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Absfract-A protocol that  supports  the  sharing of resources  that 

exist in different  packet  switching  networks is  presented.  The proto- 

col provides  for  variation  in  individual  network packet  sizes,  trans- 

mission  failures,  sequencing, flow control,  end-to-end  error  checking, 

and  the creation  and  destruction of logical process-to-process  con- 

nections.  Some  implementation  issues  are  considered,  and  problems 

such  as  internetwork  routing, accounting, and  timeouts  are exposed. 

INTRODUCTION 

I" 1 THE LAST few years considerable effort  has  been 

expended on the design and  implementation of packet 

switching net\vorl<s [l]-[7],[14],[17]. A principle reason 

for developing such not\vorks has been to facilitate  the 

sharing of computer resources. A packet communication 

network  includes a transportation mechanism for dcliver- 

ing data between computers or between computers  and 

terminals. To make  the  data meaningful, computers  and 

tcrminals  share a common protocol (i.c.,  a set of agreed 

upon conventions). Several protocols have  already been 

developed for this purpose [S]-[12],[16]. However, 

these protocols have addressed  only the problem of com- 

munication on the same nct\vork. I n  this  paper we prcscnt 

a protocol design and philosophy that  supports  the sharing 

of resources that exist  in  different packct switching net- 

works. 

After  a brief introduction to internetwork protocol 

issues, we describe the  function of a GATEWAY as  an  intcr- 

face bctwccn nctn-orks and discuss its role in  the protocol. 

We then consider thc various det,ails of the protocol, 

including  addressing, formatting, buffering, scquoncing, 

floxv control, error control, and so forth. Wc close with a 

description of an interprocess  communication nxchanism 

and show how i t  can be supported  by  the  internet\\-ork 

protocol. 

Even  though  many different and complex problems 

must be solved in  the design of an individual  packet 

switching  network, these problems are manifestly com- 

pounded  when dissimilar networks arc interconnected. 

Issues arise which may  have no direct  counterpart  in  an 

individual  network and which strongly influence the way 

in which internetwork communication can take place. 

A typical  packet switching network is composed of a 
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set of computer resources called HOSTS, a set of one or 

more zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApacket  switches, and a collcction of communication 

media that  interconnect  the packct switches. Within 

each HOST, wc assume that  there exist processes which 

must communicate with processes in  their own or other 

HOSTS. Any current definition of a process  will be  adequate 

for our purposes [13]. These processes are generally the 

ultimate source and  destination of data  in  the network. 

Typically, within an individual network,  there exists a 

protocol for communication  between any source and 

destination process. Only the source and  destination 

processes require kno\\-ledge of this convention for com- 

munication to   ta lx  place. Processes in two distinct  nct- 

works would ordinarily use different protocols for  this 

purpose. The ensemble of packet  switches and com- 

munication  media is called the paclxt  'switching  subnet. 
Fig. 1 illustrates these idcas. 

In a typical packet  switching subnet,  data of a fixed 

maximum size arc accepted  from  a source HOST, togethcr 

with a formatted  destination  address which is used to 

route  the  data  in a store and  forward fashion. The  transmit 

time for this  data is usually dependent upon internal 

net\\-ork  paramctcrs such as communication  media dat>a 

ratcs, buffering and signaling strategies,  routing, propa- 

gation delays, etc. In addition, somc mechanism is gen- 

erally  prcscnt for error  handling and  determination of 

status of the  networks components. 

Individual pacltct switching nctn;orl<s may  differ  in 

their  implementations  as follows. 

1) Each net\vorlt may  have  distinct ways of addressing 

the rcccivcr, thus requiring that a uniform  addressing 

schemc be created Tvhich can be undcrstood by each 

individual  nctworlt. 

2) Each nct\vorl< may accept data of different  maximum 

size, thus requiring nct\vorl<s to deal in  units of the 

smallest  maximum size (which may he impractically 

small) or requiring procedures which allow data crossing 

a network boundary  to  bc  rcformatted  into smaller 

picccs. 

3 )  The success or failure of a transmission and  its pcr- 

formancc in each  network is governed by different time 

dclays in accepting, delivering, and  transporting the data. 

This requires careful  development of intersetwork  timing 

procedures to  insurc that  data  can be successfully dc- 

livcred through  tho  various nctworlts. 

4) Within each nct\vorl;, communication may be dis- 

ruptcd  due  to unrccoverahlc mStation of the  data or 

missing data. End-to-cnd restoration proccduros are 

desirable to allow complete recovery from these con- 

ditions. 
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intact  the  internal  operation of each  individual  network 

This is easily achieved if two  networks  interconnect a: 

if  each were a HOST to  the  other network, but withoul 

utilizing  or  indeed  incorporating any  elaborate H O S ~  

protocol  transformations. 

It is thus  apparent  that  the  interface between  network; 

must  play a  central role in the development of any  net 

work  interconnection strategy.  We give a special name tc 
this  interface  that performs  these  functions and call i t  : 
GATEWAY. 

THE GATEWAY  NOTION 

PACKET-SWiTCHING  NETWORK PS = PACKET  SWITCH 

Fig. 1. Typical  packet switching  network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 )  Status ,information,  rout,ing,  fault  detection,  and 

isolation are  typically different in  each  network.  Thus, to  

obtain verification of certain  conditions,  such  as an in- 

accessible or  dead  destination,  various  kinds of coordi- 

nation  must  be invoked  between the communicating  net- 

works. 

It would be errtremely convenient if all the differences 

between  networks could be economically resolved by 

suitable  interfacing a t  .the  network  boundaries.  For 

many of the differences, this  objective  can  be achieved. 

However, both economic and technical  considerations  lead 

us to prefer that  the interface  be  as simple and reliable 

as possible and deal  primarily with passing data between 

networks that use different  packet  switching  strategies. 

The question now arises as  to whether the interface 

ought  to  account for differences in HOST or process level 

protocols by  transforming  the source  conventions into  the 

corresponding  destination  conventions.  We  obviously 

want  to allow convcrsion between  packet  switching 

strategies at   the interface, to permit  interconnection of 

existing and planncd  networks.  However, the complcxity 

and dissimilarity of the Hosl7 or process level protocols 

makes it desirable to avoid  having to transform  between 

them  at  the interface,  even if this  transformation were 

always possiblc. Rather,,  compatible HOST and process 

levcl protocols must bc developed to  achicvc  effective 

intcrnctxork resourcc sharing. The unacceptable al- 

ternative is for  every HOST or process to  implcmcnt  every 

protocol (a potentially  unbounded  number) that  may  be 

needed to cornmunicatc with  other networks.  We  there- 

fore  assume that a comnmn protocol is to  be used between 

HOST'S or processes i n  diffcrcnt  networks and  that  the 

interface bctn-ccn networks  should takc  as small  a role as 

possiblc in  this protocol. 

To allow nc:tworl<s under  diffcrcnt  ownership to inter- 

cunncct, somc accounting will undoubtedly  be needed for 

traffic that passcs across the interface. In  its simplest 

tcrnms, this involves an accounting of packets  handled  by 

mch not for n-hich charges  arb passcd from net  to  net 

until thc buck finally stops at  the user or his rcprescnta- 

tivcb. Ihrthcrmorc~,  the interconnection must prcserve 

In  Fig. 2 we illustrate  three  individual  networks labelec 

A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, and C which are joined by GATEWAYS M and N 
GATEWAY A// interfaces  network A with  network B, anc 

GATEWAY N interfaces  network B to network C. W 

assume that  an individual  network  may  have  more t,ha~ 

one GATEWAY (e.g., network B )  and  that  there  may b 
more than one GATEWAY path  to use in going between I 

pa,ir of networks. The responsibility  for  properly routin1 

data resides in  the GATEWAY. 

In  practice,  a GATEWAY between  two  networks  may b 

composed of two  halves,  each  associated  with it,s ow1 

network. It is possible to  implement  each half of a GATE 

WAY so it need only  embed  internetwork  packets  in loca 

packet  format or extract  them. We propose that   th  

GATEWAYS handle  internetwork  packet,s  in  a  standarc 

format,  but me are  not proposing any  particular  trans 

mission procedure  between GATEWAY halves. 

Let us now trace  the flow of data  through  the  inter 

connected  networks.  We  assume a packet of data fron 

process X enters  network A destined for process Y il 

network C. The address of Y is initially specified b: 
process X and  the  address of GATEWAY M is derked fron 

the address of process Y.  We nmakc no attempt  to spccif: 

whether the choice of GATEWAY is  made  by process X 
its HOST, or one of thc packet  switches  in  network -4. Thl 

packet  traverses  network A until  it reaches GATEWAY iI4 

At the GATEWAY, the packet is reformatted to meet thl 

requirements of network B, account is taken of this  uni 

of flow between A and B, and  the GATEWAY delivers ths 

packet  to  network B. Again the dcrivation of the nex 

GATEWAY address is accomplished based  on the address o 

the destination Y .  In  this case, GATEWAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA T  is the next one 

Thc packet  traverscs  network R until i t  finally rcache 

GATEWAY N whcrc i t  is formattcd  to mcet the requirement 

of network C. Account is again  taken of this  unit of f l o ~  

betwccn  networks B and C. Upon entering  network C 

the packet is routed  to  the  Hosr  in which process I 
resides and  there  it is delivered to  its  ultimate desbination 

Since the GATEWAY must  understand  the  address of t h  

source and  destination HOSTS, this  information  must b 

available  in  a standard  format  in every  packet whicl 

arrives at   the GATEWAY. .This information is containec 

in an internetzoork header prefixed to  the packet by t h  

source HOST. The packet  format, including the  internet 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.  Three  networks  interconnected by two GATEWAYS. 

(may be null) b- Internetwork Header 

LOCAL HEADER SOURCE DESTINATION SEQUENCE NO. BYTE COUNTIFLAG FIELD\ TEXT ICHECKSUM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 3. Internetwork  packet  format (fields not shown to  scale). 

worlc header,  is  illustrated  in  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  The source and desti- 

nation  entries  uniforndy and uniquely  identify the address 

of every HOST in  the composite  network.  Addressing  is a 

subject of considerable  complexity  which  is  discussed 

in  greater  detail  in  the  next section. Thenext  two  entries  in 

the header  provide a sequence number  and a byte  count 

that  may  be used to properly  sequence the packets  upon 

delivery to  the dest'ination  and  may  also  enable the 

GATEWAYS to  detect  fault conditions affecting  the  packet. 

The flag  field is  used to convey specific control  information 

and is discussed in  the sect.ion on  retransmission  and 

duplicate  detection  later. The remainder of the  packet 

consists of text for  delivery to  the  destination  and a  trailing 

check sum used for end-to-end  software  verification. The 

GATEWAY does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot modify the  text  and merely  forwards the 

check sum along without  computing or recomputing  it. 

Each nct\r-orlr may need to  augment  the  packet  format 

before i t  can pass  t'hrough the individual  netu-ork.  We 

havc  indicated a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal header in  the figure which  is prefixed 

to  the beginning of the  packet.  This local header  is  intro- 

duced  nlcrely t'o illustrate the concept of embedding an 

intcrnetworlc packet  in  the  format of the individual  net#- 

work through which the  packet  must pass. It will ob- 

viously vary  in  its  exact  form  from  network  to  network 

and  may  even be unnecessary in some cases. Although not 

explicitly  indicated in  the figure, i t  is  also possiblc that a 

local trailer  may  be  appended to  the end of the packet. 

Unless all transnlitted  packets  are legislatively re- 

stricted to be small  enough to  be  accepted  by  cvcry  in- 

dividual  network, the GATEWAY may be forced to split  a 

packet int,o two or more  smaller  packets. This  action  is 

called fragmentation  and  must be done  in  such a way that 

the destination  is  able to piece togcthcr the fragmcntcd 

packet. It is  clear that  the internct\vorl; header  format 

imposes  a  minimum packet size which all  networks 

must  carry (obviously  all  networks will want  to  carry 

packets  larger than  this  minimum). We believe the long 

rangc  growth  and  development of internctworl; com- 

munication would be seriously  inhibited by specifying 

how much  larger than  the minimum a paclcct  sizc can bc, 

for  tjhc follo\\-ing reasons. 

1) If a maximum  permitted  packet size is specified then 

i t  bccomos impossible to  completely  isolate the  internal 

packet size parameters of one  network  from the  internal 

packet size parameters of all other  networks. 

2 )  It would be  very difficult to increase the maximum 

permitted  packet size in response to new technology (e.g., 

large  memory  systems,  higher data  rate communication 

facilities, etc.) since this would require the agreement  and 

then implen-rentation by all  participating  networks. 

3 )  Associative  addressing and pa.clcet encryption  may 

require the size of a particular  pa'ckct to  cxpand  during 

transit for incorporation of new information. 

Provision  for fragmentation (regardless of where i t  is 

performed)  permits  packet sixc variations to  be  handled 

on an individual  network  basis  without global admin- 

istration  and also permits HOSTS and processes to  be 

insulated  from  changes  in the pa,ckct sizes permitted  in 

any networks  through  which  their data  must pass. 

If fragmentation  must  be  done, i t  appears  best  to  do  it 

upon  entering the  nest netu-orlc at  the GAPEWAY since only 

t.his GATEWAY (and  not  the  other netLvorlcs) must be awarc 

of the int.ernal packet size parameters which made  the 

fragmentation necessary. 

If a GATEWAY fragnwnts  an  incoming  packet  into t'T1-o or 

more paclcet,s, they  must  eventually  be passed along to  the 

destination HOST as  fragnxnts or reassembled  for the 

HOST. It is  conceivable that one  might  desire the GArrEwAY 

to perform the rea.ssenlbly t o  simplify the  task of the desti- 

nation HOST (or process) and/or  to  take  advantage of a 

larger  packet size. We take  the position tJhat GATEWAYS 

should  not perform this  function since GATEWAY re- 

assen-rbly can lead to serious buffering  problems,  potential 

deadlocks, the necessity  for  all  fragments of a packet to  

pass through  the  same GArrEwA>r, and increased  dclay in 

transmission. Furthermore, i t  is not sufficient for the 

may also have  to  fragment a paclxt for  transmission. 

Thus  the destination HOST must be prepared to  do  this 

task. 

Let  us now turn briefly to  the somewhat  unusual ac- 

counting effect 11-hich arises  when  a  packet may  be frag- 

mented  by one or more GATEWAYS. We  assume, for 

simplicity, that each  network  initially  charges a fixed rate 

per paclrct transmitted, regardless of distancc,  and if one 

network  can  handle  a  larger  packet size t lml  another, i t  

charges a proportionally  larger price per paclcct. We also 

assume tha t  a subsequent  increase  in any network's 

packet size docs not  result  in  additional cost  per  packet to 

its users. The charge to a uscr thus  remains basically 

constant  through  any  net which must  fragmcnt a packet. 

The unusual cffcct occurs when a paclcct  is fragmented  into 

smaller  packets  which must  individually pass through a 

subsequent nctxvork with a larger  packet size than  the 

original  unfragmented  packet. We expect that most  net- 

works \vi11 naturally selech packet sizes  close to one 

anot'her, but  in  any case, an increase in  packet size in one 

net,  even  when it  causes  fragmentation, will not increase 

the cost of transnlission and  may  actually decrease it. I n  

the  event  that  any  other  packet charging policies (than 

GATEWAYS to provide  this  function since the final GATEWAY 
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the one me suggest)  are  adopted, differences in cost can  be 

used as an economic lever toward  optimization of indi- 

vidual  network  performance. 

PROCESS LEVEL COMMUNICATION 

We suppose that processes wish to communicate  in full 

duplex  with  their correspondent’s using  unbounded but 

finite length messages. A single character  might  constitute 

the  text of a message  from a process to a terminal or vice 

versa. An entire page of characters  might  constitute  the 

text of a message  from  a file to a process.- A data  stream 

(e.g.,  a  continuously  generated  bit  string)  can  be repre- 

sented  as a sequence of finite length messages. 

Within a HOST we assume  the existence of .a transmission 

control  program (TCP) which  handles  the  transmission 

and  acceptance of messages on  behalf of the processes it 

serves. The  TCP is in  turn  served  by one or more packet 

switches  connected to  the HOST in which the  TCP resides. 

Processes that  want  to communicate  present  messages 

to  the  TCP for transmission,  and TCP’R deliver incoming 

messages to  the  appropriate  destination processes. We 

allow the  TCP  to  break  up messages into  segments be- 

cause the  destination  may  restrict  the  amount of data  that 

may  arrive, because the local network  may  limit  the 

maximum  transmission size, or because the  TCP  may 

need to  share  its resources among  many processes con- 

currently.  Furthermore, me constrain the  length of a 

segment to  an integral  number of 8-bit  bytes.  This uni- 

formity  is  most helpful in simplifying the  software needed 

with HOST machines of different  natural word  lengths. 

Provision at  the process level can  be  made for padding a 

message that is not  an  integral  number of bytes  and for 

idcntifying  which of the arriving  bytes of text contain 

information of interest t o  the receiving process. 

Multiplexing  and  demultiplexing of segments  among 

processes are  fundamental t.asks of the  TCP. On trans- 

mission, a TCP  must multiplex  together  segments  from 

different source processes and  produce  internetwork 

packets for delivery to one of it.s serving  packet switches. 

On reception, a TCP will accept a sequence of packets 

from  its  serving  packet  switch(es).  From  this sequence 

of arriving  packets  (generally  from  different HOSTS), 

the  TCP  must  be able  to  reconstruct  and deliver messages 

to  the  proper  destination processes. 

We assume that every  segment is augmented  with  ad- 

ditional  information that allows transmitting  and re- 

ceiving TCP’s t o  identify  destination  and source processes, 

respectively.  At  this  point, we must face a major issue. 

How should the source TCI’ format  segments  destined for 

the same  destination  TCP? We  consider  two cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Case 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: If we take t.he position that segment  boundaries 

are  immaterial  and  that  a  byte  stream  can be  formed of 

segments  destined for the  same  TCP,  then we may  gain 

improvcd  transmission efficiency and resource  sharing by 

arbitrarily parceling the  stream  into  packets,  permitting 

many  stgments t o  share  a single internetwork  packet 

headcr.  Howcver, this position results  in  the need to re- 

construct  exactly,  and  in  order,  the  stream of text  bytes 

produced by  the source TCP. At  the  destination,  this 

stream  must first be parsed into  segments  and  these in 

turn  must be used to reconstruct  messages for delivery to 

the  appropriate processes. 

There  are  fundamental problems associated with  this 

strategy  due  to  the possible arrival of packets  out of order 

at   the destination.  The  most  critical problem appears 

to  be  the  amount of interference that processes sharing the 

same  TCP-TCP  byte  stream  may  cause  among  them- 

selves. This is especially so at  the receiving end.  First, 

the  TCP  may  be  put  to some trouble to  parse the  stream 

back  into  segments  and  then  distribute  them  to  buffers 

where  messages are reassembled. If it is  not  readily  ap- 

parent  that all of a segment  has  arrived  (remember,  it 

may come as several  packets),  the receiving TCP may 

have  to suspend  parsing  temporarily until more  packets 

have  arrived.  Second, if a packet is missing, i t  may  not be 

clear whether  succeeding  segments,  even if they  are  identi- 

fiable, can  be passed  on to  the receiving process, unless the 

TCP has knowledge of some process level sequencing 

scheme.  Such  knowledge  would permit  the  TCP  to decide 

whether a succeeding  segment  could be delivered to  its 

waiting process. Finding  the beginning of a  segment when 

there  are  gaps  in  the  byte  stream  may also be  hard. 

Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  : Alternatively, we might  take  the position that 

the  destination TCP should be  able  to  determine, upon 

its  arrival  and  without  additional  information, for which 

process or processes a received packet is intended,  and if 

so, whether i t  should be delivered then. 

If the  TCP is to determine for which  process an arriving 

packet  is  intended,  every  packet  must  contain  a proces6 
header (distinct from the internetwork  header) that com- 

pletely identifies thc  destination process. For simplicity, 

we assume that each packet  contains  text  from  a single 

process  which is destined for a single process. Thus each 

packet need  contain  only  one process header.  To decide 

whether  the  arriving  data is deliverable to  the destination 

process, the  TCP  must  be a.ble to determine  whether the 

data is in  the  proper sequence  (we  can make provision 

for the  destination process to  instruct  its  TCP  to ignore 

sequencing, but  this is considered a special case).  With thc 

assumption that each  arriving  packet  contains  a process 

header,  the necessary  sequencing and  destination procesf 

ident)ification is  immediately  available to  the  destinatior 

TCP. 

Both Cases 1) and 2) provide  for  the demultiplexing 

and delivery of segments to  destination processes, but 

only  Case 2 )  does so without  the  introduction of potential 

interprocess  interference.  Furthermore,  Case 1) introduceE 

extra  machinery to handle flow control  on a HOST-to- 

HOST basis! since there  must also be some  provision for 

proccss level control,  and  this  machinery is little used since 

the probability is small that  within a given HOST, two 

processes d l  be coincidentally scheduled to send messages 

to  the same  destination HOST. For this reason, we select 

the method of Case 2 )  as a part of the internetwork 
transmission QrOtOCOl. 
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ADDRESS  FORMATS 

The selection of address  formats is a  problem  between 

networks  because the local network  addresses of TCP's 

may  vary  substantially  in  format  and size. A  uniform in- 

ternetwork TCP address  space,  understood by each 

GATEWAY and  TCP, is  essential to routing  and delivery 

of internetwork  packets. 

Similar  troubles  are  encountered when we deal  with 

process addressing and,  more generally, port addressing. 

We .introduce the notion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAports in  order  to  permit a 

process to distinguish  between  multiple message streams. 

The  port  is  simply a  designator of one  such message stream 

associated with a process. The  means for identifying  a port 

are generally  different in different  operating  systems, and 

therefore, to  obtain uniform addressing, a standard  port 

address  format is also required.  A port  address designates 

a full duplex message stream. 

TCP  ADDRESSING 

TCP addressing is intimately  bound  up  in  routing 

issues, since a HOST or GATEWAY must choose a  suitable 

destination HOST or GATEWAY for an outgoing  int,ernetworl< 

packet.  Let  us  postulate the following address  format for 

the  TCP address  (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). The choice for  network  identi- 

fication (8 bits) allows up  to 256 distinct  networks.  This 

size seems sufficient for the forseeable future. Similarly, 

the  TCP identifier field permits up  to 65 536 distinct 

TCP's  to  be addressed, which seems more than sufficient 

for any given network. 

As each  packet passes through  a GATEWAY, the GATEWAY 

observes the destination  network I D  to  determine how 

to  route  the  packet. If the destination  network is con- 

nected to  the GATEWAY, the lower 16 bits of the  TCP address 

are used to produce  a local TCP address  in  the  destination 

network. If the destination  network  is  not  connected to  the 

GATEWAY, the upper S bits are used to select a  subsequent 

GATEWAY. We malx no  effort to specify how each in- 

dividual  network  shall  associate the internetwork TCP 

identifier  with its local TCP address. We also do not  rule 

out  the possibility that  the local network  understands the 

internetwork  addressing  scheme  and  thus  alleviates the 

GATEWAY of the routing  responsibility. 

PORT  ADDRESSING 

A receiving TCP is faced with the  task of demultiplex- 

ing the  stream of internetwork  packets it receives and 

reconstructing the original messages for  each  destination 

process. Each  operating  system  has  its own internal 

means of identifying processes and  ports. We assume that 

16 bits  are sufficient to serve as  intcrnctwork  port identifiers. 

A  sending process nccd not know how the destination 

port identification will be used. The destination TCP 
will be  ablc to parse this  number  appropriately to find 

the proper buffer into which it will place arriving  packets. 

We permit  a  large  port  number field to  support processcs 

which want  to distinguish  bctween many different 

messages streams  concurrently. In  reality, we do not  care 

how the 16 bits  are sliced up  by  the  TCP's involved. 
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NETWORK TCP IDENTIFIER 

Fig. 4. ',TCP address. 

Even  though  the  transmitted  port  name field is large, 

it is  still  a  compact  external  name  for the  internal repre- 

sentation of the port. The use of short names for port 

identifiers is often  desirable to reduce  transmission over- 

head and possibly reduce  packet processing time at   the 

dehnation  TCP. Assigning short names to each port, 

however,  requires an initial  negotiation  between  source 

and  destination  to agree on a  suitable  short  name assign- 

ment, the subsequent  maintenance of conversion tables 

a t  both  the source and  the  destination,  and a final trans- 

action  to release the  short name.  For  dynamic  assignment 

of port names, this negotiation is generally necessary in 

any case. 

SEGMENT  AND  PACKET  FORMATS 

As shown  in Fig. 5, messages are broken by  the TCP 
into segments whose format  is shown in more  detail  in 

Fig. 6. The field lengths  illustrated are merely suggestive. 

The first  two fields (source port  and  destination  port  in 

the figure) have  already been discussed in the preceding 

section  on  addressing. The uses of t.he third  and  fourth 

fields (window and acknowledgment  in the figure) will 

be discussed later  in  the section  on  retransmission and 

duplicate  detection. 

We recall from Fig. 3 that   an internetwork  header con- 

tains  both a  sequence number  and a byte  count,  as well as 

a flag field and a  check  sum. The USCS of these fields are 

explained in  the following section. 

REASSEMBLY  AND  SEQUENCING 

The reconstruction of a message at  the receiving TCP 

clearly requires' that each  internetwork  packet  carry a 

sequence  number which is unique to  its particular  desti- 

nation  port message stream.  The sequence  numbers must 

be  monotonic increasing (or decreasing) since thcy  are 

used to reorder and reassemble arriving  packets  into a 
mcssage. If the space of sequence  numbers were infinite, 

we could simply assign the next  one  to each new packet. 

Clearly, this space  cannot  be  infinite,  and we will consider 

what problems  a  finite  sequence  number  space will cause 

when we discuss retransmission and  duplicate  detection 

in the next  section. We propose the following scheme  for 

performing the sequencing of packets and hence the re- 

construction of messages by  the destination TCP. 

A  pair of ports will exchange  one or more messages over 

a period of time. We could view the sequence of messages 

produced  by  one port as if it were embedded in  an in- 

finitely  long stream of bytes.  Each  byte of the message has 

a  unique  sequence  number which we takc  to be its  byte 

location  relativc to  the beginning of the stream.  When  a 

In  the case of encrypted  packets, a preliminary stage of re- 
assembly may be required prior to decryption. 
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byte identification-sequence  number 

First Message 

(SEQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= k)  

Fig. 7. Assignment of sequence  numbers. 

LH = Local Header 
IH = InternetwolX Header 

CK = Checksum 
PH = Process Header 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Creation of segments  and  packets from  messages. 

32 32 16 16 En 

Source  Port  DertinatianIPort Wmdow ACK Text (Field sizes in bits1 ,+JPlOLIIl Hed..LJ 
Fig.  6. Segment format (process  header and  text). 

segment  is  extracted  from the message by  the source 

TCP  and  formatted for internetwork  transmission, the 

relative  location of the first byte of segment text is used as 

the sequence  number for the packet. The  byte  count 

field in  the  internetwork  header  accounts for all the  text 

in-the segment (but docs not include the check-sum bytes 

or  t'he  bytes  in  either  internetxork or process header). 

We emphasize that  the sequence  number  associated with 

a given packet is unique only to  the pair of ports that  are 

communicating  (see Fig. 7).  Arriving  packets are ex- 

amined to determine for which port  they  are  intended. 

The sequence  numbers on each  arriving  packet  are  then 

used to  determine  the  relative location of the packet  text 

in the messages under  reconstruction.  We  note that  this 

allows the exact position of the  data  in  the reconstructed 

message to be  determined  even n-hen pieces 'are  still 

missing. 

Every segment  produced by  a source TCP is packaged 

in  a single internetwork  packet  and  a check sum is com- 

puted over the  text  and process header  associated  with the 

segment. 

The splitting of messages into segments by  the  TCP 

and  the  potential  splitting of segments into smaller pieces 

by GATEWAYS creates the necessity for indic,ating to-  the 

destination TCP when the end of a  segment (ES) has 

arrived  and when the end of a message (EM) has  arrived. 

The flag field of the internetwork  header is used for this 

purpose  (see  Fig. S) . 
The  ES flag is set  by  the source TCP each time it prc- 

pares  a  segment for transmission. If it should happen that 

the message is completely  contained in  the  segment,  then 

the  EM flag would also be  set. The EM flag is also set  on 

the  last segment of a message, if the message could not 

be  contained  in  one  segment,  These  two flags are used 

by  the  destination  TCP, respectively, to discover the 

presence of a check sum for a given segment and  to discover 

that a  complete message has  arrived. 

The  ES  and EM flags in the internetwork  header  are 

known to  the GATEWAY and  are of special importance when 

packets  must  be  split  apart for propagation  through the 

next local network. We illustrate  their use with an ex- 

ample  in  Fig. 9. 

The original message -4 in Fig. 9 is shown split  into two 

segments A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAz and  formatted' by the TC1' into  a pair 

16 bits 

Y E S M  
S 

N L  

_ . .  E E R 

I l l  I 
L End  of Message when set = 1 

End  of Segment  when set = 1 
Release Use of ProcessIPort  when set=l 

Synchronize to Packet  Sequence Number  when set = 1 

Fig. 8. Internetwork  header flag field. 

- 1000 bytes . 
100  101  102 . . . 

I TEXT  OFMESSAGE A 

SEQ CT ES EM 500 2 

SRC CK TEXT 0 PH 1 500  100  DST 

1- internetwork header --+ segment 1 
split by 
source 
TCP . -. 

SEQ CT ES  EM 500 2 

SRC CK TEXT  1 PH 1  500 600 DST 

250  2 

SRC packet A1 TEXT 0 / PH 0 250  100 DST 

~~~ ~ 

split 
by 
GATEWAY 

SRC packet A12 CK TEXT 0 PH 1  250 350 DST 

SRC TEXT packet AZ1 0 PH 0 250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 DST 

SRC packet A22 CK TEXT 1 PH 1 250 850 DST 

Fig. 9. Message splitting  and  packet  splitting. 

of internetwork  packets.  Packets A1 and A2 have the 

ES bits  set,  and A2 has  its En1 bit  set  as well. Whe 

packet A1 passes through the GATEWAY, it is split  into t w  

pieces: packet A 11 for which neither EM nor ES bits a1 

xt ,  and  packet A12 whose ES bit is set. Similarly, packt 

A ,  is split  such that  the first piece, packet A21, has neithe 

bit  set, but packet A22 has  both  bits  set.  The scyuenc 

number field (SEQ) and  the  byte  count field (CT) of eac 

packet is modified by  the GATEWAY to properly identif 

the t'ext  bytes of each  packet.  The GATEWAY need on1 

cxamine the internetmork  header to do  fragmentation. 

The destination TCP, upon  reassembling  segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
will detect  the ES flag and will verify the check sum 

knows is contained  in  packet i z12 .  Upon  rcceipt of pack( 

A z 2 ,  assuming  all other  packets  have  arrived,  the  dest 

nation TCP detects that  it  has reassembled  a complel 

message and can now advise the destination process of  il 

rcceipt,: 
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RETRANSMISSION  AND  DUPLICATE 

DETECTION 

No transmission  can  be 100 percent reliable. We 

propose  a timeout  and  positive  acknowledgment mecha- 

nism  which will allow TCP’s  to recover  from packet losses 

from  one HOST to  another.  A  TCP  transmits  packets  and 

waits for replies (acknowledgements) that  are carried in 

the reverse packet  stream. If no  acknowledgment for a 

particular  packet is received, the  TCP will retransmit. 

It is  our  expectation that  the HOST level retransmission 

mechanism,  which is described in  the following para- 

graphs, will not  be called upon  very  often  in  practice. 

Evidence  already exists2 that individual  networks  can  be 

effectively constructed  without  this  feature.  However, the 

inclusion of a HOST retransmission  capability  makes i t  

possible to recover  from  occasional  network  problems and 

allows  a  wide  range of HOST protocol strategies  to be in- 

corporated. We envision it will occasionally be invoked to 

allow HOST accommodation  to  infrequent  overdemands for 

limited  buffer resources, and otherwise not used  much. 

Any  retransmission policy requires  some  means by 

which the receiver can  detect  duplicate  arrivals.  Even if 

an infinite  number of distinct  packet sequence  numbers 

were  available, the receiver mould still  have  the problem 

of knowing how long to remember  previously  received 

packets  in  order to  detect  duplicates.  Matters  are compli- 

cated  by  the  fact  that  only  a  finite  number of distinct 

sequence  numbers are  in  fact  available,  and if they  are 

reused,  the receiver must be  able to distinguish  between 

new  transmissions  and  retransmissions. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwindow strategy, similar to  that used by  the  French 

CYCLADES system  (voie  virtuelle  transmission  mode [SI) 
and  the ARPANET very  distant HOST connection [lS], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is proposed  here  (see Fig. 10). 

Suppose that  the sequence number field in  the  inter- 

network  header  permits  sequence  numbers to range  from 

0 to n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1. We assume that  the sender will not  transmit 

more  than w bytes  without receiving an acknowledgment. 

The w bytes  serve  as  the window (see Fig. 11). Clearly, 

w must  be less than n. The rules for sender  and receiver 

are  as follows. 

Sender: Let L be  the sequence number associated with 

the left  window edge. 

1) The  sender  transmits  bytes  from  segments whose 

text lies between L and  up  to L + w - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 )  On timeout  (duration  unspecified),  the  sender 

retransmits unacknowledged bytes. 

3) On  receipt of acknowledgment consisting of the 

receiver’s current  left window edge, the sender’s,  left 

window  edge is advanced  over  the aclrnowledged bytes 

(advancing  the  right window  edge implicitly). 

Receiver: 
1) Arriving  packets  yhose sequence  numbers coincide 

with  the receiver’s current  left window  edge are acknowl- 

edged  by  sending to  the source the  next  sequence  number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Left Window Edge 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn- 1 a+w- 1 a 

1- window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4 

I< packet sequence number space -1 
Fig. 10. The window  concept. 

Source 
Address 

I Address 
Destination I 

6 

7 

8 

9 

10 

Next Read Position 

End Read  Position 

Timeout 

Fig. 11. Conceptual TCB  format. 

expected.  This effectively acknowledges bytes  in between. 

The  left window  edge is advanced  to  the  next sequence 

number  expected. 

2) Packets  arriving  with  a sequence number  to  the  left 

of the window  edge (or, in  fact,  outside of the window) are 

discarded,  and  the  current  left window  edge  is returned  as 

acknowledgment. 

3) Packets whose  sequence  numbers lie within  the 

receiver’s window but do  not coinicide with  the receiver’s 

left  window  edge are  optionally  kept or  discarded, but 

are  not acknowledged. This is the case when  packets  arrive 

out of order. 

We make some  observations  on  this  strategy.  First, all 

computations  with  sequence  numbers  and  window  edges 

must  be  made modulo n (e.g.,  byte 0 follows byte n - 1). 

Second, w must be less than n/Y;  otherwise  a retrans- 

mission may  appear  to  the receiver to be  a new trans- 

mission in the case that  the receiver has  accepted  a 

window’s worth of incoming  packcts, but  all acknowledg- 

ments  havc been  lost.  Third,  the receiver can  either  save 

or  discard  arriving  packets whose  !sequence numbers  do 

not coincide with  the receiver’s left  window. Thus,  in  the 

simplest  implementation,  the receiver need not  buffer 

more than one  packet  per  message  stream if space is 

critical. Fourth,  multiple  packets  can be aclrnowledgcd 

simultaneously.  Fifth,  the receiver is able  to deliver 

messages t o  processes in  their  proper  order as a  natural 

result of the reassembly  mechanism. Sixth, when  dupli- 

cates  arc  detected,  the acknowledgment  method  used 

naturally works t o  rcsynchronizc  scndcr and receiver. 

Furthermore, if the rcccivcr accepts  packets whose 

sequcnce  numbcrs lie within  the  current window but 

The ARPANET is one such example. required that a retransmission not  appear to be a new transmission. 
Actually n/2  is  merely a convenient number t o  use; it is only 
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which are  not coincident with  the  left window edge, an 

acknowledgment consisting of the  current  left window 

edge  would act  as  a  stimulus  to cause  retransmission of the 

unacknowledged  bytes.  Finally, we mention an overlap 

problem  which  results  from  retransmission, packet 

splitting,  and  alternate  routing of packets  through dif- 

ferent GATEWAYS. 

A  600-byte packet  might pass through one GATEWAY 

and  be  broken  into  two  300-byte  packets. On retrans- 

mission, the same  packet  might be  broken  into  three 

200-byte packets going through  a  different GATEWAY. 

Since  each byte  has  a sequence  number, there is no  con- 

fusion at  the receiving TCP. We leave for later  the issue 

of initially  synchronizing the  sender  and receiver left 

window edges and  the window size. 

FLOW  CONTROL 

Every  segment  that  arrives at  the  destination  TCP is 

ultimately acknowledged by  returning  the sequence 

number of the  next  segment which must  be passed to  the 

process (it  may  not  yet  have  arrived). 

Earlier we described the use of a  sequence number 

space  and window to aid  in  duplicate  detection. Ac- 

knowledgments are carried in the process  header  (see 

Fig. 6)  and- along with  them  there is proviqion for a 

“suggested  window”.which the receiver can  use to control 

the flow of data from the sender.  This is intended  to  be 

the  main  component of the process flow control  mecha- 

nism. The receiver is frcc to  vary  the windo& size accord- 

ing to  any algorithm it desires so long  as the window 

size never  exceeds half thc sequence number space.3 

This flow control  mechanism is exceedingly  powerful 

and flexible and does not  suffer from  synchronization 

troubles that  may  be  encountered  by  incremental buffer 

allocation  schemes [9],[lO]. Hoivever, it relies heavily 

on an effective retransmission  strategy.  The receiver can 

reduce the window  even  while packets  are en route from 

the sender  whose  window is presently  larger.  The  net 

effect of this  reduction will be that  the receiver may 

discard  incoming  packets (they  may  be  outside  thc 

window) and  reiterate  thc  current window size along with 

a current window  edge as  acknowledgment.’By  the  same 

token,  the  sender  can,  upon occasion, choose to send  more 

than a  window’s worth of data on the possibility that  the 

reccivcr will expand the window to accept it (of course, the 

sender  must  not send  more, than half the sequence number 

space at  any  time). Normally, we would  expect the sender 

to  abide  by  thc window limitation.  Expansion of the 

window by  the rcccivcr mcrcly  allows  more data  to  be ac- 

cepted. Vor the receiving HOST with  a small amount of 

buffer space,  a  strategy of discarding  all  packets  whose 

scqucncc  numbers  do not coincide with  the  currcnt  left 

cdgc of the window is probably necessary, but  it will incur 

thc cxpcnsc of cxtra  delay  and  overhead for retransmis- 

sion. 

TCP INPUT/OUTPUT HAND,LING 

The  TCP has  a  component  which  handles  input/output 

(I/O) to  and from the  network4  When  a  packet  has  ar- 

rived, i t  validates  the addresses and places the packet 

on  a  queue.  A pool of buffers can  be  set  up t o  handle 

arrivals,  and if all  available  buffers  are used up, succeeding 

arrivals  can  be  discarded since unacknowledged  packet5 

will be  retransmitted. 

On output,  a smaller amount of buffering is needed, 

since process buffers can  hold the  data  to  be  transmitted 

Perhaps double  buffering mill be  adequate. We make nc 

attempt  to specify how the buffering  should be  done 

except to require that  it be  able to service the network 

with  as  little  overhead  as possible. Packet sized buffers 

one or more  ring buffers, or any  other  combination art 

possible candidates. 

When  a  packet  arrives at  the destination TCP,  it  is  placec 

on a queue  which the  TCP services frequently. For ex 

ample, the  TCP could be  interrupted when a queue  place 

ment occurs. The  TCP  then  attempts  to place the packel 

text  into  the proper  place in’  the  appropriate proces! 

receive buffer. If the  packet  terminates  a  segment,  ther 

it can  be  checksummed and acknowledged.  Placemeni 

may fail for several reasons. 

I)  The  destination .process may  not  be. prepared t c  
receive from the.etated source, or the  destination  port 11 

may  not exist. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 )  There  may  be insufficient buffer space for the  text 

3) The beginning  sequence number of the  text ma3 

not coincide with  the  next sequence number  to  be deliverec 

to  the process  (e.g., the  packet  has  arrived  out of order) 

In  the first case, the  TCP should  simply  discard thf 

packet  (thus  far, no  provision  has  been made for err01 

acknowledgments). In  the second and  third cases, thc 

packet sequence number  can  be  inspected  to determinc 

whether  the,packet  text lies within the legitimate ivindow 

for  reception. If it does, the  TCP  may optionally  keep thc 

packet  queued for later processing. If not,  the  TCI 

can discard the  packet. In  either case the  TCP car 

optionally  acknowledge with  the  current  left window  edge 

It may  happen  that  the process receive buffer  is no’ 

present  in  the  active  memory of the HOST, but is  stored or 

secondary  storage. If this is the case, the  TCP can  promp 

the scheduler to’bring  in  the  appropriate  buffer  and thc 

packet  can be queued for latcr processing. 

If therc  are no niore input buffers available to  the  TCI 

for temporary queueing of ‘incoming  packets, and if  thc 

TCI’ cannot  quickly  use  the  arriving data  (c.g.,  a  TCI 

to  TCP message) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, then  thc  packet is discarded.  Assuminf 

a sensibly functioning  system, no other processes than thc 

one for which the  packet was intended should be  affectec 

by  this  discarding. If the  delayed processing  queue grow 

This  component can  serve to  handle  other  protocols whoss 
associated  control  programs are  designated by internetwork  destina 
tion  address. 
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excessively long, any  packets  in i t  can  be safely discarded 

since none of them  have  yet been acknowledged. Con- 

gestion at   the  TCP level is flexibly handled owing to  the 

robust  retransmission and  duplicate  detection  strategy. 

TCP/PROCESS  COMMUNICATION 

In  order to send a message, a process sets  up  its  text 

in a  buffer region in  its own address  space,  inserts the 

requisite  control  information  (described in  the following 

list)  in a transmit control block (TCB)  and passes control 

to  the  TCP.  The exact  form of a TCB is not specified 

here, but  it might take  the form of a passed pointer,  a 

pseudointerrupt, or various  other forms. To receive a 

message in  its  address space,  a process sets  up a receive 

buffer,  inserts the requisite  control  information in a 

receive control block (RCB)  and again passes control 

to  the  TCP. 

In  some  simple  systems, the buffer  space may  in  fact 

be provided by  the  TCP. For simplicity. we assume that 

a  ring  buffer is used by each process, but  other  structures 

(e.g.,  buffer  chaining) are  not ruled out. 

A possible format for the  TCB is shown in Fig. 11. The 

TCB contains  information  necessary to allow the  TCP 

to  extract  and send the process data. Some of the informa- 

tion  might be  implicitly  known, but we are  not concerned 

with  that level of detail. The various fields in  the  TCB 

are described as follows. 

1) Source  Address: This is the full net/HosT/TCP/port 

address of the  transmitter. 

2) Destination Address: This is the full net/HOST/ 

TCP/port of the receiver. 

3) Next  Packet  Sequence Number: This is the sequence 

numbcr  to be used for the next  packet the  TCP will 

transmit,  from  this  port. 

4) Current  Buffer  Size:  This is the present size of the 

process transmit buffer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 )  Next   Wr i te   Pos i t ion :  This is the address of the next 

position in the buffer a t  which the process can place new 

data for transmission. 

6) Next  Read  Posi t ion:  This is the address a t  which the 

TCP should begin reading to build the next  segment for 

output. 

7 )  E n d  Rewd Posi t ion:  This is the address a t  which the 

TCI’ should halt transmission.  Initially 6) and 7) bound 

the message which the process wishes to  transmit. 

S) Number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARetransllzissions/ndnxill1u1tL Retransmis- 
s ions:  These fields enable the  TCP  to Beep track of the 

numbcr of times it  has  retransmitted  the  data  and could be 

omitted if the  TCP is not  to give  up. 

9) Timeout/Flwgs: The  timeout field  specifies the 

delay after which unacltnowledgcd data should be  rctrans- 

mittcd.  The flag ficld is uscd for semaphores and  other 

TCl’/proccss synchronization, status  reporting,  ctc. 

10) Current 9cX:nozulerlg,trent/TYirLdo,w: The  current 

acltnowledgmcnt ficld identifies the first byte of data 

still  unaclmo~vledgcd  by thc  destination  TCP. 

The read  and  write positions move  circularly  around the 

transmit buffer,  with the write  position  always to  the left 

(module the buffer size) of the read position. 

The next  packet  sequence  number  should  be  constrained 

to  be less than or equal to  the  sum of the current ac- 

knowledgment and  the window fields. In  any  event,  the 

next  sequence  number should not exceed the sum of the 

current  acknowledgment and half of the maximum possible 

sequence number  (to avoid confusing the receiver’s 

duplicate  detection  algorithm). A possible buffer layout 

is shown in.Fig. 12. 

The  RCB is substantially the same, except that  the end 

read field is replaced by a  partial  segment check-sum 

register which permits the receiving TCP to compute  and 

remember partial check sums  in  the  event  that a  segment 

arrives  in  several  packets.  When the final packet of the 

segment  arrives, the  TCP can  verify the check sum  and if 

successful, acknowledge the segment. 

CONNECTIONS  AND ASSOCIATIONS 

Much of the thinking  about process-to-process com- 

munication  in  packet  switched  networks  has  been in- 

fluenced by  the ubiquitous  telephone  system.  The HOST 

HOST protocol  for the ARPANET deals explicitly with  the 

opening and closing of simplex connections  between 

processes [9],[10]. Evidence has been presented that 

message-based “connection-free” protocols can  be con- 

structed [12], and  this leads  us to carefully  examine the 

notion of a  connection. 

The  term connection has -a wide variety of meanings. It 
can  refer to a  physical or logical path between  two en- 

tities, i t  can refer to  the flow ovcr the  path,  it  can in, 

ferentially refer to  an action  associated with  the  setting 

up of a path, or it can refer to  an association  between  two 

or more  entities,  with or without  regard  to  any  path 

between  them. In  this paper, we do not explicitly reject 

the  term connection,  since it is in such widespread use, 

and does connote  a  meaningful  relation, but consider 

i t  exclusively in the sense of an association  between  two or 

more  entities  without  regard to a path. To be more precise 

about our intent, we shall define the relationship  between 

t\+o or more  ports that  are in  communication, or are pre- 

pared to communicate to  be  an association. Ports  that 

are associated  with  each  other are called associates. 
It is clear that for any communication to  take place 

between  two processes, one must be  able to address the 

other. The two important cases here  are  that  the  deiti- 

nation  port  may  have a global and unchanging  address or 

that  it  may  be globally  unique but dynamically reassigned. 

While in  either case the sender may  have  to  learn  the 

destination  address,  given the destination  name, only in 

the second instance is there a  requirement  for  learning the 

address  from the destination  (or  its  representative) each 

time an association is desired. Only after  the source has 

learned horn to  address  the  destination  can  an association 

be said to  have occurred. But  this is not  yet sufficient. If 
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Fig. 12. Transmit buffer layout. 

ordering of delivered messages is also desired, both 

TCP’s  must  maintain sufficient infornmtion to allow 

proper  sequencing.  When this  information is also present 

at  both ends,  t,hen an association is said to  have occurred. 

Note  that we have  not said anything  about a path, nor 

anything which implies that either  end  be  aware of the 

condition of the  other. Only when both  partners  are 

prepared to communicate with’ each other  has  an associ- 

ation occurred, and  it is possible that neither  partner 

may be  able to verify that  an association exists until some 

data flows between them. 

CONNECTION-FREE  PROTOCOLS  WITH 

ASSOCIATIONS 

In  the ARPANET, the interface message processors 

(IMP’S)  do  not  have  to open and close connections from 

source to destination. The reason  for this is that con- 

nections  are, in effect,  always  open, since the addresk of 

every  source and  destination is never5 reassigned. When 

the name  and  the place are  static  and unchanging, it is 

only necessary to label a packet  with  source  and  desti- 

nation to transmit  it  through  the  network. In  our  parlance, 

every source and  destination forms an association. 

In  thc casc of processes, however, we find that  port 

addresses are continually being used and reused. Some 

ever-present processes could be assigned fixed addresses 

which  do not change  (e.g., the logger process). If we sup- 

posed, however, that every TCP had an infinite  supply of 

port addresses so that no old address would ever  be  reused, 

then  any  dynamically  created  port would be assigned the 

next  unused  address. I n  such an environment,  there 

could never  be any confusion by source and  destination 

TCP as to  the intended  recipient or implied source of each 

message, and all ports would bc  associates. 

Unfortunately,  ,TCP’s (or more  properly,  operating 

systems)  tend  not  to  have  an infinite  supply of internal 

port addresses.  Thcse internal addresscs are reassigned 

aft‘er the demise of each  port. Walden [ l Z ]  suggests that 

a set of unique  uniform  external port addresses could 

be supplied by a ccntral  rcgistry. A newly created  port 

could apply  to  the  central  registry for an address which 

the central  registry would guarantee  to  be unused by  any 

HOST system  in  thc network. Each TCY could maintain 

tablcs  matching  external names with  internal ones, and 

use the external ones for communication  with  other 

HOST is connected to  a different IMP. 
5 Unless the IMP is physically  moved to  another  site, or the 

processes. This idea  violates t.he premise that interprocess 

communica,tion  should not require  centralized  control. 

One would have  to extend the central  registry service to 

include  all HOST’S in all the interconnected  networks to 

apply  this idea to our  situation,  and we therefore do not 

att’empt  to  adopt  it. 

Let us consider the  situation from the  standpoint of the 

TCP.  In order to send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor receive data for a given port, 

the  TCP needs to  set  up a TCB  and RCB and initialize 

the window size and left window edge for both. On thc 

receive side, this  task  might even be delayed until the 

first  packet  destined for a given port arrives. By con- 

vention, the first  packet  should  be  marked so that  tht 

receiver will synchronize to  the received sequence  number 

On the send side, the first  request to  transmit coulc 

cause a TCB  to be set  up  with some initial sequenct 

number  (say, zero) and  an assumed window size. Thc 

receiving ‘I’CP can  reject the packet if it wishes anc 

notify the sending TCP of the correct window size via thc 

acknowledgment  mechanism, but only if either 

1) we insist that  the first  packet  be a complete  segment 

2) an acknowledgment  can be  sent for the first packel 

(even if not a segment, as long as the acknowledg 

nlent specifies the next  sequence number  such t h a  

the source also understands  that no bytes  have beer 

accepted). 

It is apparent, therefore, that  the synchronizing of windov 

size and left window edge can  be accomplished withou 

what would ordinarily’be called a connection setup. 

The first  packet referencing a newly created RCE 

sent from  ‘one  associate to  another  can  be  marked  with : 
bit which requests that  the receiver synchronize his lef 

window edge with the sequence  number of the arrivint 

packet  (see SYN bit  in Fig. S) . The  TCP can  examine thc 

source and  destination  port addresses in  the  packet  an( 

in  the  RCB  to decide whether to accept or ignore thc 

request. 

Provision  should  be made for a destination process tc 
specify that  it  is willing to LISTEN to a specific port o 

“any”  port.  This  last idea  permits processes such as thl 

logger process to accept data arriving  from unspecifiec 

sources. This is purely a HOST hat ter ,  however. 

The  initial  packet  may  contain  data which  can be store( 

or discarded by  the destination,  depending  on the avail 

ability of destination  buffer  space at   the time. In  the  othe 

direction,  acknowledgment is returned for  receipt of datr 

which also specifies the receiver’s window size. 

If the receiving TCP should want  to  reject  the  syn 

chronization  request, it merely transmits  an acknowledg 

ment  carrying a release (REL)  bit (see Fig. 8 )  indicatini 

that  the destination  port  address is unknown or inacces 

sible. The sending HOST waits for the acknowledgmen 

(after accepting or rejecting the synchronization  request 

before sending the  nest message or segment.  This rejectiol 

is  quite different  from a negative data acknowledgment 

We do  not  have explicit negative  acknowledgments. If nc 
acknowledgment is returned, the sending HOST ma: 
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retransmit  without  introducing confusion  if, for example, 

the left  window  edge is not  changed  on the retransmission. 

I Because  messages  may  be  broken up  into  many  packets 

‘for transmission or during  transmission, it will be neces- 

sary t o  ignore the  REL flag except  in  the case that  the 

EM flag is also set’. This could  be  accomplished either 

by t’he TCP or by  the GATEWAY which  could  reset the flag 

Ion all but  the  packet  containing  the  set EM flag (see 

Fig. 9). 

At  the end of an association, the  TCP sends a packet 

with  ES,  EM,  and  REL flags set.  The  packet sequence 

number  scheme will alert  the receiving TCP if there  are 

.;till outstanding  packets  in  transit which have  not  yet 

arrived, so a prcmaturc dissociation cannot occur. 

To assure that  both  TCP’s  are  aware  that  the associ- 

ation  has  ended, wc insist that  the rcceiving TCP respond 

to  the  ItEL  by sending a REL acknowledgment of its 

own. 

Suppose now that a  process  sends a single message to  an 

associate including an  REL along with  the  data. Assuming 

an RCB has been  prepared for the receiving TCP  to 

accept the  data,  the TCI’ will accumulate  the incoming 

packets  until  the one marked  ES,  EM,  BEL  arrives, a t  

which  point a REL is returned  to  the  sender.  The associ- 

ation is thereby  terminated  and  the  appropriate  TCB 

and  RCB  are  destroyed. If the first packet of a  message 

contains a SYN request  bit  and  the  last  packet  contains 

~ES,  EM,  and  REL  bits,  then  data will  flow “one  message 

at  a time.”  This mode is very similar to  the scheme de- 

scribed by  Walden [12], since each  succeeding  message 

can  only  be  accepted at  the receiver after a new LISTEN 

(like  Walden’s RECEIVE) command is issued by  the 

receiving process to  its serving TCP.  Note  that only if the 

acknowledgment is received by  the  sender  can  the associ- 

ation be terminated properly. It has  been  pointed out6 

that  the receiver may  erroneously  accept  duplicate 

transmissions if the  sender does not receive the acknowl- 

edgment.  This  may  happen if the  sender  transmits  a 

duplicate  message  with  the SYN and  REL‘bits  set  and  the 

destination  has  already  destroyed  any  record of the 

previous transmission. One  way of preventing  this  problem 

is to  destroy  the record of the association at  the desti- 

nation  only  after some  known and  suitably chosen timeout. 

However, this implies that a new association with  the 

same  source and  destination  port identifiers could not be 

established until  this  timeout  had expired. This problem 

can  occur  even with sequences of messages whose SYN 
and REL  bits  are  separated  into  different  internetwork 

packets. We recognize that  this problem must  be solved, 

but  do  not go into  further  detail herc. 

Alternatively,  both processes can  send  one  message, 

causing the respective TCP’s t o  allocate RCB/TCB 

pairs at  both ends  which  rendezvous with  the exchanged 

data  and  then  disappear. If the  overhead of creating  and 

dcstroying  RCB’s  and  TCB’s is small, such  a  protocol 

S. Crocker of ARPA/IPT. 
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might  be  adequate for most  low-bandwidth uses. This  idea 

might also form the basis for a relatively  secure  trans- 

mission system. If the  communicating processes agree to 

change their  external  port  addresses  in  some  way  known 

only to each  other  (i.c.,  pseudorandom),  then  each 

message  will.appear  to  the  outside  world  as if it  is part of a 

different association message stream.  Even if the  data is 

intercepted  by a third  party,  he will have no way of 

knowing that  the  data should in  fact be  considered part of 

a sequence of messages. 

We  have described the  way  in which processes develop 

associations with  each  other,  thereby  becoming associates 

for possible exchange of data.  These associations need not 

involve the  transmission of data prior to  their  formation 

and indeed  two associates need not be  able t o  determine 

that  they  are associates until  they  attempt  to communi- 

cate. 

CONCLUSIONS 

We  have discussed  some fundamental issues related to 

the interconnection of packet  switching  networks. In  

particular, we have described a simple but  very powerful 

and’ flexible protocol  which  provides for variation  in 

individual  network  packet sizes, transmission failures, 

sequencing, flow control,  and  the  creation  and  destruction 

of process-to-process associations. We  have considered 

some of the  inlplementation issues that arise  and  found 

that  the proposed  protocol is implementable  by HOST’S 

of widely varying  capacity. 

The  next  important  step is to produce  a  detailed speci- 

fication of the protocol so that some initial  experinlents 

with  it  can be  performed. These  experiments  are  needed 

to determine  some of the  operational  parameters  (e.g., 

how often  and how far  out of order  do  packets  actually 

arrive;  what  sort of delay is .there between  segment 

acknowledgments;  what  should  be  retransmission  time- 

outs  be?) of the proposed protocol. 
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