
Received January 5, 2021, accepted January 15, 2021, date of publication February 2, 2021, date of current version February 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056623

A Protocol for Preventing Transaction
Commitment Without Recipient’s
Authorization on Blockchain
and It’s Implementation

YOKO KAMIDOI 1, (Member, IEEE), RYOUSUKE YAMAUCHI2,
AND SHIN’ICHI WAKABAYASHI1, (Member, IEEE)
1Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan
2Faculty of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan

Corresponding author: Yoko Kamidoi (yoko@hiroshima-cu.ac.jp)

ABSTRACT In recent years, blockchain is utilized practically as a distributed secure digital ledger of some

sorts of transactions. Blockchain is regarded as one of the most important next generation infrastructure

technologies of the financial industry, as well as artificial intelligence and big data. In 2020, cryptocurrencies

based on blockchain, such as Bitcoin, Ethereum, or XRP, have a value of more than $450 billion in the market

capitalization. Furthermore, on blockchains such as Ethereum, transactions can also represent automatic

executions of programs, which are called smart contracts. Thus, many institutes in various categories show

their positive attitude toward processing financial transactions or non-financial contracts on blockchain.

Althoughmany researchers have studied for various types of issues on blockchain, there always exist security

and privacy concerns for blockchain. In this paper, we point out a new concern for abusing the publicity of

blockchain and also show the possibility of suspicions aroused by the concern. Then we propose a selective

mechanism for self-protecting against the approach from crimes or computer viruses on blockchain, whether

the disclosure of user’s privacy occurs or not. Next, we also propose a concrete implementation of our

proposed selective mechanism with two new address types. We aim to incorporate the mechanism in Bitcoin

Core, which is the official Bitcoin client software, and using libbitcoin library functions for Bitcoin software

development. We show experimental results to estimate overhead costs for processing our proposed address

types toward processing the current standard address type in nodes on the peer-to-peer network.

INDEX TERMS Blockchain, abuse of publicity, recipient’s authorization, security, implementation.

I. INTRODUCTION

Emergence of the blockchain protocol proposed by

Nakamoto [13] had introduced successful cryptocurrencies

such as Bitcoin, Ethereum, XRP etc. Blockchain technologies

have developed new applications, which have never been

previously practical [20].

Before emergence of blockchain, although payments by

digital cash can be authenticated by using digital signature,

the double spending problem of easily replicable digital

cash could not be solved without a trusted third party.

On the one hand, the blockchain technology proposed in

the article [13] by Nakamoto, achieves a break-through by

The associate editor coordinating the review of this manuscript and
approving it for publication was Patrick Hung.

solving the double spending problemwithout the trusted third

party.

Blockchain keeps consistency of a decentralized digital

ledger by utilizing the special consensus algorithm, called

Proof-of-Work. The concept of Proof-of-Work was devel-

oped, based on Hashcash as a denial-of-service counter

measure [3]. The idea of introducing the cryptographic based

measure as a consensus algorithm on full distributed systems,

is the key to get trust for the ability to make payment

non-reversible.

By the emergence of blockchain, the reliability of digital

cash has rapidly increased, and digital cash on blockchain

has been called cryptocurrency. The market capitalization of

successful cryptocurrencies is over $450 billion in 2020 [6].

On Ethereum blockchain, the executions of smart contracts

24390 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0001-8690-0904

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

have attracted considerable attention. The concept of smart

contracts was developed by Szabo in 1997 [16], before

the emergence of blockchain. Although Bitcoin blockchain

supported smart contracts before the start of Ethereum,

Ethereum’s smart contract are major because of the ability

to describe contracts as the high level Turing-Complete

Language, called Solidity [4]. Smart contract is a transaction

so that conditions for the transfer of value are defined as a

program and when the conditions are satisfied, the transition

of value will be executed automatically.

There exist two benefits of processing smart contracts on

blockchain. One benefit is that contracts between untrusted

parties can be processed safely whether each party is

trust-worthy or not. This is because the peer-to-peer network

justifies the validities of the contracts clearly from the

third party point of view. The other benefit is to be able

to reduce the cost because of the automatic executions

of contracts without a trusted third party. Financial firms,

consulting firms, IT venders and governments have attracted

an application area of smart contracts on blockchain,

i.e., willings, an electrical vote, transfer of property rights

and proof of a production area. But, there exist several

well-known issues of blockchain, such as the majority

occupation attacks called the 51% attacks, the harm problem

for decentralization by mining pools [14], etc. In addition,

it was pointed out that crypocurrencies have been transferred

on illicit online sites called ‘‘darknet’’ marketplaces [8].

We should understand the risks of involvements in criminal

cryptocurrency transactions.

Blockchains of Bitcoin or Ethereum, where anyone can

participate, are called public blockchains. On the one hand,

blockchains where only permitted members, but each other

may be competitors, can participate, are called permitted

blockchains. Additionally, blockchains where members in

one organization can only participate, are called private

blockchains. Whereas permitted blockchains or private

blockchains can protect privacy in transactions strongly and

renew data easily, attacks for consistency of digital ledger,

i.e. 51% attack, might success easier than attacks in public

blockchains. Thus, their blockchain could give a weaker

proof that the records are consistent.

Although blockchains have been implemented and become

practical, privacy and security of those have been concerned

continuously [19]. Thus, issues, which are not critical

in transactions with the trusted third party, might induce

significant problems.

In this paper, we explain a concern pointed out in our

preliminary version [18] of this paper on blockchain caused

by abusing public information. We especially focus on the

recipient’s information of a transaction, while most previous

works focus on sender’s security, because of resulting in loss

of value directly. We show possibilities of frauds for recip-

ients caused by the pointed out concern. Next, we present

a new mechanism for recipient’s self-protection from these

frauds. This mechanism consists of a new protocol for

transaction publication and a new structure of transactions.

Furthermore, we present a concrete implementation of our

selective mechanism for Bitcoin Core client software and

analyze the security of our implementation. In order to

estimate overhead costs of introducing our mechanism,

we show experimental results finally.

The remainder of the paper is structured as follows.

In Section II, we show known concerns for security of

blockchain. In Section III, we introduce two major previous

models of address on transactions and our focused blockchain

model in this paper. Section IV points out new concern

and the possibility of frauds. We propose a new mechanism

for solving the concern and extend it to a more flexible

mechanism in Section V. Section VI shows a concrete

implementation of ourmechanism for Bitcoin client software.

We explain our experimental environment and show exper-

imental results in Section VII. The paper is concluded in

Section VIII.

II. KNOWN SECURITY AND PRIVACY ISSUES

OF BLOCKCHAIN

A. DOUBLE-SPENDING ATTACKS

Since digital information can be duplicated easily, the

reliability of systems might be lost significantly, if cryp-

tocurrencies or smart contracts could be used multiple

times. Two major factors of this double-spending problem

are counterfeit for senders by malicious and intentional

duplication, which a sender spends a value in multiple times

on purpose. To prohibit counterfeit for senders, sender’s

digital signature on a transaction must be necessary as

sender’s authentication. Additionally, to protect intentional

duplication by senders, blockchains introduce publicity for

all transaction information, the eventual consensus algorithm

and an incentive system to make reasonable peers verify a

validity of those sender’s inputs.

If a majority of nodes on the peer-to-peer network justifies

the invalidity of the sender’s setting for the transaction,

double-spending attacks will be prohibited.

B. MAJORITY OCCUPATION ATTACKS

If a majority of nodes on the peer-to-peer network were

malicious, results of consensus algorithmswould be arbitrary.

Therefore, the above double-spending attack would be

successful. To protect from the majority occupation attacks or

51% attacks, blockchain utilizes cryptographic techniques for

malicious nodes not to be able to control the majority of com-

puting powers of the peer-to-peer network, and set difficulties

of consensus properly. In addition, each blockchain system

gives miners incentive and makes miners keep soundness

of digital ledgers. By carefully turning of difficulties of

Proof-of-Work, they can also absorb gradational changes of

computing powers on the peer-to-peer network.

C. PRIVACY DISCLOSE

As opposed to transactions with the trusted third party,

for keeping soundness of transactions and consistency of

the digital ledger, it is necessary to publish transaction

VOLUME 9, 2021 24391

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

information on the peer-to-peer network. Accordingly,

the relation between intrinsic security of blockchain and

privacy protection is very complex. In blockchains, a way

of maintaining privacy is to use public key anonymous

techniques. An address as a pseudo-identifier has one to

one and one-way correspondence to a public key. Although

individuals can use multiple addresses as pseudo-identifiers

without revealing their names, link-ability, i.e., the ability

to infer some relations from combination of background

knowledge and public information on the digital ledger, could

reveal true identities of the users. Zhang et al. [19] pointed out

that blockchain implementations only achieve pseudonymity

but do not protect from link-ability. Thus, privacy disclosure

might occur.

To prohibit privacy disclose, the following techniques are

introduced in blockchain.
• Mixing: Mixing is a random exchange of user’s cryp-

tocurrency with other user’s cryptocurrency. Mixing ser-

vice is designed for user’s privacy protection and similar

to traditional communication mixes by cryptographic

techniques.

• Fungibility: The value of cryptocurrencies should be

independent on the history of exchanges, which are

the same as paper currencies. The desired property

is called fungibility. In order to achieve fungibility

on blockchain, the Pay-to-EndPoint protocol [10] was

proposed. The protocol sets not only sender’s address,

but also recipient’s address as input addresses of a

transaction. In the protocol, the receiver, instead of

the sender, broadcasts the final information of the

transaction publicly.

D. FLOWING TO AND FROM DARKNET MARKETPLACES

Online marketplaces connecting buyers with sellers of illicit

goods and services, are called darknet marketplaces [8].

It has been known that many darknet marketplace participants

have used cryptocurrencies to buy illicit goods [9]. Whereas

some identified darknet marketplaces was closed by cyber

crime law enforcement, [7] reported that darknet marketplace

activity using cryptocurrencies had been remarkably resilient,

despite continued efforts of law enforcement and total volume

of Bitcoin sent to darknet markets in 2018, was over

$600 million. Moreover, [8] has reported that there existed

the transactions flowing directly from addresses associated

with known illicit actors to conversion services, and over

half a million bitcoin moved directly from illicit sources to

conversion services in the period 2013-2016.

Thus, general users as recipients might be involved in

such illicit transactions from addresses associated with illicit

actors as the senders, unconsciously. To make matter worse,

illicit senders could involve ordinal users in their transactions

by abusing published information on the blockchain digital

ledger and make the ledger record their transactions, while

users were unaware of existences of their transactions. This

is whywe focus on the recipient’s information of a transaction

in this research.

III. PRELIMINARIES AND PREVIOUS ADDRESS MODELS

A. PUBLICITY OF BLOCKCHAIN

In blockchain, the applied solution for the double-spending

problem without the trusted party is to publish all transaction

information for the peer-to-peer network and record those in

blocks on a distributed large digital ledger. When majority of

nodes of the network decides to agree with the validity of the

published transaction, a block with the transaction record and

the mining result called ‘‘nonce’’ is put on the digital ledger

and the transaction is seemed as a committed transaction.

B. ADDRESS MODELS

Bitcoin blockchain uses addresses based on UTXO (Unspent

Transaction Output) model. On the one hand, Ethereum uses

addresses based on the account model. We show pros and

cons of each model, as follows.

1) UTXO MODEL

UTXO describes an unspent transaction output. Each trans-

action has a transaction ID, a sender’s address and his public

key, and a recipient’s address and sending value for the

recipient. In Bitcoin, there exist some address types called

P2PK (Pay to Public Key), P2PKH (Pay to Public Key

Hash), MultiSig and P2SH (Pay to Script Hash) [15], etc. We

show a more detail explanation for Bitcoin address types in

Appendix A.

Here, we explain the P2PKH type of addresses, since it is

used as the standard type in Bitcoin protocol when one public

key is used.

If a transaction which contains N -id as a transaction ID, a

recipient’s address addB, and v as the sending value for addB,

has been committed and the recipient of the transaction wants

to use the sending value, the recipient will make a transaction

with the previous transaction N -id and a digital signature by

the recipient’s secret key corresponds to the public key used

onmaking the address addB. Then, the new transactionmeans

a transfer of the value v from the address addB to another

recipient’s address.

The merit of UTXOmodel is to be able to execute multiple

transactions of the same senders concurrently. The demerit of

UTXO is for each user to need complex managements of lists

of own pairs of UTXO and the corresponding private key.

2) ACCOUNT MODEL

In contrast to UTXO model, addresses are not connected

to transactions in the account model. In the account model,

each account’s balance is updated on the timing of chaining a

block, if the block contains transactions with those related

accounts. Thus, by accessing the last block containing

a transaction with the account as a sender’s address or

a recipient’s address, the balance of the account can be

confirmed. If an owner of the account wants to use a part of

his balance, he can set any value, which is at most within his

balance, as sending value of a new transaction. Conversely,

24392 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

multiple transactions related with one account should be

executed serially for keeping atomicity.

3) COMMON PROPERTIES

In both of UTXOmodel and the account model, each address

is made with owner’s public key and the public hash function.

If the owner would like to prove the property of the owner’s

address, the owner must show the information attached to

his digital signature by his public key corresponding to his

address for verifiers.

C. STRUCTURE OF BLOCKS AND TRANSACTIONS

Blockchain consists of blocks and directed links representing

relations between two blocks. A block includes multiple

transaction informations, a hash value of the previous block

called a previous hash value, and a value called nonce as

the proof-of-work. A relation from a block Bx to a block By
holds, if the hash value of the block Bx has been included as

the previous hash value in the next block By. Information of

transactions on a block is also saved as a tree called ‘‘Merkel

tree’’ and is aggregated as a hash value called ‘‘Merkel root.’’

By using the value ‘‘Merkel root’’ of a block, we can check

efficiently whether a given transaction is included in the block

or not [15].

Each transaction consists of one or multiple sender’s

addresses as input cryptocurrencies owned by the payer and

one or multiple recipients’ addresses as the payee’s account

with values of transferred cryptocurrencies. In the following,

on the assumption that each transaction has one sender’s

address and one recipient’s address for simplicity, we explain

the structure of transaction information in more detail.

Each transaction involves a sender A and a recipient B

who are respectively identified by the sender’s address addA
as the payer’s account and the recipient’s address addB as

the payee’s account. The sender A and the recipient B have

pairs of a private key and the corresponding public key (SKA,

PKA) and (SKB, PKB), respectively. Since each address is

made based on the owner’s public key, the owner’s public

key is used as the proof of ownerships for each address, and

the owner’s pair of the public key and the corresponding

private key is used for the authorization for sending owner’s

cryptocurrencies. The recipient’s address has an additional

information ‘‘value’’ shown a quantity of cryptocurrencies

sent from the sender A to the recipient B. If the transaction has

multiple payers’ accounts or multiple payees’ accounts, each

account is distinguished by the index of the corresponding

element in the input array for payers’ accounts or the output

array for payees’ accounts. Each transaction is identified by

the transaction ID which is the hash value of the transaction

information.

In the above arguments, addA might be represented as a

pair of the previous transaction ID and the output index in the

transaction, if a type of addA is UTXOmodel. Else, if a type of

addA is the account model, addA might be the corresponding

account.

Let SigSKA (input sequence) be the output of the function

SigSKA (input sequence) as the digital signature function for

a hash value of the input sequence by the sender’s secret key

SKA. Now, we consider that the transaction processes sending

the value v from the address addA of the sender A to the

address addB of the recipientB. Then, the transaction includes

the sender’s digital signature SigSKA (addA, v, addB) and the

public key PKA. Then, nodes on the peer-to-peer networks

can verify the correctness of the sender’s address addA by

checking whether the double-spending problem might occur

or not, and also verify the sender’s authorization for the trans-

action by using the sender’s signature SigSKA (addA, v, addB)

and the sender’s public key PKA.

D. CURRENT TYPICAL PROTOCOL FOR PUBLISHING

TRANSACTIONS

We introduce a current typical protocol [11] between the

sender A and the recipient B for creating a transaction

information. The sender A and the recipient B are hereinafter

referred to as he and she, respectively. First, the recipient

B sends her address addB to the sender A in order to

specify her account. Second, the sender A selects his address

addA and the corresponding pair of his secret key SKA and

his public key PKA. The sender A gets a digital signature

SigSKA (addA, v, addB) which shows that he authorizes the

sending of the value v from the sender’s address addA to

the recipient’s address addB by using his secret key SKA.

Next, the sender A makes a new transaction information

Tx = (addA,PKA, SigSKA (addA, v, addB), v, addB) by setting

his digital signature SigSKA (addA, v, addB) and his public key

PKA. Finally, the sender A publishes the transaction Tx to

the peer-to-peer network, and requests nodes to commit the

transaction Tx.

IV. NEW CONCERN

In [18], we pointed out a new concern for the above current

protocol. After the notice of the recipient’s address, the sender

A makes a transaction and publishes it for the peer-to-peer

network without interaction with the recipient, in the current

protocol for creating a transaction information. We wonder if

a malicious senderM could generate and publish a malicious

transaction freely by abusing information of the published

transaction. We explain our concerned situation by using

Fig.1.

The malicious sender M could contrive abusing infor-

mation of the published transaction ‘‘Transaction1,’’ as

shown in Fig.1 (a). M could make freely a new and fake

transaction called ‘‘Transaction4’’ and set the recipient’s

address ‘‘Address2’’ on the transaction ‘‘Transaction4’’

without any notification for the recipient (Fig.1 (b)). If the

transaction ‘‘Transaction4’’ was published by the malicious

sender M , the transaction could be committed by the peer-

to-peer network, without the recipient’s awareness (Fig.1 (c)).

The reason is that nodes on the peer-to-peer network could

not distinguish the transaction ‘‘Transaction1’’ by the regular

VOLUME 9, 2021 24393

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

FIGURE 1. Example of abusing published information by malicious
sender’s with the new concern.

sender and the fake transaction ‘‘Transaction4’’ published by

the malicious senderM .

The transaction published by themalicious senderM might

become the loan of cryptocurrencies or money transfer with

relation to crimes for pools. Also, when the transaction

represents the sending process of digital contents instead of

cryptocurrencies, the malicious sender might scatter malware

for many unspecified users through blockchain.

In addition to the above concern, the orphan address

problem [2] exists. Orphan addresses are not associated to

any user or account. If some cryptocurrencies are sent to

an orphan address, they are lost forever. The orphan address

problem could occur by a lack of notices for the recipient.

V. A PROTOCOL FOR NEW CONCERN

A. OUR IDEA

From our investigation in the above section, we noticed

that it is important to set some limitation for reusing the

published transaction information. Our idea [18] is to make

it impossible to set a recipient’s address of a published

transaction as a recipient’s address of the different transaction

again. In our new protocol, the new structure of a transaction

does not only enable for nodes on the peer-to-peer network

to verify recipient’s authorization for it, but also prohibits

malicious senders from abusing the recipient’s address.

Furthermore, it also prohibits the recipient from modifying

the transaction information and publishing it freely.

In the following, first, we introduce the new structure of a

transaction, then, we propose a new protocol for publishing

transactions based on the new structure of a transaction.

B. OUR STRUCTURE OF A TRANSACTION

We define our structure of a transaction as follows. Let a

transaction Tx be a seven-tuple (addA,PKA, SIGSKA , v, addB,

PKB, SIGSKB), where addA, PKA and SIGSKA are the sender

A’s address, his public key and his digital signature by his

secret key SKA, v is a value of transferring cryptocurrencies

from the sender A to the recipient B, and addB, PKB and

SIGSKB are the recipient B’s address, her public key and her

digital signature by her secret key SKB. If some term in the

transaction information is not fixed, the term will be replaced

by the empty string ǫ.

C. OUR PROTOCOL

We propose a new protocol for publishing a transaction

Tx under the constraint that the recipient’s address is

protected from resetting it by malicious senders in different

transactions as an output address but the recipient cannot

change the published transaction information without the

sender’s authorization. We show our protocol as follows.

Step 1: Recipient B sends her public key PKB as her

tentative address.

Step 2: SenderA selects his address addA for paying a value

v of cryptocurrencies. Sender A makes an initial transaction

information Txinitail = (addA, ǫ, ǫ, v, ǫ,PKB, ǫ), and sends

the transaction information Txinitial to Recipient B.

Step 3: Recipient B verifies the correctness of the initial

transaction information Txinitial . If she can confirm the

correctness, she gets a digital signature SigSKB(Txinitial) =

SIGSKB for the sender’s address addA, the value v and PKB
by using her secret key SKB. Then, she makes a new address

onetime.ADDB, generated by the concatenation of an prefix

‘‘onetime.’’ and a hash value ADDB = hash(SIGSKB ,PKB)

with her digital signature SIGSKB and her public key PKB.

We call this type of address S-address, where ‘‘S’’ means

‘‘Signature’’. Recipient B sends her digital signature SIGSKB ,

and the S-address onetime.ADDB as an output address.

Step 4: Sender A verifies the correctness of the recipient’s

S-address onetime.ADDB by checking recipient’s signa-

ture SIGSKB and using the hash value of the concate-

nation of her signature and her public key PKB. If he

confirms it, he updates the next transaction information

Txupdate = (addA, ǫ, ǫ, v, onetime.ADDB,PKB, SIGSKB) by

setting recipient’s S-address onetime.ADDB as an out-

put address, recipient’s public key PKB and her digi-

tal signature SIGSKB as a proof of her authorization to

set her address in this transaction. Sender A gets his

digital signature SigSKA (Txupdate) = SIGSKA for the

transaction information Txupdate by using his secret key

24394 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

FIGURE 2. Our proposed S-address and the method of making S-address.

SKA. Sender A makes the final transaction information

Tx = (addA,PKA, SIGSKA , v, onetime.ADDB,PKB, SIGSKB)

by setting his digital signature SIGSKA , as his authorization

for this transaction.

Step 5: Sender A publishes the final transaction informa-

tion Tx for the peer-to-peer network.

We also show a flow of the proposed protocol in Fig. 2.

D. COMMITMENT BY PEER-TO-PEER NETWORK

Given a published transaction Tx = (addA,PKA, SIGSKA ,

onetime.ADDB, PKB, SIGSKB) generated through our proto-

col, to construct a new block or verify the correctness of

previous blocks, nodes on the peer-to-peer network should

verify the correctness of each transaction in the block. We

assume that nodes can recognize the type of the recipient’s

address as the S-address by the prefix ‘‘onetime.’’ of the

address. Then, for the transaction including the S-address

as the recipient’s address, nodes have to check not only the

sender’s authorization, but also the correctness of setting the

S-address as an output address. In the following, we explain

the verification steps in nodes on the peer-to-peer network,

for the published transaction Tx.

First, nodes verify the correctness of the input address

addA and the digital signature SIGSKA for the mid transaction

information (addA, ǫ, ǫ, onetime.ADDB, PKB, SIGSKB) using

the sender’s public key PKA to confirm that the sender has a

value v in the input address addA and admits to give the value v

to the recipient’s address onetime.ADDB through the transac-

tion. Next, nodes also verify the digital signature SIGSKB for

the initial transaction information (addA, ǫ, ǫ, v, ǫ,PKB, ǫ)

and the correctness of setting the output address using the

recipient’s public key PKB, to confirm for the recipient to

accept the sending of the value from the sender’s address

addA to the recipient’s address onetime.ADDB through the

transaction.

We assume that a malicious senderM publishes a transac-

tion TxM = (addM ,PKM , SIGSKM , v
′, onetime.ADDB, ǫ, ǫ)

without the recipient’s authorization by abusing the recipi-

ent’s S-address as an output address. Then, nodes will find

out that the malicious sender abused the recipient’s address

of some previous transaction. Because of the prefix of the

address, ‘‘onetime.’’ shows that the transaction information

must include the recipient’s digital signature for the initial

transaction.

Even if a malicious sender M publishes a transac-

tion Tx ′

M = (addM ,PKM , SIGSKM , v
′, onetime.ADDB,

PKB, SIGSKB) using the recipient’s S-address as an output

address with the recipient’s authorization for the different

transaction, nodes will also find out that the malicious

user’s abused the recipient’s address through checking

whether SIGSKB is the recipient’s signature for the ini-

tial transaction information (addM , ǫ, ǫ, v′, ǫ,PKB, ǫ). The

reason is that the signature SIGSKB satisfies that SIGSKB
= SigSKB (addA, ǫ, ǫ, v, ǫ,PKB, ǫ) and the checking results

in failure.

There exists a difference of structures between published

transactions by our protocol and published transactions by

the current protocols. The type of the S-address has to be

distinguished from other types of addresses by nodes in

the peer-to-peer network. Thus, we should advertise that a

different type of addresses has been introduced by our new

protocol, toward nodes on the peer-to-peer network.

E. RELATIONS BETWEEN S-ADDRESS AND PREVIOUS

ADDRESS MODELS

We consider relations between S-address, UTXO address

model and the account model.

S-address can be seemed as an address of strict UTXO

model, because of the strict request for S-address so that

different output address must be set for each transaction.

Moreover, S-address prohibits a malicious sender from

abusing the output addresses of published transactions.

On the other hand, multiple different S-addresses can be

constructed from one recipient’s public key. If we manage

records and cryptocurrencies of transactions for each public

key, instead of each address, the management of multiple

S-address from one public key can be seemed as the account

management. When multiple S-addresses from the same

public key are set as input addresses of a transaction, only

one digital signature by the public key will be needed as the

sender’s digital signature for sender’s authorization. In addi-

tion, multiple transactions, having S-addresses from one

public key as sender’s address or recipient’s address, can be

executed as concurrently and safely as ones of UTXOmodel.

Thus, our S-address improves the UTXO model and the

account model, by maintaining the merits of both models and

overcoming disadvantages of those models.

VOLUME 9, 2021 24395

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

F. EXTENSION TO FLEXIBLE PERMITTED ADDRESS

In our protocol, a recipient implicitly makes a one-time

address having a limitation on the transaction where the

address can be set as the recipient’s address. However,

the limitationmight be too strict and inflexible on transactions

from partially-trusted senders. Thus, we relax the limitation

on transactions for setting the S-address as recipient’s address

to a limitation on a sender’s address of transactions, or to

a limitation on a group of senders’ addresses, etc. In our

protocol, we can set a recipient’s digital signature for the

specific sender’s address instead of the recipient’s digital

signature for the transaction, and make an S-address by the

digital signature and recipient’s public key. We can also set a

recipient’s digital signature for the specific group of senders’

address.

In order to give users such flexibility of setting limitations

when he makes an S-address, we prepare three kinds

of extensions of S-address, ‘‘onetime.’’, ‘‘sender.’’ and

‘‘group.’’. If a prefix of the S-address is ‘‘sender.’’, then

verifiers will check whether the attached digital signature is

recipient’s digital signature for the sender’s address or not.

Otherwise, if a prefix of the S-address is ‘‘group.’’, then

verifiers will check whether the attached digital signature is

recipient’s digital signature for a list of senders’ addresses and

the sender’s address is included in the list, or not.

VI. CONCRETE IMPLEMENTATION OF S-ADDRESS

ON BITCOIN PROTOCOL

We focus on implementation of the S-address targeted

on Bitcoin Core protocol. Bitcoin Core protocol is the

official client software of Bitcoin and the C++ source

codes of Bitcoin Core protocol are published on the Web

service GitHub (https://github.com/bitcoin/bitcoin). We will

combine our S-address with Bitcoin Core protocol. In the

following, we introduce general elements of transactions on

Bitcoin protocol, and propose our implementation targeted on

Bitcoin protocol.

A. GENERAL ELEMENTS OF TRANSACTIONS

ON BITCOIN PROTOCOL

1) TRANSACTION DESCRIPTION

In Bitcoin Core protocol, a description of each transaction

has two arrays, i.e., one array ‘‘Tx_In’’ of the data structure

‘‘TxIn’’ for descriptions of inputs of the transaction and the

other array ‘‘Tx_Out’’ of the data structure ‘‘TxOut’’ for

descriptions of outputs of one. We show the outline of the

standard transaction structure in Fig. 3.

The data structure ‘‘TxIn’’ has a transaction identification

‘‘TxID’’ and an integer ‘‘index.’’ For each sender’s input as

UTXO, an element of the data structure ‘‘TxIn’’ in the array

‘‘TX_In’’ will be allocated in the description of transaction.

The sender’s UTXO corresponds to the ‘‘index’’-th output in

the transaction having ‘‘TxID’’ as the identification. Thus,

a pair of the transaction identification ‘‘TxID’’ and the

FIGURE 3. The outline of the standard transaction structure of the
bitcoin.

number ‘‘index’’ represents implicitly the sender’s address of

his UTXO.

The data structure ‘‘TxIn’’ also has a sequence called

‘‘ScriptSig’’ and an integer called ‘‘Scriptbytes,’’ which

represents the length of ‘‘ScriptSig.’’ In general, the sequence

‘‘ScriptSig’’ includes the sender’s public key used for

locking the UTXO and the sender’s digital signature by

the corresponding secret key to the public key. In Fig. 3,

we omit descriptions of the lengths of data elements, i.e.,

‘‘Scriptbytes.’’

The data structure ‘‘TxOut’’ consists of an integer

‘‘value,’’ an sequence ‘‘ScriptPubkey’’ and an integer

‘‘ScriptPubkeybytes.’’ We explain the above three elements

as follows.

The sequence ‘‘ScriptPubkey’’ is a part of a simple program

of the scripting language by Reverse Polish Notation. When

nodes on the peer-to-peer network want to verify whether the

owner of the UTXO is a sender and the sender admits that a

transaction will be executed, a full program is constructed by

concatenating the sequence ‘‘ScriptSig’’ on the transaction in

which the sender wants to utilize his UTXO, and the sequence

‘‘ScriptPubkey.’’ In the next subsection, wewill explain script

programs by using an example in more detail.

The sequence ‘‘ScriptPubkey’’ includes a hash value of

the recipient’s public key generally. The mapping value of

the hash value by the certain one-to-one function (called

base58check encoding [17]) is referred to as the recipient’s

address.

The integer ‘‘ScriptPubkeybytes’’ represents the length

of the sequence ‘‘ScriptPubkey.’’ And the integer ‘‘value’’

represents a quantity of UTXO sent to the recipient’s address.

Although we defined a structure of a transaction on

Section V, we redefine a structure of a transaction

for the Bitcoin as follows. Let a transaction Tx be

a quadruple ((Prev_TxID, index), ScriptSig(SIGSKA ,PKA),

v, ScriptPubkey(addB)), where (Prev_TxID, index) and

ScriptSig(SIGSKA , PKA) are the sender A’s UTXO and his

ScriptSig, v is a value of transferring cryptocurrecies from

the sender A to the recipient B, and ScriptPubkey(addB) is

the recipient’s ScriptPubkey. In the above definition, we also

define the descriptions ScriptSig() and ScriptPubkey() as

the formats of ScriptSig and ScriptPubkey, respectively. We

assume that we can get the sender A’s ScriptSig by setting

24396 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

FIGURE 4. The standard scriptpubkey structure and scriptpubkey
structure.

the sender A’s signature SIGSKA and her public key PKA on

the format ScriptSig(), and the recipient B’s ScriptPubkey

by setting the recipient B’s address addB on the format

ScriptPubkey().

2) BITCOIN SCRIPTS

Bitcoin uses a simple Reverse Polish Notation system called

‘‘Script ,’’ in order to describe clearly how to lock and unlock

each UTXOwith respect to input elements or output elements

of transactions. A script is a list of data elements and

operations [1]. As mentioned above, each transaction has two

types of scripts, ‘‘ScriptPubkey’’ and ‘‘ScriptSig.’’ The script

‘‘ScriptPubkey’’ is called as a locking script, by describing

how to unlock the received UTXO. Thus, a content of the

script ‘‘ScriptPubkey’’ must be decided in each output by

the recipient on each transaction. The other type of scripts,

‘‘ScriptSig’’ is called an unlocking script, and it provides

data elements to satisfy the unlocking condition decided in

‘‘ScriptPubkey’’ of the previous transaction in advance.

The scripting system gives senders and recipients flex-

ibility to describe rules of checking. In Fig. 4, we show

examples of ‘‘ScriptPubkey’’ and ‘‘ScriptSig,’’ and explain

how the third party checks the validity of transferring the

UTXO, using these examples. In the following, we assume

that the script ‘‘ScriptPubkey’’ is in the first output element

Tx_Out[0] of the transaction whose ID is ‘‘TxID01,’’ and the

script ‘‘ScriptSig’’ is in the first input element Tx_In[0] of

the transaction whose ID is ‘‘TxID02’’. And, we also assume

that data elements Tx_In[0].TxID and Tx_In[0].index of the

input array element Tx_In[0] of the transaction ‘‘TxID02’’ are

‘‘TxID01’’ and ‘‘0.’’

In the following, we assume that scripts ScriptSig of

general type transactions can be constructed by setting the

sender A’s address type, his digital signature SIGSKA , and

his public key PKA on a format ScriptSig(). If type(addA)

is P2PKH, ScriptSig(type(addA), SIGSKA ,PKA) returns the

following script as ScriptSig for the sender A.

ScriptSig(P2PKH): ‘‘[SIGSKA][PKA]’’

And, we also assume that scripts ScriptPubkey of

general type transactions can be constructed by setting

the recipient B’s address type and her public key PKB

on a format ScriptPubkey(). If type(addB) is P2PKH,

ScriptPubkey(P2PKH ,PKB) returns the following script as

ScriptPubkey for the recipient B.

ScriptPubkeyP2PKH : ‘‘OP_Dup OP_Hash160 [Hash160

(PKB)] OP_EqualVerify OP_CheckSig’’

If nodes on the peer-to-peer network or the third parties

want to check the validity of transferring the UTXO

corresponding to the input Tx_In[0] of the transaction

‘‘TxID02,’’ nodes make a script by concatenating the script

‘‘ScriptSig’’ of the transaction ‘‘TxID02’’ and the script

‘‘ScriptPubkey’’ of the transaction ‘‘TxID01’’. Next, nodes

give the stack-based programming system of Bitcoin the

concatenated script as an input. More strictly, for the security,

the stack based programming system processes the script

‘‘ScriptSig’’ with an empty initial stack first. Then it saves the

stack, and processes the script ‘‘ScriptPubkey’’ with the saved

stack as an initial stack [15]. If the system returns the true,

the nodes will see that the verification is success. Otherwise,

the verification ends in failure and the transaction ‘‘TxID02’’

is excluded from candidates of transactions in a new block.

We will show a more detail explanation for the verification

procedure for the scripts in Appendix B.

B. OUR IMPLEMENTATION

We propose a concrete implementation of our selective mech-

anism targeting to incorporate into Bitcoin Core protocol.

Our implementation has a characteristic property such that

a recipient’s signature for the S-address is put on the sender’s

script ‘‘ScriptSig’’ on one transaction. This is because nodes

on the peer-to-peer network target only inputs of each

transaction for verification of the validity of signatures. Thus,

if we put the recipient’s signature on the recipient’s script

‘‘ScriptPubkey,’’ nodes on the peer-to-peer network might

miss the necessity of verification of the recipient’s signature

for the S-address. In the following, we show an outline of our

implementation of our selective mechanism for the Bitcoin

protocol.

We define our new type of a transaction for the

Bitcoin as follows. Let a transaction TxS be a quadru-

ple ((Prev_TxID, index), ScriptSigS(ScriptSig(type(addA),

SIGSKA , PKA), SIGSKB), v, ScriptPubkeyS(addB, PKB)),

where ScriptSigS(ScriptSig(type(addA), SIGSKA , PKA),

SIGSKB) and ScriptPubkeyS(addB,PKB) are the sender A’s

ScriptSig and the recipient B’s ScriptPubkey for the recipient

B’s S-address, respectively, while (Prev_TxID, index) and v

are the same ones of the general transaction Tx. Thus, in our

implementation, we introduce new formats ScriptSigS() and

ScriptPubkeyS(). And, we extend the format ScriptSig()

so that we can apply our S-address to the format. In the

following, we assume that we can get the sender A’s new

type ScriptSig by setting the sender A’s general ScriptSig

as ScriptSig(type(addA), SIGSKA ,PKA) and the recipient B’s

signature SIGSKB on the format ScriptSigS(), and the

recipient B’s new type ScriptPubkey by setting the recipient

B’s address addB and her public key PKB on the format

VOLUME 9, 2021 24397

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

ScriptPubkeyS(). If some term in the formats is not fixed,

we assume that the term can be replaced by the empty string ǫ.

Although we imply that a pair (Prev_TxID, index) repre-

sents the sender A’s address addA, strictly speaking, we need

the script ‘‘ScriptPubkey’’ of the index-th output on the

transaction Prev_TxID to verify whether the sender A owns

the UTXO. Thus, let Prev_TxID.out[index].ScriptPubkey

be the ScriptPubkey of the index-th output on the trans-

action Prev_TxID. The sender A’s public key PKA has

to correspond to the address information addA in the

script Prev_TxID.out[index].ScriptPubkey. In other words,

the hash value of his public key PKA has to be included

in the script Prev_TxID.out[index].ScriptPubkey. In the

following, we refer to Prev_TxID.out[index].ScriptPubkey as

Prev_ScriptPubkey.

Now, we show the outline of our protocol for constructing

the transaction information for the Bitcoin, based on the

above definitions.

Our protocol for the Bitcoin

Step 1: Recipient B sends her public key PKB as her

tentative address.

Step 2: Sender A selects a pair (Prev_TxID, index)

of a transaction index of a previous transaction and

his output’s index as his address addA for paying

a value v of cryptocurrencies. Sender A sets Recip-

ient B’s public key PKB on the S-address type for-

mat ScriptPubkeyS() for the recipient’s ScriptPubkey

and constructs the initial script ScriptPubkeyS(ǫ,PKB).

Sender A makes an initial transaction information Txinitail
= ((Prev_TxID, index), ǫ, v, ScriptPubkeyS(ǫ,PKB)), and

sends the transaction information Txinitial to Recipient B.

Step 3: Recipient B verifies the correctness of the initial

transaction information Txinitial . When she can confirm the

correctness, she gets a digital signature SigSKB (Txinitial ·

ScriptPubkeyS(ǫ,PKB)) = SIGSKB for the sender’s address

addA, the value v and PKB by using her secret key SKB. Then,

she makes a new address addB = onetime.ADDB, generated

by the concatenation of an prefix ‘‘onetime.,’’ and a hash

value ADDB = Hash160(SIGSKB) with her digital signature

SIGSKB .

Next, she constructs her script ScriptPubkeyB = Script-

PubkeyS(addB,PKB) by setting her address addB and her

public key PKB. Recipient B sends her digital signa-

ture SIGSKB , the S-address onetime.ADDB and her script

ScriptPubkeyB as an output script.

Step 4: Sender A checks Recipient B’s signature SIGSKB .

Next, he verifies the correctness of the recipient’s S-address

onetime.ADDB by using the hash value of the concatenation

of Recipient’s signature and her public key PKB. When

he confirms it, he updates the next transaction informa-

tion Txupdate = ((Prev_TxID, index), ǫ, v, ScriptPubkeyB) =

((Prev_TxID, index), ǫ, v, ScriptPubkeyS(addB,PKB)) by

setting Recipient B’s ScriptPubkeyB including Recipient B’s

public key PKB and her output address onetime.ADDB made

from her digital signature SIGSKB as a proof of her autho-

rization to set her address in this transaction. Sender A gets

his digital signature SigSKA (Txupdate · Prev_ScriptPubkey) =

SIGSKA for the transaction information Txupdate by using his

secret key SKA.

Sender A constructs his general ScriptSig(type(addA),

. . .) = ScriptSIGA by setting his address type and adding

his public key PKA, his signature SIGSKA , etc. to the

input parameters depending on the address type. Next,

he constructs his script ScriptSigS(ScriptSIGA, SIGSKB) by

setting his general ScriptSIGA and Recipient B’s signature

SIGSKB .

Sender A makes the final transaction information TxS
= ((Prev_TxID, index), ScriptSigS(ScriptSIGA, SIGSKB), v,

ScriptPubkeyS(addB,PKB)) by setting his script ScriptSIGA
as his authorization and Recipient B’s signature SIGSKB as her

authorization for this transaction.

Step 5: Sender A publishes the final transaction informa-

tion TxS for the peer-to-peer network.

On general transactions of the Bitcoin, the recipient’s

address is not described explicitly. However, it is given

implicitly by the type of the recipient’s script ‘‘ScriptPubkey’’

and the hash value on the script. Thus, we decide that

the hash value of the recipient’s signature is also put on

the recipient’s script ‘‘ScriptPubkey’’ in our implementation,

and the script also represents the recipient’s S-address

implicitly.

In our implementation, we propose 2 types of concrete

implementations of the S-address, called ‘‘Pay to Simple

Signature (P2SSIG)’’ and ‘‘Pay to Signature (P2SIG)’’. The

P2SSIG is a strict implementation of our S-address in

Section V. The second type ‘‘P2SIG’’ might have a higher

security level than the P2SSIG type of the S-address.

Next, we explain the two types of S-address implementa-

tions and show their properties, respectively. In the following

subsections, we will explain the three script formats for

ScriptPubkeyS(), ScriptSigS(), and ScriptSig(S-address, . . .)

in more details.

ScriptPubkeyS() is the format of ScriptPubkey set on

the output corresponding to the S-address as ScriptPubkey.

ScriptSig() is the format of ScriptSig set on the first

input as ScriptSig on a transaction which has one output

corresponding to an S-address. ScriptSig(S-address, . . .) is

the format of ScriptSig or a part of ScriptSig, set on the input

whose address is an S-address.

1) P2SSIG: THE FIRST TYPE OF S-ADDRESS

In this implementation type, we utilize only one recipient’s

public key ‘‘PKB’’ for a preparation of the transaction. We

refer to this address type as Pay to Simple Signature (P2SSIG)

type.

In the following, we define the three formats ScriptPubkey-

SP2SSIG(SIGSKB ,PKB), ScriptSigSP2SSIG(ScriptSig(type

(addA), . . .), SIGSKB), and ScriptSig(P2SSIG, SIGSKA ,

Prev_SIGSKA), where ScriptSIGA represents ScriptSig(type

(addA), . . .) and Prev_SIGSKA is the signature from which the

S-address corresponding to the sender A’s UTXO was made.

24398 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

• ScriptPubkeySP2SSIG(SIGSKB ,PKB)

Given the recipient B’s signature SIGSKB and her public

key PKB, the hash value Hash160(SIGSKB) is computed

and the hash value and the public key are set on the

format, and the following script is constructed.

ScriptPubkeySP2SSIG: ‘‘OP_Hash160 [Hash160

(SIGSKB)] OP_EqualVerify [PKB] OP_CheckSig’’

• ScriptSigSP2SSIG(ScriptSIGA, SIGSKB)

Given the recipient B’s signature SIGSKB and the sender

A’s script ScriptSIGA, the signature and the script are

set on the format, and the following script is con-

structed, where the opcode ‘‘OP_P2SSIG’’ shows our

introduced new operation. The opcode ‘‘OP_P2SSIG’’

is to verify the correctness of the signature SIGSKB
and check the equality of a hash value for the

signature SKSKB and the hash value in the script

ScriptPubkeySP2SSIG(SIGSKB ,PKB) in the output of the

transaction TxID01, atomically.

ScriptSigSP2SSIG: ‘‘[SIGSKB] OP_P2SSIG [Script-

SIGA]’’

• ScriptSig(P2SSIG, SIGSKA ,Prev_SIGSKA)

Given the sender A’s signature SIGSKA and the previous

signature Prev_SIGSKA , the two signature SIGSKA and

Pre_SIGSKA are set on the format, and the following

script is constructed.

ScriptSig(P2SSIG): ‘‘[SIGSKA][Prev_SIGSKA]’’

The reason for introducing the new script operation

‘‘OP_P2SSIG’’ is that the recipient B can declare usage of

her public key PKB in her ScriptPubkey which is included

in the digital signature targets, and can deny a counterfeit

signature given by any others. Moreover, by checking the

equality of two hash values in the operation ‘‘OP_P2SSIG’’,

the sender A can prevent the recipient B from publishing

remade transactions by replacing her digital signature

SIGSKB of the targeted transaction with her another digital

signature SIG′

SKB
, which is computable by using a different

random parameter in the Elliptic Curve Digital Signature

Algorithm (ECDSA).

We will show an example for construction of scripts for

P2SSIG type of an S-address in Appendix C.

2) P2SIG: THE SECOND TYPE OF S-ADDRESS

In the second type of implementations, we apply the recipient

B’s two public keys ‘‘PKB’’ and ‘‘PK ′

B’’ for a preparation

of transaction publication. We call this address type Pay to

Signature (P2SIG) type.

If the recipient B wants to receive the transferred value by

commitment of the transaction TxID01, she will make her

digital signature by using her secret key ‘‘SKB’’ as well as

the first type of our implementation. However, she will make

her ScriptPubkey by using her two public keys ‘‘PKB’’ and

‘‘PK ′

B.’’

The recipient B sets the concatenation result of ‘‘PKB’’

and ‘‘PK ′

B’’ as the input value of the Hash160 function

and puts ‘‘PKB’’ and the result of the hash function on her

ScriptPubkey as the locking script. We introduce the new

Script operation ‘‘OP_Concatenate’’ for the concatenation

result of two input values.

In the following, we define the three formats ScriptPubkey-

SP2SIG(SIGSKB ,PKB,PK
′

B), ScriptSigSP2SIG(Script-SIGA,

SIGSKB), and ScriptSig(P2SIG, SIGSK ′

A
,PK ′

A, Prev_SIGSKA).

• ScriptPubkeySP2SIG(SIGSKB ,PKB,PK
′

B)

Given the recipient B’s signature SIGSKB , her public

key PKB and her second public key PK ′

B, the first

hash value Hash160(SIGSKB) and the second hash value

Hash160(PKB · PK ′

B) of the concatenation of PKB and

PK ′

B, are computed. Then, the two hash values and the

public key PKB are set on the format, and the following

script is constructed.We introduce the second new script

operation ‘‘OP_Concatenate’’ for the concatenation

result of two input values. The recipient B can make

nodes set the concatenation result of ‘‘PKB’’ and ‘‘PK
′

B’’

as the input value of the Hash160 function by the new

introduced opcode, when nodes verify the correctness

of transferring UTXOs.

ScriptPubkeySP2SIG: ‘‘OP_Hash160 [Hash160

(SIGSKB)] OP_EqualVerify OP_Dup [PKB]

OP_Concatenate OP_Hash160 [Hash160(PKB · PK ′

B)]

OP_EqualVerify OP_CheckSig’’

• ScriptSigSP2SIG(ScriptSIGA, SIGSKB)

This format is the same as the ScriptSigSP2SIG(),

except for our new opcode ‘‘OP_P2SIG’’ instead of

‘‘OP_P2SSIG,’’ as follows.

ScriptSigSP2SIG: ‘‘[SIGSKB] OP_P2SIG [ScriptSIGA]’’

We also introduce the third new script operation

‘‘OP_P2SIG’’ for atomically executing the follow-

ing two processes, as the above proposed command

‘‘OP_P2SSIG.’’ The one process is to verify the

correctness of the recipient B’s signature with her public

key ‘‘PKB’’ in her ScriptPubkey. The other process is

to check the equality of the hash value of the recipient

B’s signature and the first hash value of the recipient B’s

script ‘‘ScriptPubkey.’’

The sender A publishes the transaction information

on the peer-to-peer network. After committing of the

transaction, if the receiverBwants to transfer the value to

a next receiver, she can unlock the UTXO bymaking her

digital signature for the new transaction and constructing

her ScriptSig with her digital signature by her second

secret key SK ′

B and her second public key ‘‘PK ′

B.’’

• ScriptSig(P2SIG, SIGSK ′

A
,PK ′

A,Prev_SIGSKA)

Given the sender A’s second public key PK ′

A, his

signature SIGSK ′

A
by the second secret key SK ′

A and

the previous signature Prev_SIGSKA , the two signature

SIGSK ′

A
and Pre_SIGSKA and the public key PK ′

A are set

on the format, and the following script is constructed.

ScriptSig(P2SIG): ‘‘[SIGSK ′

A
][PK ′

A][Prev_SIGSKA]’’

C. SECURITY ANALYSIS

We show our results of security analysis for the first type

P2SSIG of the S-address of our selective mechanism for the

VOLUME 9, 2021 24399

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

Bitcoin client software as follows. The same arguments for

the second type P2SIG of the S-address also hold.

Theorem 1 (Recipient’s Security): if, on the transaction

TxID01, the recipient’s address type is P2SSIG and her

ScriptPubkey is ‘‘ScriptPubkeySP2SSIG’’ and security hash

functions, the public key algorithm and the digital signature

algorithm used for construction of scripts are secure, no one

who does not know the recipient’s secret key, can set the

script ScriptPubkeySP2SSIG or parts of the script including the

first hash value and the recipient B’s public key on any other

committable transaction except for TxID01.

Proof: In the first type P2SSIG, the recipient public key

PKB in outputs’ scripts ‘‘ScriptPubkeySP2SSIG’’ are included

in the target message signed by the recipient B. And,

the recipient B’s script ‘‘ScriptPubkeySP2SSIG’’ is duplicated

and occurs twice in the target message. If signatures without

the recipient B’s secret key SKB was included in the sender

A’s script ‘‘ScriptSigSP2SSIG’’ as the recipient B’s signature,

the execution of an operation ‘‘OP_P2SSIG’’ of the script

‘‘ScriptSigSP2SSIG’’ would fail.

If the malicious senderM ’s script ‘‘ScriptSigSP2SSIG’’ does

not include the operation ‘‘OP_P2SSIG,’’ the transaction

will fail. This is because the recipient B’s address type

is ‘‘P2SSIG’’ and a transactions including a P2SSIG type

address as output’s address should have the sender M ’s

script ‘‘ScriptSigSP2SSIG’’ including ‘‘OP_P2SSIG’’. Thus,

the recipient B’s script ‘‘ScriptPubkeySP2SSIG’’ cannot be

abused in any other transaction except for the transaction

TxID01. �

Theorem 2 (Sender’s Security): If, on the transaction

TxID01, the recipient’s address type is P2SSIG and the

sender’s ScriptSig is ‘‘ScriptSigSP2SSIG’’ and security hash

functions, the public key algorithm and the digital signature

algorithm used for construction of scripts are secure, no one

who does not know the sender A’s security key SKA, can set

the script ScriptSigSP2SSIG or parts of the script including the

sender’s signature for the transaction TxID01 and his public

key PKA on any other committable transaction except for

TxID01.

Proof: In our address type, all outputs’ scripts

‘‘ScriptPubkey’’ are included on the signature targeted mes-

sage by the sender A. The signed signature SigSKA (TxID01) =

SIGSKA and the sender’s public key PKA cannot be used in

any other committable transaction with outputs which are

difference from outputs of the transaction TxID01.

On the other hand, the senderA’s script ‘‘ScriptSigSP2SSIG’’

is not included in the sender A’s signed target message. There

might exist possibility that the recipient B constructs her

signature SigSKB (TxID01) = SIG′

SKB
different from SIGSKB ,

replaces the recipient B’s signature SIGSKB of the sender

A’s script ‘‘ScriptSigSP2SSIG’’ by her reconstructed signature

SIG′

SKB
, and publishes the rewrote transaction. However,

when our script commands ‘‘OP_P2SSIG’’ is executed for

checking of the verification of the recipient’s signature, it

is also checked whether the hash value of the recipient B’s

signature SIGSKB matches with the first hash value of the

recipient’s script ‘‘ScriptPubkeySP2SSIG’’ or not. Since the

recipient B’s script ‘‘ScriptPubkeySP2SSIG’’ is included in the

message targeted for signature by the sender A, the equality

checking in the rewrote transaction published by the recipient

B will fail. This is why the commands ‘‘OP_P2SSIG’’

should consist of the verification of the recipient’s signature

SIGSKB and the checking of equality of the hash value

of SIGSKB and the first hash value of the recipient B’s

script ‘‘ScriptPubkeySP2SSIG.’’ And, the two checks should be

executed atomically in order to protect the sender A’s security

from the recipient B as well as the recipient B’s security from

the sender A. �

VII. EXPERIMENTAL RESULTS

We implemented our protocol for constructing transac-

tions and a verification procedure for our scripts on

a laptop computer with Quad-Core Intel Core i5 pro-

cessor (6MB Cache, up to 1.4GHz) using the libbit-

coin library v3.6.0 (https://github.com/libbitcoin/libbitcoin-

server/releases) which is Bitcoin cross-platform C++ devel-

opment toolkit and C++ (clang version 11.0.3) compiler.

The OS of the laptop is MacOS Catalina (version 10.15.5).

By using the libbitcoin library, we can simulate protocols

with Elliptic Curves public key cryptography packages,

the current key lengths and the Elliptic Curve Digital

Signature Algorithm (ECDSA), etc., which are the same as

ones used in the Bitcoin official client software Bitcoin Core.

We also referred to C++ source files of the Bitcoin Core

v0.20.0 rc1 in order to analyze some procedures.

First, we compared lengths of the sender’s scripts

‘‘ScriptSig’’ and the recipient’s scripts ‘‘ScriptPubkey’’ for

our address type ‘‘P2SIG’’ with ones for the previous stan-

dard address type ‘‘P2PKH.’’ Next, we estimate execution

overhead of verification for our scripts toward the standard

script verification.

In this section, we assume that the targeted current

transaction consists of one input (the sender’s address) and

one output (the recipient’s address), unless specific notices.

And, we also assume that the transaction ID of the targeted

current transaction is TxID02 and the transaction ID of the

previous transaction for the input is TxID01.

A. OVERHEAD FOR THE LENGTHS OF SCRIPTS

We show our proposed ‘‘ScriptSig’’ and ‘‘ScriptPubkey’’

structures based on the current libbitcoin library, with the

standard ones in Fig. 5 and Fig. 6. In Fig. 5 and Fig. 6,

each description as ‘‘Length’’ shows the byte length of the

succeeding data element.

In our selective mechanism, if the recipient’s address type

is ‘‘P2SIG,’’ the sender’s script ‘‘ScriptSig’’ should include

the recipient’s digital signature, such as ScriptSigSP2SIG()

which we defined in Section VI. Thus, the structure

of the sender’s script ‘‘ScriptSig’’ is changed depending

on the recipient’s address type of the current targeted

transaction TxID02. In Fig. 5, if the sender’s address

type and the recipient’s address type are the standard

24400 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

FIGURE 5. The primary standard scriptsig structure and our scriptsig structure.

FIGURE 6. The primary standard scriptpubkey structure and our scriptpubkey structure.

type ‘‘P2PKH,’’ we refer to the structure of the sender’s

script as ‘‘ScriptSigX ,’’ i.e., ScriptSig(P2PKH , SIGSKA ,

PKA). If the sender’s address type is the standard

type ‘‘P2PKH’’ and the recipient’s address type is our

type ‘‘P2SIG,’’ we refer to the one as ‘‘ScriptSigX ′,’’

such as ScriptSigSP2SIG(ScriptSig(P2PKH ,PKA), SIGSKB).

If the sender’s address type is our type ‘‘P2SIG’’ and

the recipient’s address type is the type ‘‘P2PKH,’’ we

refer to the one as ‘‘ScriptSigY ,’’ i.e., ScriptSig(P2SIG,

SIGSK ′

A
,PK ′

A,Prev_SIGSKA). If the sender’s address type and

the recipient’s address type are our type ‘‘P2SIG,’’ we refer

to the one as ‘‘ScriptSigY ′,’’ i.e., ScriptSigSP2SSIG(ScriptSig

(P2SIG, SIGSK ′

A
,PK ′

A,Prev _SIGSKA), SKB).

In Fig. 6, when the recipient’s address type is stan-

dard, we refer to the structure of the recipient’s script

‘‘ScriptPubkey’’ as ‘‘ScriptPubkeyX .’’ And, when the recip-

ient’s address type is our type ‘‘P2SIG,’’ we refer to

the structure of the recipient’s script ‘‘ScriptPubkey’’ as

‘‘ScriptPubkeyY .’’ Note that the structures of the scripts

‘‘ScriptPubkey’’ do not depend on types of other addresses.

From Fig. 5 and Fig. 6, the overheads of our address

type ‘‘P2SIG’’ toward the primary standard address type

‘‘P2PKH’’ is 69% on the lengths of ‘‘ScriptSigs,’’ when either

the sender’s address or the recipient’s address is our type

‘‘P2SIG,’’ is 140% on the length of ‘‘ScriptSig,’’ when both

of the sender’s address and the recipient’s address are our type

‘‘P2SIG.’’ On the other hand, the overhead of our address type

is 140% on the lengths of the scripts ‘‘ScriptPubkey.’’

A main reason for the overheads is the addition of

descriptions of the recipient’s signature and her public key

to the primary standard scripts. If only one public key is used

in the scripts ‘‘ScriptSig’’ and ‘‘ScriptPubkey’’ such as our

address type ‘‘P2SSIG,’’ we can eliminate the description of

the second public key (33 bytes) from ‘‘ScriptSig(Y or Y ′)’’

and the description of the hash value and related operations

(25 bytes) from ‘‘ScriptPubkeyY .’’ However, security of this

eliminated version ‘‘P2SSIG’’ type address is the same level

as ones of the official but optional P2PK or MultSig type

addresses, of which the recipient’s script ‘‘ScriptPubkey’’

includes descriptions of the recipients’ public keys. We

adopted the use of 2 public keys such that one is in the

scripts ‘‘ScriptPubkeyY ’’ and the other is in ‘‘ScriptSig(X ′ or

Y ′).’’ Thus, the proposed address type ‘‘P2SIG’’ can have the

security level for locking UTXO which is the same as one of

the primary standard address type ‘‘P2PKH.’’

B. OVERHEAD FOR NODES’ EXECUTION TIME

We estimate execution overheads of our address type P2SIG.

We focus on the process of nodes on the peer-to-peer network.

Each node on the peer-to-peer network should verify validity

of setting of each input address for each transaction, if the

node wants to construct a new block.

The verifications are executed by using an input’s (the

sender A’s) ‘‘ScriptSig’’ of a targeted current transaction

‘‘TxID02’’ and the output’s (A’s, where A was the recipient)

‘‘ScriptPubkey’’ of the previous transaction ‘‘TxID01,’’ in

VOLUME 9, 2021 24401

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

FIGURE 7. Transformation from ScriptSigY _f to ScriptSigY _f _add by the append procedure.

which the sender A received the UTXO as a recipient.

In the verification, the stack-based programming system

executes a script given by connecting the sender’s script

‘‘ScriptSig’’ of the transaction ‘‘TxID01’’ to the recipient’s

script ‘‘ScriptPubkey’’ of the transaction ‘‘TxID02.’’ Since we

wanted to estimate the overheads for node’s execution time

due to introducing our address type ‘‘P2SIG,’’ we decided

to compare execution times of variations of verifications

which can occur. There exist the following verification

procedures for 4 combinations as pairs of a type of the script

‘‘ScriptSig’’ of the transaction ‘‘TxID02’’ and a type of the

script ‘‘ScriptPubkey’’ of the transaction ‘‘TxID01.’’

The first combination is the pair of types of ‘‘ScriptSig’’

and ‘‘ScriptPubkey,’’ (ScriptSigX , ScriptPubkeyX). This

combination occurs when the type of the sender’s address

and the type of the recipient’s address on the current targeted

transaction are the standard type ‘‘P2PKH.’’

The second combination is the pair of types of ‘‘SciptSig’’

and ‘‘ScriptPubkey,’’ (ScriptSigX ′
, ScriptPubkeyY). This

combination occurs when the type of sender’s address is the

standard type ‘‘P2PKH’’ and the type of recipient’s address

is our type ‘‘P2SIG.’’

The third combination is the pair of types of ‘‘SciptSig’’

and ‘‘ScriptPubkey,’’ (ScriptSigY , ScriptPubkeyX). This

combination occurs when the type of sender’s address is

our type ‘‘P2SIG’’ and the type of recipient’s address is the

standard type ‘‘P2PKH.’’

The fourth combination is the pair of types of ‘‘SciptSig’’

and ‘‘ScriptPubkey,’’ (ScriptSigY ′
, ScriptPubkeyY). This

combination occurs when the type of sender’s address and

the type of recipient’s address are our type ‘‘P2SIG.’’

In order to estimate execution overhead of inducing our

address type accurately, we also used official operations and

script codes of the libbitcoin library as ones used in Bitcoin

Core, as much as possible. In Fig. 8, we show the outline

of our implemented procedure for executing the script, and

in Fig. 9, we also show the outline of our implemented sub-

procedure for executing the script ‘‘ScriptPubkey.’’

We created instances corresponding to scripts by applying

constructors for the ‘‘program’’ abstract data type of the

libbitcoin library, and executed instances by the ‘‘run’’

method of the libbitcoin library, in order to run the Reverse

Polish interpreter. The ‘‘run’’ method returns the updated

instance of the ‘‘program’’ abstract data type saving the stack

state, the transaction, input_index, etc. We can apply some

operations individually for the updated instance, and also

FIGURE 8. C++ like Pseudo codes of the our implement of scripts
verification procedure.

continue the ‘‘run’’ method by giving the re-updated instance

as the input.

For processing of our introduced new commands

‘‘OP_P2SIG’’ in the script ‘‘ScriptSigY ,’’ we divide the

script ‘‘ScriptSigY ’’ into two scripts called ‘‘ScriptSigY_f ’’

and ‘‘ScriptSigY_b.’’ The script ‘‘Script-SigY_f ’’ includes

recipient’s signature and the new code ‘‘OP_P2SIG.’’ The

script ‘‘ScriptSig_b’’ includes the sender’s signature and his

public key. Thus, the script ‘‘ScriptSig_b’’ becomes the same

type as ‘‘ScriptSigX ’’ or ‘‘ScriptSigY .’’ We executed the new

code by constructing an alternative script ScriptSigY_f _add

by adding an ‘‘OP_Dup’’ code, a copy of the description of

the recipient’s public key on her script ‘‘ScriptPubkeyY ,’’

an ‘‘OP_CheckSigVerify’’ code, an ‘‘OP_Hash160’’ code,

a copy of the first hash value on the recipient’s script

‘‘ScriptPubkeyY ,’’ and an ‘‘OP_EqualVerify’’ code to the

script ‘‘ScriptSigY_f ’’ as shown in Fig.7 and running a

program based on the alternative script as the Reverse

Polish interpreter. For verification of the first signature

24402 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

FIGURE 9. C++ like Pseudo codes of the our implement of ScriptPubkey
verification procedure.

of ‘‘ScriptSigY ’’ or ‘‘ScriptSigY ′,’’ we should give the

transaction information TxS constructed by deleting the first

hash value from the recipient’s ScriptPubkey of Tx to the

construction method of the ‘‘program.’’ We assume that

the procedure RemoveHash(Tx) can output the transaction

information TxS.

For processing of our introduced second new com-

mand ‘‘OP_Concatenate,’’ we also divide the script

‘‘ScriptPubkeyY ’’ into two scripts, called ‘‘ScriptPubkey-

Y_f ’’ and ‘‘ScriptPubkeyY_b.’’ The script ‘‘ScreptPubkey-

Y_f ’’ includes an ‘‘OP_Hash160’’ code, the first hash

value, an ‘‘OP_EqualVerity’’ code, an ‘‘OP_Dup’’ code, the

recipient’s public key and the new code ‘‘OP_Concatenate.’’

‘‘ScriptPubkeyY_b’’ includes the residual sequence of

the script ‘‘ScriptPubkeyY ,’’ i.e., an ‘‘OP_Hash160’’

code, the second hash value, ‘‘OP_EqualVerify’’ and

‘‘OP_ChecksSig’’ codes. For the new code execution,

we deleted the new code ‘‘OP_Concatenate’’ from the script

‘‘ScriptPubkeyY_f .’’ We created instances corresponding

to the result ‘‘ScriptPubkeyY_f ’’ by using the ‘‘program’’

constructor and executed an instance of the script ‘‘ScriptSig’’

and the script ‘‘ScriptPubkeyY_f ’’ instance by using the

‘‘run’’ command. Next, we popped two public keys, PKB
and PK ′

B from the top of the run stack, and pushed data

constructed by the string concatenation of PKB and PK ′

B on

the top of the run stack.

The run stack was passed to the interpreter before running

the instance corresponding to the script ‘‘ScriptPubkeyY_b.’’

We regarded CPU time for the above series of processing

for the script ‘‘ScriptSigY ’’ as processing time of the script

‘‘ScriptSigY .’’ We show average execution times of 10 time

TABLE 1. Execution times of 4 combinations.

executions for verification of each combination on Tab. 1.

We also show average run times except times for modifying

input scripts, in parentheses on the Table.

From Tab. 1, we can see that, in case of partial application

of our address, the execution time of verification of signature

was at most twice of one in the standard case. If the targeted

transaction has multi-inputs and only one or two our type

address exists in the inputs’ addresses and outputs’ addresses,

the overhead will become lighter.

From the result of the combination (ScriptSigY ′,

ScriptPubkeyY), when the number of outputs is no more

than the number of inputs, even if all inputs’ address and

all outputs’ addresses are our type P2SIG, the verification

execution time will be at most 2.3 times.

As mentioned above, in this experiment, we executed new

commands by interruptions of verification running and inser-

tions of some operations. If we can add the new commands to

the libbitcoin library methods, the overhead will be enable to

be reduced by smooth transfer of information used by two

program commands and two run commands. In this case,

we estimate that the overheads will be no more than ones

shown in parentheses on Tab. 1.

VIII. CONCLUSION

We pointed out the new concern for blockchain by abusing

recipient’s address of previous published transaction. Then,

we proposed a protocol for publishing transactions, and

introduced a new structure of transaction and a new

type of addresses. We implemented our proposed selective

mechanism as Bitcoin protocol. Experimental results showed

that our proposed mechanism has reasonable overheads.

As future work, we will propose and implement a wallet

mechanism for managements of the S-addresses and the

UTXO as candidates of a part of Bitcoin client software.

Next, we will also investigate criticality of our pointed

out concern for smart contract on blockchain, and try to

incorporate our proposed mechanism into the Ethereum

software.

APPENDIX A

BITCOIN ADDRESS TYPES

In Section III, we have described that there exist some address

types called P2PK (Pay to Public Key), P2PKH (Pay to Public

VOLUME 9, 2021 24403

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

Key Hash), MultiSig and P2SH (Pay to Script Hash), etc.,

in Bitcoin. In the following, we explain the P2PKH type and

the P2SH type of addresses in more detail, since those are

standard address types in Bitcoin.

In the P2PKH address type, the address addB consists of

the description of P2PKH (Pay to Public Key Hash) type, as

the prefix of addB, the hash value of the recipient’s public

key, and the checksome as the suffix of the address addB. The

checksome also is the 4 highest bytes of the hash value of

addB except for the checksome. It is used for simple checking

the correctness of the address addB.

In the P2SH address type, the recipient can set indication of

multiple signatures by multiple public keys or more complex

descriptions as a condition for transferring the UTXO. The

description of the conditions for transferring the UTXO is

called ‘‘redeem script.’’ In the P2SH type address, the hash

value of the condition ‘‘redeem script’’ is included in the

address addB, instead of the hash value of the recipient’s

public key in the P2PKH type address.

APPENDIX B

EXAMPLE OF VERIFICATION FOR BITCOIN SCRIPTS

In the following, we show the picked out descriptions of

‘‘ScriptPubkey’’ of the transaction TxID01 and ‘‘ScriptSig’’

of the transaction TxID02 from Fig. 3 and Fig. 4.

ScriptPubkey: ‘‘OP_Dup OP_Hash160 [Hash160(PKA)]

OP_EqualVerify OP_CheckSig’’

ScriptSig: ‘‘[SIGSKA][PKA]’’

In more detail, the system pushes two data elements as

[SIGA] and [PKA] of the sequence ‘‘ScriptSig’’ on TXID02,

on the stack. Next, it applies the operation OP_Dup for the

stack top data element as [PKA], which results in three data

elements as a duplicate of [PKA], [PKA], and [SIGA] on the

stack. Second, the stack top data element will be popped and

be applied the operation Hash160 function for the elements

and the return value [ResultA] will be pushed on the stack.

Third, [Hash160(PKA)]’’ will be pushed in the stack and for

the OP_EqualVerify operation, two values [Hash160(PKA)]

and [ResultA] will be popped from the stack, and if the two

values are equal, the process will continue, otherwise the

verification process will stop and return False value.

Finally, [SIGA] and [PKA] will be popped from the stack

and be checked whether the owner of [PKA] appropriately

admits the transfer of TxID02 or not. If validity of the digital

signature is verified, ‘‘True’’ value will be pushed in the stack

and the process will return with ‘‘True’’ value. Otherwise,

‘‘False’’ value will be pushed in the stack and the process will

return with ‘‘False’’ value.

APPENDIX C

EXAMPLE FOR CONSTRUCTION OF SCRIPTS FOR P2SSIG

TYPE OF S-ADDRESS

We show an example of the sender’s ScriptSig and the

recipient’s ScriptPubkey on the transaction Tx01 and her

next unlocking script ScriptSign on the transaction Tx02,

as follows. In the following, we assume that SigSKB (Tx01) =

SIGSKB .

If the recipient B wants to receive the transferring value

by commitment of the transaction TxID01, she will make her

digital signature by using her public key ‘‘PKB.’’ First, she

makes a ‘‘ScriptPubkey’’ by using her public key ‘‘PKB’’

and only one operation ‘‘OP_CheckSig.’’ Next, she makes

a digital signature with her public key ‘‘PKB’’ for the

transaction information with her ‘‘ScriptPubkey’’ in one of

output data elements of the type ‘‘Tx_Out .’’

Next, the recipient B sends her digital signature and an

output transaction information with her ‘‘ScriptPubkey’’ to

the sender. In case of the address type P2SSIG, the recipient

Bmakes her digital signature by inputting a targeted message

as the description of the current transaction TxID01 except for

inputs’ ScriptSigs, to which the description of the recipient’s

ScriptPubkey is appended. Thus, the recipient’s ScriptPubkey

occurs two times in the targeted message. One is as the

ScriptPubkey of the output in the transaction TxID01 and

the other is as the appended ScriptPubkey. Because of

this construction method, the signature cannot be used as

a counterfeit signature for any other recipient’s P2SSIG

address. Finally, the recipient B also sends her address made

from a hash value of her digital signature ‘‘SIGSKB ’’ and the

checksome, to the sender.

The sender A should check the validity of the address

sent from the recipient B using the checksome. If the

checking is success, the recipient’s signature will be checked,

otherwise the sender should require the recipient B to send

the address again. If the next checking is also success,

the third checking will examine whether the hash value of

the recipient’s signature is corresponding to the recipient’s

address, otherwise the sender A should require the recipient

B to send the recipient’s signature again.

If the third checking is also success, the sender Amakes his

‘‘ScriptSig’’ with the sender’s digital signature and his public

key ‘‘PKA’’ in addition to recipient’s digital signature and

our proposed new operation ‘‘OP_P2SSIG.’’ The operation

‘‘OP_P2SSIG’’ is to continue if the checking equality of

the hash value of the recipient’s digital signature and the

first data element of the recipient’s script ‘‘ScriptPubkey’’

is success and the verification of the recipient’s digital

signature with ‘‘PKB,’’ which is the second data element in

the recipient’s ‘‘ScriptPubkey,’’ is success, stop otherwise.

The sender A publishes the transaction information on the

peer-to-peer network. After committing of the transaction,

if the recipient B wants to transfer the value to a next

recipient, she can unlock the UTXO by making her digital

signature for a new transaction having the transaction

identification TxID01 and her ‘‘ScriptSig’’ as one information

of senders and constructing her ScriptSig with her digital

signature.

ACKNOWLEDGMENT

This article was presented at the Proceedings of the

COMPSAC 2019, Milwaukee, USA, 2019, pp.934-935.

24404 VOLUME 9, 2021

Y. Kamidoi et al.: Protocol for Preventing Transaction Commitment Without Recipient’s Authorization

REFERENCES

[1] A. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-

Currencies. Newton, MA, USA: O’relly Media, Dec. 2014.

[2] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on Ethereum

smart contracts SoK,’’ in Proc. Int. Conf. Principles Secur. Trust,

Apr. 2017, pp. 164–186.

[3] A. Back. (2002). Hashcash—A Denial of Service Counter-Measure.

[Online]. Available: http://www.hashcash.org/papers/hashcash.pdf

[4] V. Buterin. (Jan. 2014). Ethereum’sWhite Paper: A Next-Generation Smart

Contract and Decentralized Application Platform. [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper

[5] G. Chander, P. Deshpande, and S. Chakraborty, ‘‘A fault resilient consensus

protocol for large permissioned blockchain networks,’’ in Proc. IEEE Int.

Conf. Blockchain Cryptocurrency (ICBC), May 2019, pp. 33–37.

[6] CoinMarketCap. (Nov. 2020). Cryptocurrency Market Capitalizations.

[Online]. Available: https://coinmarketcap.com/

[7] C. Team. (Jan. 2019). Crypto Crime Report—Decoding Increasingly

Sophisticated Hacks, Darknet Markets, and Scams. [Online]. Available:

https://blog.chainalysis.com/2019-cryptocrime-review

[8] Y. J. Fanusie and T. Robinson. (Jan. 2018).Bitcoin Laundering: An

Analysis of Illicit Flows Into Digital Currency Services. [Online].

Available: https://www.fdd.org/analysis/2018/01/10/bitcoin-laundering-

an-analysis-of-illicit-flows-into-diigital-currency-services/

[9] Financial Services Agency, Japan and Social ICT Innovation

Division of Mitsubishi Research Institute. (Mar. 2019). Research

on Privacy and Traceability of Emerging Blockchain Based on

Financial Transactions. [Online]. Available: https://www.fsa.go.jp/

policy/bgin/ResearchPaper_MRI_en.pdf

[10] M. Haywood. (Aug. 2018). Improving Privacy Using Pay-to-End Point.

[Online]. Available: https://blockstream.com/2018/08/08/improving-

privacy-using-pay-to-endpoint/

[11] Y. He, H. Li, X. Cheng, Y. Liu, C. Yang, and L. Sun, ‘‘A blockchain

based truthful incentive mechanism for distributed P2P applications,’’

IEEE Access, vol. 6, pp. 27324–27335, Apr. 2018.

[12] S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey,

‘‘Measuring ethereum network peers,’’ in Proc. Internet Meas. Conf.,

Oct. 2018, pp. 91–104.

[13] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Online]. Available: https://bitcoin.org/bitcoin.pdf

[14] R. Pass and E. Shi, ‘‘FruitChains: A fair blockchain,’’ in Proc. ACM Symp.

Princ. Distrib. Comput., Jul. 2017, pp. 315–324.

[15] J. Song, Programming Bitcoin: Learn How to Program Bitcoin from

Scratch. Newton, MA, USA: O’reilly Media, Mar. 2019.

[16] N. Szabo. (1997). Formalizing and Securing Relationships on Public

Networks. [Online]. Available: https://nakamotoinstitute.org/formalizing-

securing-relationships/

[17] K. Rosenbaum, Grokking Bitcoin. Shelter Island, NY, USA: Manning

Publications, May 2019.

[18] R. Yamauchi, Y. Kamidoi, and S. Wakabayasi, ‘‘A protocol for preventing

transaction commitment without Recipient’s authorization on blockchain,’’

in Proc. IEEE 43rd Annu. Comput. Softw. Appl. Conf. (COMPSAC),

Jul. 2019, pp. 934–935.

[19] R. Zhang, R. Xue, and L. Liu, ‘‘Security and privacy on blockchain,’’ ACM

Comput. Surveys, vol. 52, no. 3, Jul. 2019, Art. no. 51.

[20] S. Underwood, ‘‘Blockchain beyond bitcoin,’’ Commun. ACM, vol. 59,

no. 11, pp. 15–17, Oct. 2016.

[21] H. Watanabe, S. Ohashi, S. Fujimura, A. Nakadaira, K. Hidaka, and

J. Kishigami, ‘‘Niji: Bitcoin bridge utilizing payment channels,’’ Proc.

IEEE Int. Conf. Blockchain, Jul./Aug. 2018, pp. 1448–1455.

YOKO KAMIDOI (Member, IEEE) received the

M.E. and Ph.D. degrees in systems engineering

from Hiroshima University, Hiroshima, Japan,

in 1991 and 1994, respectively. She is currently

an Assistant Professor with the Graduate School

of Information Sciences, Hiroshima City Univer-

sity, Hiroshima. Her research interests include

information sharing on distributed systems, secure

computing protocols, and privacy preserving data

publishing.

RYOUSUKE YAMAUCHI received the B.S.

degree in information sciences from Hiroshima

City University, Hiroshima, Japan, in 2019. His

research interest includes secure protocols for

blockchain.

SHIN’ICHI WAKABAYASHI (Member, IEEE)

received the the B.E. degree in electrical engineer-

ing and the M.E. and Ph.D. degrees in systems

engineering from Hiroshima University, in 1979,

1981, and 1984, respectively. He was a Researcher

with the Tokyo Research Laboratory, IBM Japan

Ltd., from 1984 to 1988. From 1988 to 2003,

he was an Associate Professor with the Faculty

of Engineering, Hiroshima University. Since 2003,

he has been a Professor with the Graduate School

of Information Sciences, Hiroshima City University. His research interests

include VLSI design, VLSI CAD, and combinatorial optimization.

VOLUME 9, 2021 24405

