abide  by  thc window limitation.  Expansion of the 

window by  the rcccivcr mcrcly  allows  more data  to  be ac- 

cepted. Vor the receiving HOST with  a small amount of 

buffer space,  a  strategy of discarding  all  packets  whose 

scqucncc  numbers  do not coincide with  the  currcnt  left 

cdgc of the window is probably necessary, but  it will incur 

thc cxpcnsc of cxtra  delay  and  overhead for retransmis- 

sion. 

TCP INPUT/OUTPUT HAND,LING 

The  TCP has  a  component  which  handles  input/output 

(I/O) to  and from the  network4  When  a  packet  has  ar- 

rived, i t  validates  the addresses and places the packet 

on  a  queue.  A pool of buffers can  be  set  up t o  handle 

arrivals,  and if all  available  buffers  are used up, succeeding 

arrivals  can  be  discarded since unacknowledged  packet5 

will be  retransmitted. 

On output,  a smaller amount of buffering is needed, 

since process buffers can  hold the  data  to  be  transmitted 

Perhaps double  buffering mill be  adequate. We make nc 

attempt  to specify how the buffering  should be  done 

except to require that  it be  able to service the network 

with  as  little  overhead  as possible. Packet sized buffers 

one or more  ring buffers, or any  other  combination art 

possible candidates. 

When  a  packet  arrives at  the destination TCP,  it  is  placec 

on a queue  which the  TCP services frequently. For ex 

ample, the  TCP could be  interrupted when a queue  place 

ment occurs. The  TCP  then  attempts  to place the packel 

text  into  the proper  place in’  the  appropriate proces! 

receive buffer. If the  packet  terminates  a  segment,  ther 

it can  be  checksummed and acknowledged.  Placemeni 

may fail for several reasons. 

I)  The  destination .process may  not  be. prepared t c  
receive from the.etated source, or the  destination  port 11 

may  not exist. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 )  There  may  be insufficient buffer space for the  text 

3) The beginning  sequence number of the  text ma3 

not coincide with  the  next sequence number  to  be deliverec 

to  the process  (e.g., the  packet  has  arrived  out of order) 

In  the first case, the  TCP should  simply  discard thf 

packet  (thus  far, no  provision  has  been made for err01 

acknowledgments). In  the second and  third cases, thc 

packet sequence number  can  be  inspected  to determinc 

whether  the,packet  text lies within the legitimate ivindow 

for  reception. If it does, the  TCP  may optionally  keep thc 

packet  queued for later processing. If not,  the  TCI 

can discard the  packet. In  either case the  TCP car 

optionally  acknowledge with  the  current  left window  edge 

It may  happen  that  the process receive buffer  is no’ 

present  in  the  active  memory of the HOST, but is  stored or 

secondary  storage. If this is the case, the  TCP can  promp 

the scheduler to’bring  in  the  appropriate  buffer  and thc 

packet  can be queued for latcr processing. 

If therc  are no niore input buffers available to  the  TCI 

for temporary queueing of ‘incoming  packets, and if  thc 

TCI’ cannot  quickly  use  the  arriving data  (c.g.,  a  TCI 

to  TCP message) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, then  thc  packet is discarded.  Assuminf 

a sensibly functioning  system, no other processes than thc 

one for which the  packet was intended should be  affectec 

by  this  discarding. If the  delayed processing  queue grow 

This  component can  serve to  handle  other  protocols whoss 
associated  control  programs are  designated by internetwork  destina 
tion  address. 



CICRF AND KAHB: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPACKET NETWORK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTERCOMMUKICATION 645 

excessively long, any  packets  in i t  can  be safely discarded 

since none of them  have  yet been acknowledged. Con- 

gestion at   the  TCP level is flexibly handled owing to  the 

robust  retransmission and  duplicate  detection  strategy. 

TCP/PROCESS  COMMUNICATION 

In  order to send a message, a process sets  up  its  text 

in a  buffer region in  its own address  space,  inserts the 

requisite  control  information  (described in  the following 

list)  in a transmit control block (TCB)  and passes control 

to  the  TCP.  The exact  form of a TCB is not specified 

here, but  it might take  the form of a passed pointer,  a 

pseudointerrupt, or various  other forms. To receive a 

message in  its  address space,  a process sets  up a receive 

buffer,  inserts the requisite  control  information in a 

receive control block (RCB)  and again passes control 

to  the  TCP. 

In  some  simple  systems, the buffer  space may  in  fact 

be provided by  the  TCP. For simplicity. we assume that 

a  ring  buffer is used by each process, but  other  structures 

(e.g.,  buffer  chaining) are  not ruled out. 

A possible format for the  TCB is shown in Fig. 11. The 

TCB contains  information  necessary to allow the  TCP 

to  extract  and send the process data. Some of the informa- 

tion  might be  implicitly  known, but we are  not concerned 

with  that level of detail. The various fields in  the  TCB 

are described as follows. 

1) Source  Address: This is the full net/HosT/TCP/port 

address of the  transmitter. 

2) Destination Address: This is the full net/HOST/ 

TCP/port of the receiver. 

3) Next  Packet  Sequence Number: This is the sequence 

numbcr  to be used for the next  packet the  TCP will 

transmit,  from  this  port. 

4) Current  Buffer  Size:  This is the present size of the 

process transmit buffer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 )  Next   Wr i te   Pos i t ion :  This is the address of the next 

position in the buffer a t  which the process can place new 

data for transmission. 

6) Next  Read  Posi t ion:  This is the address a t  which the 

TCP should begin reading to build the next  segment for 

output. 

7 )  E n d  Rewd Posi t ion:  This is the address a t  which the 

TCI’ should halt transmission.  Initially 6) and 7) bound 

the message which the process wishes to  transmit. 

S) Number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARetransllzissions/ndnxill1u1tL Retransmis- 
s ions:  These fields enable the  TCP  to Beep track of the 

numbcr of times it  has  retransmitted  the  data  and could be 

omitted if the  TCP is not  to give  up. 

9) Timeout/Flwgs: The  timeout field  specifies the 

delay after which unacltnowledgcd data should be  rctrans- 

mittcd.  The flag ficld is uscd for semaphores and  other 

TCl’/proccss synchronization, status  reporting,  ctc. 

10) Current 9cX:nozulerlg,trent/TYirLdo,w: The  current 

acltnowledgmcnt ficld identifies the first byte of data 

still  unaclmo~vledgcd  by thc  destination  TCP. 

The read  and  write positions move  circularly  around the 

transmit buffer,  with the write  position  always to  the left 

(module the buffer size) of the read position. 

The next  packet  sequence  number  should  be  constrained 

to  be less than or equal to  the  sum of the current ac- 

knowledgment and  the window fields. In  any  event,  the 

next  sequence  number should not exceed the sum of the 

current  acknowledgment and half of the maximum possible 

sequence number  (to avoid confusing the receiver’s 

duplicate  detection  algorithm). A possible buffer layout 

is shown in.Fig. 12. 

The  RCB is substantially the same, except that  the end 

read field is replaced by a  partial  segment check-sum 

register which permits the receiving TCP to compute  and 

remember partial check sums  in  the  event  that a  segment 

arrives  in  several  packets.  When the final packet of the 

segment  arrives, the  TCP can  verify the check sum  and if 

successful, acknowledge the segment. 

CONNECTIONS  AND ASSOCIATIONS 

Much of the thinking  about process-to-process com- 

munication  in  packet  switched  networks  has  been in- 

fluenced by  the ubiquitous  telephone  system.  The HOST 

HOST protocol  for the ARPANET deals explicitly with  the 

opening and closing of simplex connections  between 

processes [9],[10]. Evidence has been presented that 

message-based “connection-free” protocols can  be con- 

structed [12], and  this leads  us to carefully  examine the 

notion of a  connection. 

The  term connection has -a wide variety of meanings. It 
can  refer to a  physical or logical path between  two en- 

tities, i t  can refer to  the flow ovcr the  path,  it  can in, 

ferentially refer to  an action  associated with  the  setting 

up of a path, or it can refer to  an association  between  two 

or more  entities,  with or without  regard  to  any  path 

between  them. In  this paper, we do not explicitly reject 

the  term connection,  since it is in such widespread use, 

and does connote  a  meaningful  relation, but consider 

i t  exclusively in the sense of an association  between  two or 

more  entities  without  regard to a path. To be more precise 

about our intent, we shall define the relationship  between 

t\+o or more  ports that  are in  communication, or are pre- 

pared to communicate to  be  an association. Ports  that 

are associated  with  each  other are called associates. 
It is clear that for any communication to  take place 

between  two processes, one must be  able to address the 

other. The two important cases here  are  that  the  deiti- 

nation  port  may  have a global and unchanging  address or 

that  it  may  be globally  unique but dynamically reassigned. 

While in  either case the sender may  have  to  learn  the 

destination  address,  given the destination  name, only in 

the second instance is there a  requirement  for  learning the 

address  from the destination  (or  its  representative) each 

time an association is desired. Only after  the source has 

learned horn to  address  the  destination  can  an association 

be said to  have occurred. But  this is not  yet sufficient. If 



646 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS  ON  COMMUNICATIONS, MAY 1974 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACurrent Message 

/ 

Sent. Acked Partial Next Message Not Sent Sent. Not Acked 

Current Ack Next Seq. No. iw,ndow Next’Read E n d i e a d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Next Write 
t 

. Transmit Buffet  Sire 

Fig. 12. Transmit buffer layout. 

ordering of delivered messages is also desired, both 

TCP’s  must  maintain sufficient infornmtion to allow 

proper  sequencing.  When this  information is also present 

at  both ends,  t,hen an association is said to  have occurred. 

Note  that we have  not said anything  about a path, nor 

anything which implies that either  end  be  aware of the 

condition of the  other. Only when both  partners  are 

prepared to communicate with’ each other  has  an associ- 

ation occurred, and  it is possible that neither  partner 

may be  able to verify that  an association exists until some 

data flows between them. 

CONNECTION-FREE  PROTOCOLS  WITH 

ASSOCIATIONS 

In  the ARPANET, the interface message processors 

(IMP’S)  do  not  have  to open and close connections from 

source to destination. The reason  for this is that con- 

nections  are, in effect,  always  open, since the addresk of 

every  source and  destination is never5 reassigned. When 

the name  and  the place are  static  and unchanging, it is 

only necessary to label a packet  with  source  and  desti- 

nation to transmit  it  through  the  network. In  our  parlance, 

every source and  destination forms an association. 

In  thc casc of processes, however, we find that  port 

addresses are continually being used and reused. Some 

ever-present processes could be assigned fixed addresses 

which  do not change  (e.g., the logger process). If we sup- 

posed, however, that every TCP had an infinite  supply of 

port addresses so that no old address would ever  be  reused, 

then  any  dynamically  created  port would be assigned the 

next  unused  address. I n  such an environment,  there 

could never  be any confusion by source and  destination 

TCP as to  the intended  recipient or implied source of each 

message, and all ports would bc  associates. 

Unfortunately,  ,TCP’s (or more  properly,  operating 

systems)  tend  not  to  have  an infinite  supply of internal 

port addresses.  Thcse internal addresscs are reassigned 

aft‘er the demise of each  port. Walden [ l Z ]  suggests that 

a set of unique  uniform  external port addresses could 

be supplied by a ccntral  rcgistry. A newly created  port 

could apply  to  the  central  registry for an address which 

the central  registry would guarantee  to  be unused by  any 

HOST system  in  thc network. Each TCY could maintain 

tablcs  matching  external names with  internal ones, and 

use the external ones for communication  with  other 

HOST is connected to  a different IMP. 
5 Unless the IMP is physically  moved to  another  site, or the 

processes. This idea  violates t.he premise that interprocess 

communica,tion  should not require  centralized  control. 

One would have  to extend the central  registry service to 

include  all HOST’S in all the interconnected  networks to 

apply  this idea to our  situation,  and we therefore do not 

att’empt  to  adopt  it. 

Let us consider the  situation from the  standpoint of the 

TCP.  In order to send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor receive data for a given port, 

the  TCP needs to  set  up a TCB  and RCB and initialize 

the window size and left window edge for both. On thc 

receive side, this  task  might even be delayed until the 

first  packet  destined for a given port arrives. By con- 

vention, the first  packet  should  be  marked so that  tht 

receiver will synchronize to  the received sequence  number 

On the send side, the first  request to  transmit coulc 

cause a TCB  to be set  up  with some initial sequenct 

number  (say, zero) and  an assumed window size. Thc 

receiving ‘I’CP can  reject the packet if it wishes anc 

notify the sending TCP of the correct window size via thc 

acknowledgment  mechanism, but only if either 

1) we insist that  the first  packet  be a complete  segment 

2) an acknowledgment  can be  sent for the first packel 

(even if not a segment, as long as the acknowledg 

nlent specifies the next  sequence number  such t h a  

the source also understands  that no bytes  have beer 

accepted). 

It is apparent, therefore, that  the synchronizing of windov 

size and left window edge can  be accomplished withou 

what would ordinarily’be called a connection setup. 

The first  packet referencing a newly created RCE 

sent from  ‘one  associate to  another  can  be  marked  with : 
bit which requests that  the receiver synchronize his lef 

window edge with the sequence  number of the arrivint 

packet  (see SYN bit  in Fig. S) . The  TCP can  examine thc 

source and  destination  port addresses in  the  packet  an( 

in  the  RCB  to decide whether to accept or ignore thc 

request. 

Provision  should  be made for a destination process tc 
specify that  it  is willing to LISTEN to a specific port o 

“any”  port.  This  last idea  permits processes such as thl 

logger process to accept data arriving  from unspecifiec 

sources. This is purely a HOST hat ter ,  however. 

The  initial  packet  may  contain  data which  can be store( 

or discarded by  the destination,  depending  on the avail 

ability of destination  buffer  space at   the time. In  the  othe 

direction,  acknowledgment is returned for  receipt of datr 

which also specifies the receiver’s window size. 

If the receiving TCP should want  to  reject  the  syn 

chronization  request, it merely transmits  an acknowledg 

ment  carrying a release (REL)  bit (see Fig. 8 )  indicatini 

that  the destination  port  address is unknown or inacces 

sible. The sending HOST waits for the acknowledgmen 

(after accepting or rejecting the synchronization  request 

before sending the  nest message or segment.  This rejectiol 

is  quite different  from a negative data acknowledgment 

We do  not  have explicit negative  acknowledgments. If nc 
acknowledgment is returned, the sending HOST ma: 



CICRF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND K A H N : ,  PACKET 1\1<T\VORK  INTICRCOMMUNICATION 

retransmit  without  introducing confusion  if, for example, 

the left  window  edge is not  changed  on the retransmission. 

I Because  messages  may  be  broken up  into  many  packets 

‘for transmission or during  transmission, it will be neces- 

sary t o  ignore the  REL flag except  in  the case that  the 

EM flag is also set’. This could  be  accomplished either 

by t’he TCP or by  the GATEWAY which  could  reset the flag 

Ion all but  the  packet  containing  the  set EM flag (see 

Fig. 9). 

At  the end of an association, the  TCP sends a packet 

with  ES,  EM,  and  REL flags set.  The  packet sequence 

number  scheme will alert  the receiving TCP if there  are 

.;till outstanding  packets  in  transit which have  not  yet 

arrived, so a prcmaturc dissociation cannot occur. 

To assure that  both  TCP’s  are  aware  that  the associ- 

ation  has  ended, wc insist that  the rcceiving TCP respond 

to  the  ItEL  by sending a REL acknowledgment of its 

own. 

Suppose now that a  process  sends a single message to  an 

associate including an  REL along with  the  data. Assuming 

an RCB has been  prepared for the receiving TCP  to 

accept the  data,  the TCI’ will accumulate  the incoming 

packets  until  the one marked  ES,  EM,  BEL  arrives, a t  

which  point a REL is returned  to  the  sender.  The associ- 

ation is thereby  terminated  and  the  appropriate  TCB 

and  RCB  are  destroyed. If the first packet of a  message 

contains a SYN request  bit  and  the  last  packet  contains 

~ES,  EM,  and  REL  bits,  then  data will  flow “one  message 

at  a time.”  This mode is very similar to  the scheme de- 

scribed by  Walden [12], since each  succeeding  message 

can  only  be  accepted at  the receiver after a new LISTEN 

(like  Walden’s RECEIVE) command is issued by  the 

receiving process to  its serving TCP.  Note  that only if the 

acknowledgment is received by  the  sender  can  the associ- 

ation be terminated properly. It has  been  pointed out6 

that  the receiver may  erroneously  accept  duplicate 

transmissions if the  sender does not receive the acknowl- 

edgment.  This  may  happen if the  sender  transmits  a 

duplicate  message  with  the SYN and  REL‘bits  set  and  the 

destination  has  already  destroyed  any  record of the 

previous transmission. One  way of preventing  this  problem 

is to  destroy  the record of the association at  the desti- 

nation  only  after some  known and  suitably chosen timeout. 

However, this implies that a new association with  the 

same  source and  destination  port identifiers could not be 

established until  this  timeout  had expired. This problem 

can  occur  even with sequences of messages whose SYN 
and REL  bits  are  separated  into  different  internetwork 

packets. We recognize that  this problem must  be solved, 

but  do  not go into  further  detail herc. 

Alternatively,  both processes can  send  one  message, 

causing the respective TCP’s t o  allocate RCB/TCB 

pairs at  both ends  which  rendezvous with  the exchanged 

data  and  then  disappear. If the  overhead of creating  and 

dcstroying  RCB’s  and  TCB’s is small, such  a  protocol 

S. Crocker of ARPA/IPT. 

647 

might  be  adequate for most  low-bandwidth uses. This  idea 

might also form the basis for a relatively  secure  trans- 

mission system. If the  communicating processes agree to 

change their  external  port  addresses  in  some  way  known 

only to each  other  (i.c.,  pseudorandom),  then  each 

message  will.appear  to  the  outside  world  as if it  is part of a 

different association message stream.  Even if the  data is 

intercepted  by a third  party,  he will have no way of 

knowing that  the  data should in  fact be  considered part of 

a sequence of messages. 

We  have described the  way  in which processes develop 

associations with  each  other,  thereby  becoming associates 

for possible exchange of data.  These associations need not 

involve the  transmission of data prior to  their  formation 

and indeed  two associates need not be  able t o  determine 

that  they  are associates until  they  attempt  to communi- 

cate. 

CONCLUSIONS 

We  have discussed  some fundamental issues related to 

the interconnection of packet  switching  networks. In  

particular, we have described a simple but  very powerful 

and’ flexible protocol  which  provides for variation  in 

individual  network  packet sizes, transmission failures, 

sequencing, flow control,  and  the  creation  and  destruction 

of process-to-process associations. We  have considered 

some of the  inlplementation issues that arise  and  found 

that  the proposed  protocol is implementable  by HOST’S 

of widely varying  capacity. 

The  next  important  step is to produce  a  detailed speci- 

fication of the protocol so that some initial  experinlents 

with  it  can be  performed. These  experiments  are  needed 

to determine  some of the  operational  parameters  (e.g., 

how often  and how far  out of order  do  packets  actually 

arrive;  what  sort of delay is .there between  segment 

acknowledgments;  what  should  be  retransmission  time- 

outs  be?) of the proposed protocol. 

ACI<NOWLEDGMENT 

The  authors wish t o  thank a number of colleagues for 

helpful comments  during  early discussions of international 

network protocols, especially R.  Metcalfe,  R.  Scantle- 

bury,  D.  Walden,  and H. Zimmerman;  D.  Davies  and L. 
Pouzin who constructively  commented  on  the  fragmenta- 

tion  and  accounting issues; and S. Crocker who  com- 

mented on the  creation  and  destruction of associations. 

REFERENCES 

L. Roberts  and B. Wessler, “Computer  network  development 
to achieve  resource sharing,”  in 1970 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpring  Joint  Computer 
Conf..   AFIPS  Conf. Proc.. vol. 36. Montvale. N. J.: AFIPS 
Press:  1970, p p . ~  545-549. 
L. Pouzin,  “Presentation  and  major design  aspects of the 
CYCLADES  computer  network,” in Proc. 3rd Data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACom- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, -  ~I ~ 

munications  Symp., 1973. 
F. It. E. Dell,  “Features of a proposed  synchronous data net- 
work,”  in Proc. 2nd Syrnp. Problems in the Optimization of Data 
Communications  Systems, 1971, pp. 50-57. 



648 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMMUNICATIONS, M9Y 1972 

[41 

[9 I 

switching  system to allow  remote  access to computer  services 
R.. A. Scantlebury  and  P.  T. Wilkinson, “The design of a 

by  other  computers  and  terminal devices,”  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2nd Symp. 
Problc~ns in the Optimization of Data  Communications  Systems, 

in Computer  Communications:  Impacts  and  Implications, 
11. L. A. Barber,  “The  European  computer  network  project,” 

13.. Despres,  “A  packet  switching  network  wlth  graceful  satu- 
S. Winkler,  Ed.  Washington, D. C., 1972, pp. 192-200. 

Implications, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Winkler, Ed. Washington, D. C., 1972. pp. 
rated  operation,”  in Computer  Communications:  Impacts  and 

R .  E.  Kahn  and W. I<. Crowther,  “Flow  control  in a resource- 
sharing  computer  network,” I E E E  Trans.  Commun., vol. 
COM-20, pp. 539446, June 1972. 
J. F. Chambon,  M.  Elie, J. Le  Bihan,  G.  LeLann,  and H. Zim- 
merman,  “Functional specification of transmission  station  in 
the  CYCLADES  network.  ST-ST  protocol” (in French), 
I.R.I.A.  Tech.  Rep. SCH502.3, May 1973. 

tion  Protocol In  the AItPA  Network,”  in Spring  Joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACom- 
8. Carr, S. Crocker, and V. Cerf,  “HOST-HOST  Communica- 

putcr  Conf., A F I P S  Conf.  Proc., vol. 36. Montvale,  N. J.: 
AFIPS  Press, 1970, pp. 589-597. 
A. McKenzie, “HOST/HOST protocol  for the  AItPA network,” 
in Current  Network Protocols, Network  Information  Cen., 

L. Pouzin,  “Address format In Mitranet,”  NIC 14497, INWG 
Menlo Park,  Calif., NIC 8246, Jan. 1972. 

20, Jan. 1973;< 
D.  Walden,  A  system for  interprocess  communication  in a 
resource  sharing  computer network,” Commun.  Ass.  Comput. 
Mach., vol. 1.5, pp. 221-230, Apr. 1972. 
B.  Lampson,  “A  scheduling  philosophy  for  multiprocessing 
systems,” Commun. Ass. Comput.  Mach., vol. 11, pp. 347-360, 

1971, pp. 160-167. 

345-3.51. 

May 1968. 
F. E. Heart, R. E.  Kahn, S. Ornstein,  W.  Crowther,  and 
D. Walden,  “The  interface message  processor  for the  ARPA 

AFIPS  Conf.  Proc., vol. 36. Montvale,  N. J.: AFIPS Press, 
computer  network,” in Proc. Spring  Joint Computer Conf., 

N. G. Anslow and J. Hanscoff, “Implementation of inter- 
national  data exchange  networks,”  in Computer  Communica- 
tions:  Imnacts  and  Implications. S. Winkler, Ed. Washington, 

1970, pp. -551-567. 

11. c . ,  1672, pp. 181-is4 
A. McKenzie, “HosT/HosT protocol  design  considerations,” 
INWG  Note 16, NIC 13879, Jan. 1973. 
R. E. e h n ,  “Resource-sharing  computer  communication 
networks, Proc. I E E E ,  vol. 60, pp. 1397:1407, Nov. 1972. 
Bolt,  Beranek,  and  Newman,  “Specificatlon  for the intercon- 
nection of a. host  and  an  IMP,”  Bolt  Beranek  and  Newman, 
Inc.,  Cambrldge, Mass., BBN Rep. 1822 (revised), Apr. 1973. 

Vinton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Cerf was  born  in New Haver 
Conn., in 1943. He  did  undergraduate wor 
in  mathematics a t  Stanford  Universit) 
Stanford, Calif., and received the  Ph.D. de 
gree  in computer science from  the  Universit, 
of  California a t  Los Angeles, Los Angeler 
Calif., in 1972. 

He  was  with  IBM  in Los  Angeles  fror 
1965 through 1967 and  consulted  and/c 
worked part  time a t  UCLA from 1967 throug 
1972. Currently  he  is  Assistant Professor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

Computer Science and  Electrical  Engineering a t  Stanford Universit: 
and  consultant  to  Cabledata Associates.  Most of his current researc 
is  supported  by  the Defense  Advanced  Research  Projects  Agency  an 
by  the  National Science Foundation  on  the technology and economic 
of computer  networking. He is  Chairman of IFIP TC6.1, an intel 
national  network working  group  which  is studying  the probleI 
of packet  network  interconnection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* 
Robert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Kahn (”65) was  born  in Brooklyr 
N. Y., on  December 23, 1938. He received t h  
B.E.E.  degree  from the  City College of N e  
York,  New  York,  in 1960, and  the M.P 
and  Ph.D. degrees from  Princeton Universit: 
Princeton, N. J., in 1962 and 1964, r( 
spectively. 

From 1960 to 1962 he  was a Member of t h  
Technical  Staff of Bell  Telephone  Labor: 
tories,  Murray  Hill,  N. J., engaged in traff 
and  communication  studies.  From 1964 t 

1966 he  was a Ford  Postdoctoral Fellow and  an  Assistant Professc 
of Electrical  Engineering at  the  Massachusetts  Institute of T e d  
nology,  Cambridge,  where  he  worked  on  communications  and ir 
formation  theory.  From 1966 to 1972 he  was a Senior  Scientist 2 

Bolt  Beranek  and  Newman,  Inc.,  Cambridge,  Mass.,  where l- 
worked  on computer  communications  network design and techniquc 
for  distributed  computation. Since 1972 he  has been with  the Ac 
vanced  Research  Projects  Agency,  Department of Defensl 
Arlington, Va. 

Dr.  Kahn is a member of Tau  Beta Pi,  Sigma  Xi, E ta  Kappa NI 
the  Institute of Mathematical  Statistics,  and  the  Mathematic: 
Association of America. He was  selected to serve as a Nation: 
Lecturer for the Association for Computing  Machinery  in 1972. 


