
A Protocol for Secure Public Instant Messaging
(Extended Version)?

Mohammad Mannan and Paul C. van Oorschot

School of Computer Science
Carleton University, Ottawa, Canada

Abstract. Although Instant Messaging (IM) services are now relatively
long-standing and very popular as an instant way of communication over
the Internet, they have received little attention from the security research
community. Despite important differences distinguishing IM from other
Internet applications, very few protocols have been designed to address
the unique security issues of IM. In light of threats to existing IM net-
works, we present the Instant Messaging Key Exchange (IMKE) protocol
as a step towards secure IM. A discussion of IM threat model assump-
tions and an analysis of IMKE relative to these using BAN-like logic
is also provided. Based on our implementation of IMKE using the Jab-
ber protocol, we provide insights on how IMKE may be integrated with
popular IM protocols.

1 Introduction and Overview

Instant Messaging (IM) is a popular Internet based application enabling indi-
viduals to exchange text messages instantly and monitor the availability of a list
of users in real-time. Starting as a casual application, mainly used by teenagers
and college students, IM systems now connect Wall Street firms [15] and Navy
warships [14]. The Gartner Group predicts that IM traffic will surpass email traf-
fic by 2006 [49]. A survey report from the Radicati Group suggests that 85% of
businesses use public IM services but only 12% use security-enhanced enterprise
IM services and IM-specific policies [26].

The basic protocols currently used in popular public IM systems (e.g. AOL,
Yahoo!, MSN and Google Instant Messenger) are open to many security threats
[35]. Relying solely on SSL-based solutions – the most common security protocol
of corporate IM systems – for security in public IM services has major limitations,
e.g., messages may not be private when they go through the IM server [27]. The
shortcomings of public and business IM protocols highlight the need of a secure
IM protocol.

Contributions. We present a novel protocol called Instant Messaging Key Ex-
change (IMKE) for strong authentication and secure communications (see Table
3 for definitions) in IM systems. IMKE enables mutual strong authentication
? Version: January 17, 2006. Contact author: mmannan@scs.carleton.ca. This is the

extended version of [37].



2

between users and an IM server, using a memorable password and a known
server public key. IMKE provides security (authentication, confidentiality and
integrity) for client-server and client-client IM connections with repudiation.
Although pairs of users generally share no secret between themselves, IMKE
enables secure and private communications among users through a trusted IM
server, without revealing the contents of users’ messages to the server.

An analysis of the protocol in terms of security using a BAN (Burrows-Abadi-
Needham)-like logic [13] is provided.1 The protocol has also been tested (with no
flaws found) by the AVISPA (Automated Validation of Internet Security Proto-
cols and Applications) formal analysis tool [1]. IMKE may be implemented using
any well-known public key cryptosystem (e.g. RSA, ElGamal, elliptic curve) that
supports encryption, without requiring any additional special constraints (unlike
e.g. SNAPI [33]) for a safe protocol run.2 In contrast, the majority of existing
Password Authentication and Key Exchange (PAKE) protocols which require no
known server public key are based on Diffie-Hellman (DH)-based key agreement;
these must be carefully implemented to avoid many known attacks which exploit
the structure of many choices of parameters in DH-based key agreement (e.g.
[31], [32]). Although IMKE has been designed as a secure IM protocol, it may
also provide an alternative to other two- and three-party PAKE protocols (e.g.
EKE [6]) beyond IM. IMKE may be used in server-mediated peer-to-peer (P2P)
communications as well.

We have implemented a prototype of IMKE using the Jabber open-source IM
protocol [48], and measured the execution performance. Although implementing
IMKE requires changing both the IM server and the IM client, our implemen-
tation provides evidence that IMKE may be integrated with existing public IM
protocols without a large implementation effort, and keeping underlying mes-
saging structures intact.

Scope. Some vendors provide IM services for mobile devices. The Short Messag-
ing System (SMS) was created as part of the Global System for Mobile (GSM)
Communications Phase 1 standard. IM in mobile devices, SMS, IRC, group chat,
and chat rooms (see [35] for definitions) are beyond the scope of this paper.

IM systems with message logging on the server side is a required feature
at some organizations (e.g. financial firms for regulatory reasons, such as the
Sarbanes-Oxley Act [53]). The idea of mobile IM, introduced by Issacs et al. [25],
is establishing a foothold on major messaging systems; AIM supports login from
multiple devices at a time to enhance user mobility. These features, although
useful, are out of scope of this paper.

Our main focus is the (one-to-one) PC-to-PC messaging, which is the dom-
inating feature of all IM systems. IM services mainly targeting corporate users,
such as Yahoo! Business Messenger, are not fully analyzed in this paper (in

1 We do not claim to give a full proof of the security of IMKE, and in fact, such a paper
would be more appropriate for a conference other than Financial Cryptography and
Data Security.

2 However, general requirements for secure choice of public key parameters must of
course be fulfilled (e.g. see [2]).



3

part because complete documentation of security features in these products is
not publicly available). As the default IM clients discussed here are mainly Win-
dows based, Windows is generally implied to be the underlying operating system
(OS) when another is not explicitly mentioned.

Security and privacy issues related to IM can be categorized as technical and
social. Technical threats arise from inherent system design and implementation
bugs. Social issues include: divulging sensitive information to strangers or com-
petitors using IM, impacts of IM on personal relationship and workplace, etc.
We deal only with the technical issues of IM (keeping usability in context).

Organization. The sequel is organized as follows. §2 outlines motivation for
IMKE and related work. In §3, we briefly discuss threats considered in IMKE,
and list terminology, end user goals, and long- and short-term secrets of IMKE.
The protocol messages are discussed in §4. §5 provides our IM threat model and
a partial security analysis. The analytical performance of IMKE is discussed in
§6. Implementation issues are briefly discussed in §7. §8 concludes.

2 Motivation and Related Work

We now discuss the motivation for IMKE, similarities and differences of IMKE
with existing secure IM protocols and two- and three-party PAKE protocols.

Relationship of IMKE to Pluggable and Independent Secure IM Pro-
tocols. A pluggable security protocol – i.e. one that is implemented in a third-
party client “add-on module” without requiring any changes to popular IM
clients and servers – could easily be deployed at the client-end in addition to
default IM clients. Therefore several initiatives, e.g., Off-the-record messaging
[9], Gaim-e [40], have been taken to make IM secure using pluggable security
protocols. Limitations of those proposed to date include: client-server messages
remain plaintext, and the requirement of long-term client private keys, whose
secrecy must be maintained.

Independent secure IM protocols developed in practice, e.g., Secure Internet
Live Conferencing (SILC) [46], iGo Incognito [24], do not appear to have been
peer-reviewed in an academic sense, nor designed to be integrated with popular
IM protocols. A lightweight protocol which can easily be embedded into existing
IM protocols (by IM service providers, changing both the IM client and server)
seems practical to achieve security without limiting usability or requiring a large
implementation effort. We propose IMKE to achieve such objectives. Although
IMKE requires changes in both the client and server software, users do not need
to maintain or carry any long-term public key. IMKE also secures client-server
IM communications.

Relationship of IMKE to Two- and Three-Party Protocols. IM is es-
sentially a three-party system. The IM server’s main role is to enable trusted
communications between users. In traditional models, the third-party is often
considered a disinterested party [5]. In contrast, the IM server plays an active
role in users’ communications (e.g. forwarding users’ messages). Therefore we



4

take advantage of the presence of an active IM server in IMKE, e.g., by using
the server as a trusted public key distribution center for clients.

Another major difference of IMKE with other three-party systems is that,
although the IM server in IMKE helps establish a secure session between two
clients, the server does not know the session key shared between the clients.
This is a desirable property for consumer IM networks; users may want their
conversations to be inaccessible to the IM server even though they must trust
the server for login, sharing user profiles, etc.

In a typical three-party case, two users start a session3 only when they need
to communicate. The IM scenario is a bit different in the following way: users
authenticate themselves only when they login to the IM server; then users initiate
sessions with other online users whenever they wish to – i.e. logging in to the IM
server does not necessarily precede IM sessions (e.g. text messaging, file transfer).

Two-party PAKE protocols that use a known server public key (e.g. [23], [30])
have similarities with IMKE. These, as well as two-party password-only protocols
(e.g. [6]) may be transformed into a three-party protocol in the following way
[11, p.267]: run two two-party protocols between the server and each of the users;
then use the established secure channel to distribute communication primitives,
e.g., public keys among users, thereby providing the communicating users a
secure channel. The advantage of this approach is that several PAKE protocols
are well-scrutinized, and some even come with proofs of security. However, we
are interested in more efficient practical protocols, whereas these solutions may
require up to three extra messages per protocol run – one for sending a client’s
public key to the server and two for verifying the public key. Also, even minor
modifications to an existing protocol may invalidate its security attributes (not
to mention any related security proofs).

Relationship of IMKE to EKE and Similar Protocols. IMKE has simi-
larities in setup and goals with many PAKE protocols related to or inspired by
EKE [6], especially with those that use a known server public key. We now high-
light some of these similarities and differences, with focus on the PAKE phase
(see §4) of IMKE.

An effective way to break many implementations of EKE is the partition
attack [6], [12]: a special class of the offline dictionary attack, where an adversary
tries to partition the password-space into feasible and infeasible sets by using
information gathered (passively, from the wire) from a protocol run; the correct
password may be recovered from the feasible set of passwords in logarithmic
time after observing a limited number of valid protocol runs. If the protocol
contains verifiable text, then a partition attack can be mounted. As a public key
usually contains distinct redundancy, many implementations of EKE (mainly
RSA-EKE) are susceptible [44]. IMKE avoids this general class of risk by not
using the password as a cryptographic key.

When a password is encrypted using a known public key, generally con-
founders or random nonces are used to avoid offline dictionary attacks. In many

3 i.e. authenticating themselves to a trusted server, and each receiving a server-
generated client-client session key.



5

variations of these protocols, data being encrypted using a public key may not
always fit into one block; so in actual implementations, these protocols may
require multiple public key encryptions (and subsequent decryptions). In con-
trast, IMKE always encrypts small (e.g. 128-bit) random numbers in public key
operations, which always fit into one block of any public key cryptosystem.

An important idea behind IMKE is the following. We avoid the number
theoretic relationships between a public key and a password, mainly to avoid
security issues in this regard. IMKE uses a known server public key to encrypt
a random (session) key (e.g. 128 bits) and uses that key to encrypt the (weak)
user-password and the user’s dynamic public key. This enables IMKE to avoid
the partition attack because to discover redundancy in a public key, now the
attacker must search for the correct session key which is generated from a large
key space instead of the relatively small password space. Also, as clients’ public
keys are generated dynamically for every login attempt, users do not need to
maintain their own long-term public keys.

In summary, the design of IMKE is inspired by following considerations: (1)
existing IM security solutions are inadequate to address IM threats; (2) existing
PAKE protocols do not directly fit into the IM communications model; and (3) a
lightweight security protocol, which can conveniently be embedded into popular
IM protocols without breaking underlying messaging structures, is essential for
a greater integration.

Comparison of IMKE with other IM Implementations. We now compare
our IMKE implementation (see §7) with selected other secure IM implementa-
tions. The metrics of our comparison are:

– Strong PAKE (whether the authentication mechanism is a strong password
protocol; see Table 3 for definition);

– C-C Message Protection (whether the client-to-client message authentication
and encryption are supported);

– C-S Message Protection (whether the client-to-server message authentication
and encryption are supported);

– Mobility (whether users can log in to the IM server with only a password);
– Repudiation (whether users can repudiate a message);
– No Client Change (whether the requirement of any extra client-side software

other than the IM client is avoided, or whether the IM client can be used
unmodified); and

– No Server Change (whether the requirement of any changes to the IM server
is avoided).

We compare SSL/TLS based enterprise IM clients (e.g. Reuters Messaging),
AIM using client certificates, IMSecure/Trillian (self-signed certificates), Off-
the-Record (OTR) Messaging (requires long-term signature keys), GPG-based
Gaim-e, and SILC with IMKE. No documentation was found for Gaim-e except
its open-source implementation. We do not include iGo Incognito in our com-
parison for the lack of documentation. Table 1 summarizes the comparison of
IM implementations.



6

Strong
PAKE

C-C
Message
Protection

C-S
Message
Protection

Mobility Repudiation No
Client
Change

No
Server
Change

SSL/TLS X X X X X
AIM Cert. X X X
IMSecure X X X
OTR X X X
Gaim-e X X X
SILC depends? X depends?

IMKE X X X X X

? SILC supports client-to-client message authentication and encryption, and repudia-
tion, depending on client settings.

Table 1. Comparison of IM implementations

From the above discussion, the distinguishing features of IMKE are:

1. It is the only IM protocol to support strong PAKE although all IM protocols
rely on passwords.

2. It secures client-client and client-server messages.
3. Although it requires changes in both the client and server software, the users

do not need to maintain or carry any long-term public keys or certificates.
4. IMKE is not a messaging protocol. It does not specify anything beyond se-

curity attributes of an IM protocol. We argue that IMKE can be embedded
into existing IM protocols without breaking the underlying messaging struc-
tures. This claim is supported by our implementation (§7), which offers an
example of embedding IMKE with the XML-based Jabber protocol.

3 Setup for IMKE

In this section, we discuss threats considered in IMKE. We list the notation and
terminology used, end user goals, and long- and short-term secrets for IMKE.

3.1 Threats Considered in IMKE

Table 2 summarizes significant IM threats and whether a threat is addressed
by IMKE. We defer a more concrete discussion of the IM threat model to §5.1.
Details of these threats are discussed elsewhere (see [34]).

IM connections generally involve a client and a server, or two clients. Most
IM threats arise from these connections being easily compromised. IMKE aims
to provide security (confidentiality, authentication and integrity protection) for
all IM connections. Impersonation attacks based on compromised connections
are also prevented in IMKE. The security related goal of availability is beyond
the scope of our work – i.e. denial of service (DoS) attacks against IM clients or
the server are not fully addressed by IMKE. However, IMKE helps the server and
clients to limit the extent of these attacks. Replay of captured messages (from



7

Threats Addressed by IMKE

Connection security X
Denial of service (DoS) Partial

Replay of messages X
Impersonation of IM users Xa

Propagation of IM worms Partial b

DNS spoofing to setup rogue IM servers X
Insecure default settings on IM clients ✗

Sharing IM features with other applications ✗

URI handlers (aim, ymsgr) ✗

Plaintext registry and archived messages ✗

a Assuming no theft of users’ passwords, including, e.g., through the use of keyloggers.
b IMKE helps complementary techniques (e.g. throttling file transfer and URL mes-

sages, and challenging the sender of a file or URL message with an automated Turing
test; see [36] for details) to be more effective by securing IM connections.

Table 2. Threats to IM and those addressed by IMKE

an ongoing session or older sessions) is also detected in IMKE. An attacker
may spoof DNS entries in a user machine (the local DNS cache) to redirect all
communications to a rogue IM server. IMKE prevents this attack from being
successful by authenticating the IM server to the users by using a password, and
verifying the known server public key (online).

Default settings can be dangerous, if not set appropriately. Sharing IM fea-
tures with other applications increases user-interactivity; nevertheless, it intro-
duces significant security risks. Custom URI handlers may open up new methods
of scriptable attacks on IM systems. Plaintext registry values and archived mes-
sages may expose security sensitive information to malicious programs. IMKE
provides no protocol level protection against these attacks.

3.2 Notation, Goals and Secrets

In this section, we specify notation and terminology (Table 3), secrets, end-user
goals in IMKE.

A password (user-chosen, generally assumed to be weak) is shared between
an IM server and a user. This is the only long-term secret for users and they
choose their initial passwords during the IM account setup (using an out-of-band
method). A user may change the password whenever he/she wishes to do so. The
server stores original passwords.4 The other long-term secret is the IM server’s
private key (for decryption). A server public key generally remains valid for a

4 In many password-verifier based PAKE protocols (e.g. A-EKE [7], SRP [55]) the
server stores only an image (verifier) of a password to minimize the impact of the
password-verifier file exposure. However, such a disclosure allows feasible brute force
attacks on passwords [55]. Generally, verifier-based protocols require more compu-
tation than their plaintext variants; Boyd and Mathuria [11, p.248] note this feature
as “not necessarily a significant advantage”.



8

A, B, S Two IM users (Alice and Bob respectively), and the IM server.

IDA User ID of A (unique within the IM service domain).

PA Password shared by A and S.

RA Random number generated by A.

KUA, KRA A’s per-login public and private key respectively.

{data}K Symmetric (secret-key) encryption of data using key K.

{data}EA Asymmetric (public-key) encryption of data using A’s public key KUA.

X, Y Concatenation of X and Y .

Ks
AS Symmetric (s) session (encryption/decryption) key shared by A and S.

Km
AS Symmetric MAC key shared by A and S (m is short for MAC).

[X]AS MAC output of data X under key Km
AS .

“Strong” pass-
word protocol

A passive or active attacker should be unable to gather enough infor-
mation to launch an offline dictionary attack even if a relatively weak
password is used [6].

Secure comm-
unications

Communications where authentication, integrity and confidentiality are
achieved.

End-to-end
security

Securing messages cryptographically across all points between an origi-
nating user and the intended recipient.

Repudiation A way to ensure that the sender of a message can (later) deny having
sent it. Some [9] believe this is important for casual IM conversations.

Forward
secrecy

The property that the compromise of long-term keys does not compro-
mise previously established session keys.

Table 3. Notation and terminology used in IMKE

long time (a year or more), and a key renewal is done by a client-update, i.e. by
sending users the updated key when they attempt to log in. Clients’ private keys
(for decryption), session keys, and MAC keys are short-term secrets in IMKE.
We assume that IM clients are installed with the digital certificate of the IM
server (or the certificate is embedded in IM clients).

End-user Goals. The following are the security-related goals (from end-users’
perspectives) in IMKE. Terms denotated by asterisk (∗) are defined in Table 3.
Fulfilling the end-user goals corresponds to the threats we consider in Table 2.
We outline how IMKE achieves these goals in §5.

G1. Assurance of server’s and clients’ identities to the communicating parties
without exposing clients’ passwords to offline dictionary attacks.

G2. Secure communications? between a client and the IM server.
G3. Secure communications for messages directly sent between clients (cf. G5).
G4. Forward secrecy and repudiation.?

G5. End-to-end security? for messages that are relayed through the IM server.
G6. Detection of replay attacks on clients and the IM server.

4 The IMKE Protocol

We now introduce the IMKE protocol, along with a discussion on protocol mes-
sages. We defer a more specific security analysis of IMKE messages to §5.2.



9

An IM session (e.g. text messaging) between two users is established in the
following phases. A and B first authenticate to the server S, then S distributes
A’s public key to B and vice-versa, and then the users negotiate a session key to
follow an IM session. Table 4 summarizes the protocol messages for these phases.
Assume for now that fi denotes a one-way cryptographic hash function (publicly
known, see further discussion below). We describe the protocol messages in the
following way: (1) the password authentication and key exchange, and client-
server communications, and (2) client-client communications.

Phases Message
Labels

Messages

Authentication and Key
Exchange

a1 A→ S : IDA, {KAS}ES , {KUA, f1(PA)}KAS

a2 A← S : {RS}EA , {f2(PA)}KAS

a3 A→ S : f3(RS)

Public Key Distribution
b1 A← S : {KUB , IDB}Ks

AS
, [KUB , IDB ]AS

b2 B ← S : {KUA, IDA}Ks
BS

, [KUA, IDA]BS

Session Key Transport

c1 A→ B : {KAB}EB , {RA}KAB

c2 A← B : {RB}EA , {f6(RA)}KAB

c3 A→ B : f7(RA, RB)

Table 4. Summary of IMKE messages (see Table 3 for notation)

4.1 PAKE and Client-Server Communications

In the PAKE phase, A and S authenticate each other using the shared password
PA, establish a secret session key, and transport a verified dynamic public key
from A to S. The server’s public key is verified online, using e.g., the public
password method [23], whereby users verify the hash of the server public key
represented in plain English words. Then the login process between A and S
proceeds as follows:

1. A generates a dynamic public/private key pair (KUA, KRA), and a random
symmetric key KAS , and then encrypts KAS with the server’s public key. A
sends message a1 (see Table 4 for message labels) to S.

2. S calculates f1(PA) independently (S looks up PA using IDA), compares it
with the corresponding value received from message a1, and disconnects if
the two quantities are unequal. Otherwise, S generates a random challenge
RS and responds with a2.

3. A calculates f2(PA) independently and compares it with the corresponding
value received from message a2, and disconnects if the two quantities are
unequal. Otherwise, A calculates the session key (encryption key) Ks

AS and
MAC key Km

AS as in (4.1), and responds with a3.

Ks
AS = f4(KAS , RS), Km

AS = f5(RS ,KAS) (4.1)



10

4. S independently calculates f3(RS) and compares it with the quantity re-
ceived in message a3. If they mismatch, S disconnects; otherwise, S also
calculates Ks

AS and Km
AS as in (4.1). S now indicates A a successful IM

client login using a message of the form (4.3).

After authentication, a client and server communications include, e.g., a
server sends a user’s contact list, a client requests to communicate with other
users. To exchange data, A and S use:

A→ S : {ClientDataA}Ks
AS

, [ClientDataA]AS (4.2)

A← S : {ServerData}Ks
AS

, [ServerData]AS (4.3)

Caveats. The functions f1 and f2 must differ; otherwise, if an attacker can
replace KUS in A’s system (assuming the client machine is compromised, and
the server public key is improperly verified5), he can deceive A without knowing
PA, i.e. the attacker can make A readily believe that she is communicating with
the legitimate server. Nevertheless, even when f1 and f2 differ, replacing KUS

with the attacker’s public key in a user’s machine enables an offline dictionary
attack on PA. Having different f1 and f2 makes the attacker’s active participation
in the protocol harder.

RS and KAS must be large enough (e.g. 128-bit) to withstand an exhaustive
search. A must encrypt KUA in message a1. Otherwise the following attack may
succeed. Suppose an adversary generates a new private-public key pair, and is
able to replace KUA with the fraudulent public key in message a1; this enables
the adversary to decrypt RS in a2 and send a correct reply to S in a3. Hence,
IMKE requires the secrecy of A’s public key in the PAKE phase. Examples of
secret “public keys” exist in the literature (e.g. [22], [8]). At the end of the
PAKE phase, A and S zero out KAS and RS from the program memory to help
in achieving forward secrecy (see §5.3).

The duration of the session key (Ks
AS) should be set carefully. This is impor-

tant for clients in an always-connected mode, wherein clients stay logged in to S
for a long period of time (e.g. days or weeks). A new session key should be nego-
tiated after a certain period (e.g. a couple of hours) depending on the expected
security level and size of the session key (e.g. a shorter period for 80-bit keys
than 128-bit keys) to reduce consequences from cryptographic (e.g. brute-force)
attacks on the key. To do so, A and S exchange two random values KAS1 and
RS1 in the following way and generate the new session key and MAC key as
before (cf. (4.1)). Either A or S can begin the key renewal process. The initiator
must stop sending any messages before the new keys are established.

A→ S : {{KAS1}ES
}Ks

AS
, [{KAS1}ES

]AS (4.4)

A← S : {{RS1}EA
}Ks

AS
, [{RS1}EA

]AS (4.5)

5 e.g., in the public password method [23], a user may approve a wrong sequence of
English words by mistake.



11

4.2 Client-Client Communications (Direct and Relayed)

Client to client communications include, e.g., server mediated/relayed messages,
file transfer, audio/video chat. If A wants to send ClientDataA to B (both must
be logged in to S), she first sends her request to communicate with B to S (using
message type (4.2)), and then the messages below follow:

1. A and B receive the other party’s current dynamic public key from S through
messages b1 and b2. Note that B and S authenticate each other and derive
Ks

BS and Km
BS in the analogous way described above for A.

2. Having each other’s current public key, A and B exchange messages c1, c2
and c3. Then A and B derive the session key Ks

AB and MAC key Km
AB :

Ks
AB = f8(KAB , RB), Km

AB = f9(RB ,KAB) (4.6)

3. Now, A sends ClientDataA to B:

A→ B : {ClientDataA}Ks
AB

, [ClientDataA]AB (4.7)

Caveats. Although client-to-client connection setup messages (c1, c2 and c3) can
be exchanged directly between A and B, we suggest they be relayed through the
server using messages (4.2, 4.3) – i.e. with the additional encryption and MAC –
to reduce threats from DoS attacks on clients. However, while relaying the setup
messages, a malicious IM server can launch a typical man-in-the-middle attack
in the following way. When A notifies S that she wants to communicate with B,
S generates a public key pair for B and distributes the rogue public key to A,
and vice-versa. Now S can impersonate A to B and vice-versa, and thereby view
or modify messages exchanged between the users. Apparently, if users exchange
the connection setup messages directly, this attack could be avoided; but, if A
and B get each other’s network address for direct communication from S (which
is the most usual case), then this attack is still possible. The attack is made
possible – albeit detectable (see below) – by the facts that, (1) pairs of users
do not share any long-term secret, and (2) they do not use any authenticated
(long-term) public key. Note that, this is an active attack where the server needs
to participate in a protocol run online.

In general, IM accounts are anonymous, i.e. users can get an IM account
without giving explicit identification information to the server.6 Therefore, the
motivation to launch the aforementioned man-in-the-middle attack against ran-
dom users appears less rewarding for the server. In a public IM service, if the
server launches this attack against any pair of users, the attack could be ex-
posed, e.g., if that pair attempts to verify their (per-login session) public keys
through, e.g., a dynamically updated web site or another service. In contrast, if
using SSL (see §1), the server has direct access to end-user content, and such an
attack is not necessary. Complex methods, e.g., the interlock protocol [47], may
6 From the IP address of a particular user, the server may be able to retrieve the

user’s location in many cases (e.g. [43]), and thereby associate an IM account to
some (albeit indirect) identifying attributes of a real-world user.



12

also be considered to expose an intruding server. An area of future research is
how to reduce the trust assumptions required on the server, and yet still have
an efficient relaying protocol.

At the end of the session key transport (i.e. after c3), A and B also zero out
ephemeral values RA, RB and KAB from the program memory. Message (4.7)
is used to send ClientDataA directly from A to B. For relaying data through
the server, the same message type can be used. If two clients communicate for a
long time (in a session), they may re-negotiate a session key (and a MAC key)
in a similar way as described for the client-server key renewal.

5 Security Analysis

In this section, we provide a partial BAN-like (Burrows-Abadi-Needham [13])
analysis intended to provide a baseline of confidence in the security of IMKE.
The setup for our analysis, and other security properties of IMKE are also dis-
cussed. While BAN analysis is somewhat informal in certain aspects and is well-
known to have shortcomings (e.g. [10]), it is nonetheless helpful in explaining
the reasonings behind security beliefs of protocol designers, and often leads to
security flaws being uncovered. However, a more rigorous security analysis as
well as a proof of security of IMKE using alternate (non-BAN) techniques (e.g.
Bellare-Rogaway [4]) would be preferable to provide supplementary confidence.
(Note however, that such a proof does not necessarily guarantee security; see
Koblitz and Menezes [28] for an interesting analysis of provable security.) We
thus consider the BAN-like analysis to be a first step.

As an important additional confidence-building analysis step, we have had the
protocol tested using the AVISPA (Automated Validation of Internet Security
Protocols and Applications) [1] formal analysis tool. The AVISPA tool claims to
be a push-button, industrial-strength technology for the analysis of large-scale
Internet security-sensitive protocols and applications. The tool did not to find
any attack against IMKE.

5.1 Setup for the Analysis

Table 5 lists definitions used in the IMKE analysis (borrowed in part from Bur-
rows et al. [13]). Table 6 lists the technical sub-goals of IMKE which are, although
idealized, more concrete and specific than the end-user goals (recall §3.2), and
are of the type which can be verified from a BAN analysis point of view. The
analysis in §5.2 shows how IMKE achieves the technical sub-goals, and leading
to the end-user goals. We also provide operational assumptions and an informal
IM threat model for IMKE.

IM Threat Model and Operational Assumptions. A threat model identi-
fies the threats a system is designed to counter, the nature of relevant classes of
attackers (including their expected attack approaches and resources, e.g., tech-
niques, tools, computational power, geographic access), as well as other envi-
ronmental assumptions and conditions. Our IM threat model is not what would



13

A believes X User A behaves as if X is true.
A once said X User A at some past time sent a message including X.
X is fresh A message X is said to be fresh if (with very high probability) it has not

been sent in a message at any time before the current protocol execution.
A controls X User A is an authority on X (she has jurisdiction over X) and should be

trusted on this matter.

Table 5. BAN-like definitions used in the IMKE analysis

T1. A and S believe that they share a (secret) password PA.?

T2. A believes that she is communicating (in real-time) with a other party that
knows S’s private key.

T3. S believes that it is communicating (in real-time) with a other party that
knows A’s private key.

T4. A believes that she is communicating (in real-time) with a other party that
knows B’s private key.

T5. B believes that he is communicating (in real-time) with a other party that
knows A’s private key.

T6. A and S believe that they share a (secret) session key and a MAC key.
T7. A and B believe that they share a (secret) session key and a MAC key.

? See assumption A1 below; this goal is fulfilled when both parties demonstrate knowl-
edge of the pre-established password PA.

Table 6. Technical sub-goals of IMKE

typically be expected of a formalized (academic) threat model, but it nonethe-
less provides a practically useful and clear definition of what types of attacks we
intend that IMKE provides protection against. Now we list the assumptions in
our IM threat model.

M1. The IM client software is trusted. By trusted we mean the IM client soft-
ware has not been tampered with and the underlying operating system pro-
tects the IM client’s memory space (RAM and virtual memory) from other
programs (including malicious programs). This assumption is required as
ephemeral secret keys are stored in the program memory.

M2. Communications between IM servers are secure using e.g., encryption and
message authentication. IMKE does not provide security for server-to-server
messaging.

M3. Software and hardware keyloggers are not installed in a client system.
M4. Clients’ keys stay only in program memory which are zeroed out while

terminating the program.
M5. The server public key stored in client machines is verified at each login

attempt (using e.g. the public password method [23]).
M6. Underlying communication channels need not be secure; attackers are as-

sumed capable of viewing, altering, inserting and deleting any bitstream
transfered from IM clients or servers.

M7. We consider realistic attackers [23] who can exhaustively search over a
password dictionary (e.g. 264 computational steps) but cannot defeat (in a



14

reasonable amount of time) the cryptographic primitives (e.g. 280 computa-
tional steps) used in the protocol.

We provide a few additional comments related to the above assumptions.
Modern operating systems provide reasonable protection for process-memory
spaces; yet, accessing a process’s memory from the context of a compromised
privileged (root or administrator) process is not difficult [3]. Zeroing out memory-
resident secrets is not trivial (see [17]) as well. An attacker can capture a user’s
password using a keylogger, i.e. a program or hardware device specialized in (se-
cretly) recording keystrokes. Very few, if any, security guarantees can be provided
in environments susceptible to keyloggers. However, threats from keyloggers are
not insignificant (e.g. [51]). Also, attackers may collect passwords using social
engineering techniques (e.g. [42]), or malicious software that scans memory (or
the Windows registry). Malicious programs can be used to control a large num-
ber of machines in a high-speed Internet environment. The availability of such
a powerful computing platform increases attackers ability to challenge crypto-
graphic primitives. Therefore, meeting the threat model assumptions in reality
is not trivial. Nonetheless, these challenges are faced by many security protocols
in practice.

We now list operational assumptions of IMKE.

A1. Each IM user shares a user-chosen password only with the legitimate IM
server (e.g. established a priori using out-of-band methods), and the pass-
word is not stored long-term on the user machine.

A2. The IM server’s valid, authentic public key is known to all parties.
A3. Each party controls the private key for each public key pair they generate,

i.e. the private key is not known or available to other parties.
A4. IMKE clients use fresh keys and challenge values where specified by the

protocol, e.g., they do not intentionally reuse old values.
A5. The IM server relays clients’ public keys correctly.

5.2 Analysis of IMKE Messages

We analyze IMKE messages and their possible implications in different phases
of the protocol run. Refer to the earlier protocol description (§4) for the actions
each party takes upon receiving a message. We start by analyzing message a1
(recall the message labels in Table 4). Upon successful verification of f1(PA) by
S, the locally calculated f1(PA) by S is the same as the f1(PA) retrieved from
a1. Message a1 thus implies the following. (1) A believes that KAS and KUA

are fresh, as they are freshly generated by herself. (2) Before the protocol run, S
knows that it shares PA with A. Here, S gains the evidence that the keys KAS

and KUA which message a1 links to PA, were generated by and associated with
A. Hence, S believes the identity of A, which partially satisfies goal T1. (3) S
believes that A once said that KAS and KUA are fresh. (4) S believes that A
has a valid copy of its public key KUS .

The successful verification of message a2 means that the locally calculated
f2(PA) by A is the same as the f2(PA) decrypted from a2. This implies the



15

following. (1) A believes that S knows PA, thus satisfying goal T1. (2) Knowing
the private key KRS enables S to decrypt KAS and KUA in message a1. S
encrypts f2(PA) using KAS ; hence, the successful verification of f2(PA) by A
implies that A is communicating (in the current protocol run) with a party that
knows S’s private key, thus satisfying goal T2. (3) A believes that the current
message a2 is fresh as KUA is fresh; this provides assurance to A that the current
protocol run is not a replay. (4) A believes that S once said that RS is fresh.

The successful verification of message a3 by S means that the locally cal-
culated f3(RS) by S is the same as received in a3. This and the login success
response from S to A imply the following. (1) S receives the evidence that A
knows her private key KRA, otherwise A could not decrypt RS in message a2.
Hence, goal T3 is established. (2) The current message a3 is fresh as RS is fresh;
this guarantees S that the current protocol run is not a replay. (3) In message a2,
A retrieves RS using her dynamic private key for the current protocol run. At
this point only S has a copy of A’s public key. Therefore from the login success
message, A believes that S possesses a valid copy of KUA. (4) As both A and
S derive the session key Ks

AS and MAC key Km
AS from their ephemeral shared

secrets (KAS and RS), goal T6 is achieved.
From messages b1 and b2, A and B get each other’s public keys from S se-

curely. In b1, A receives the public key of B (KUB) encrypted under the shared
key Ks

AS providing confidentiality of KUB . Also, the MAC in b1 provides in-
tegrity of KUB . Message b2 provides similar guarantees to B for A’s public key.

The successful verification of messages c1, c2 and c3 implies the following. (1)
A believes that she shares KAB with B, as only B could decrypt RA in c1 and
respond with a function of RA in c2. (2) B believes that he shares KAB with A,
because only A knows KRA which is necessary to recover RB for use in message
c3, and the chain of messages links RB with RA, and RA back to KAB . (3) A and
B achieve some assurance of freshness through the random challenges RA and
RB respectively. (4) A and B receive each other’s public keys securely from a
trusted source S (in messages b1 and b2). The successful verification of message
c2 provides the evidence to A that B knows the private key corresponding to B’s
public key which A received earlier from S, thus satisfying goal T4. Message c3,
when verified, provides the similar evidence to B, thus satisfying goal T5. (5) A
and B derive the session key Ks

AB and the MAC key Km
AB from their ephemeral

shared secrets (KAB and RB), thus goal T7 is achieved.

Satisfying End-user Goals. We now provide informal reasonings regarding
how end-users’ goals (recall §3.2) are satisfied. We argue that in the PAKE phase
of IMKE, it is computationally infeasible to launch offline dictionary attacks on
PA (assuming our assumptions in §5.1 are not violated). To recover f1(PA) from
a1, an attacker apparently has to guess KAS , which is computationally infeasible
if KAS is generated from a large key space (e.g. 128-bit). Another way to recover
f1(PA) is to learn KAS by guessing the server’s private key. Brute-force attacks
on KAS or KRS appear to be computationally infeasible if the key length is
chosen appropriately. To recover f2(PA) from a2, an attacker must guess KAS ,
which is infeasible. This apparently makes PA resistant to offline dictionary



16

attacks. As goal T1 is fulfilled in messages a1 and a2 without exposing PA to
offline dictionary attacks, IMKE achieves goal G1. Goal T6 establishes that
A and S achieve confidentiality, and integrity (with authentication) using the
secret session key Ks

AS and the MAC key Km
AS respectively. Technical sub-goal

T6, along with G1, now satisfies goal G2.
A and B do not authenticate each other directly. They trust the other party’s

identity as they receive each other’s public key from S and trust S on the au-
thenticity of those public keys. Thus fulfilling sub-goals T4, T5 and T7 provides
A and B a way to communicate securely and satisfies goal G3.

Message authentication between A and B is achieved by MACs, instead of
digital signatures. The same session and MAC keys are shared between A and
B, which provide confidentiality and authentication of the messages exchanged.
Any message created by A can also be created by B. Therefore the sender of a
message can repudiate generating and sending the message. Clients’ public keys
are also temporary, hence binding an IM identity with a real user is technically
impossible. The confidentiality of communications channels between users is pro-
tected by session keys generated from random nonces, instead of users’ long-term
secrets; so, the exposure of long-term secrets does not compromise past session
keys. Thus repudiation and forward secrecy (goal G4) of users’ messages are
achieved (for more discussion on forward secrecy see §5.3). Direct or relayed
messages (cf. message type (4.7)) between A and B are encrypted with Ks

AB ,
which is shared only between A and B (goal T7). Therefore S (or other malicious
parties) cannot decrypt them, and thus goal G5 is apparently satisfied.

If message a1 is replayed to a server by an attacker, the attacker cannot
decrypt message a2 without knowing A’s private key and KAS . If message a2 is
replayed to A by an attacker in a separate run of IMKE, A will refuse to reply
with a3 as she will fail to decrypt f2(PA) (A randomly generates KAS in each
run of the protocol). After A has successfully logged in to the server, A receives
only messages of type (4.3) from S. Therefore, if message a2 is replayed to A
after she logs in, A can readily detect the replay, and discard that message. If
message c1 is replayed to B by an adversary, the adversary gains no useful infor-
mation from B’s reply in message c2. To detect replay attacks in data messages,
ClientDataA and ServerData are appended/prepended with time-stamps or se-
quence numbers, with appropriate checks by the receiver (e.g. [38, p.417–418]).
Freshly generated session keys and clients’ public keys help in detecting replays
from earlier protocol runs. Hence, goal G6 is apparently satisfied.

In client-server or client-client data messages (cf. (4.2), (4.3) and (4.7)), the
receiver retrieves data and verifies the associated MAC. The first parameter of
these messages provides data confidentiality and the second part ensures data
integrity and data origin authentication. The second part limits DoS attacks:
if one party fails to verify the MAC, it ignores or drops that connection. By
applying additional techniques (e.g. throttling and automated Turing tests; see
[36] for details) with secure IM connections (goal G2 and G3), we can partially
limit the propagation of IM worms.

Hence we have provided informal sketches of how end-user goals are satisfied.



17

5.3 Other Security Attributes of IMKE

Below we discuss a few more security attributes of IMKE. These properties make
IMKE resistant to several recently devised attacks on security protocols.

Chaining of Messages. In the PAKE phase, messages a1 and a2 are crypto-
graphically linked by KUA, and messages a2 and a3 are cryptographically linked
by RS . Moreover, both KUA and RS are dynamically generated in each protocol
run. According to Diffie et al. [18] this kind of the chaining of protocol messages
may prevent replay and interleaving attacks.

Insider-Assisted Attacks. If either of A or B is a rogue user7 participating in
IMKE, we need to guard against the following attack: A or B learns the password
of the other party, and the session keys that they share with other users. In
IMKE, users never receive a protocol message containing any element related to
other users’ passwords or session keys; thus, IMKE avoids these insider-assisted
attacks even when IMKE assumptions are violated by rouge users.

Exposure of Secrets. IMKE provides forward secrecy (see Table 3 for def-
inition) as the disclosure of a client-server password (long-term secret keying
material) does not compromise the secrecy of the exchanged session keys from
protocol runs (using that password) before the exposure. Exposure of the IM
server’s long term private key allows an attacker to launch offline dictionary
attacks on f1(PA) although the attacker cannot compromise the session key or
readily impersonate S. If the session key Ks

AS between A and S is exposed,
an attacker cannot learn PA. However, the disclosure of an ephemeral key KAS

(which is supposed to be zeroed out from the program memory after the PAKE
phase) enables an offline dictionary attack on f1(PA). Although the disclosure
of A’s dynamic private key (which exists in the program memory as long as A
remains logged in8) enables an attacker to reply correctly in message a3, IMKE
still provides forward secrecy.

When both the IM server’s long term private key and a user’s dynamic private
key are exposed, an attacker can calculate the session key from the collected
messages of a successful protocol run; in this case, the notion of forward secrecy
breaks (for the targeted session).

Denning-Sacco Attack. The Denning-Sacco attack [16] involves an intruder
who attempts to find PA or impersonate A to S (or vice-versa) using a com-
promised session key Ks

AS . We have already explained above why the exposure
of Ks

AS does not allow a dictionary attack on PA. Because Ks
AS is not used in

the PAKE phase, knowledge of Ks
AS does not help to impersonate as A to S or

vice-versa. Although we use Ks
AS in the key renewal phase between A and S,

the exposure of Ks
AS does not enable an attacker to start a key renewal phase.

7 For example, someone who, maliciously or naively, exposes his/her private key, pass-
word, or session/MAC keys.

8 Private keys may easily be extracted from memory as Shamir and van Someren [50]
outlined, if the operating system allows reading the entire memory space by any
program. However, we assume that such an operation is not allowed; see assumption
M1 in §5.1.



18

This is because we encrypt the random quantities in a key renewal phase also
with the public key of the other party.

Many-to-Many Guessing Attack. Kwon [29] described the many-to-many
guessing attack which can be mounted on every three-pass PAKE protocol, if
a protocol is not designed and implemented carefully. In this concurrent online
guessing attack, an attacker exploits the wait time of the server for the third
message (which Kwon assumes to be originated from the client) to verify many
password guesses in a small amount of time. Although the PAKE phase of IMKE
is a three-pass protocol, IMKE is not vulnerable to this attack because the IM
server verifies a client’s identity from the very first authentication message.

Undetectable Online Password Guessing Attack. Ding and Horster [19]
introduced the undetectable online password guessing attack against three-party
protocols that are known to resist offline guessing attacks. Here, in an online
transaction, an attacker verifies the correctness of his/her guessed password with-
out revealing enough information to the server (verification authority), and hence
avoids detection. Ding and Horster illustrated these attacks on some variations
of the LGNS protocol (e.g. [52], [21]). In IMKE, the IM server responds only to
fresh requests whose authenticity the server can verify; hence, IMKE conforms
to the requirements of Ding and Horster, and thereby avoids this attack.

6 Analytical Performance of IMKE

In this section, we provide an analytical performance review of IMKE. Also, we
provide a rough comparison of a modified version of the PAKE phase of IMKE
with a few other PAKE protocols.

In a PAKE protocol run, generally the public key operations dominate the
protocol’s execution performance. We summarize the key generation, public and
symmetric key operations of IMKE (the PAKE phase) in Table 7.

Client Server

generation 1 random number and 1 PK-pair 1 random number

public key 1 encryption and 1 decryption 1 encryption and 1 decryption

symmetric key 1 encryption and 1 decryption 1 encryption and 1 decryption

Table 7. Cryptographic operations required by IMKE in the PAKE phase

We do not expect the computation expense of public key operations to be
an issue as the data being encrypted in IMKE using public keys is always small
random numbers (e.g. 128-bit), which may fit into one block of any public key
cryptosystem. In contrast, data being encrypted in many PAKE protocols (e.g.
variants of LGNS [52], [21]; Halevi-Krawczyk [23]) using public keys may not al-
ways fit into one block; so in actual implementations, these protocols may require
multiple public key encryptions (and subsequent decryptions). After the PAKE
phase, most of the cryptographic operations in IMKE require only symmetric



19

key operations which are generally very efficient. Also, only clients generate the
dynamic public keys in IMKE, saving the server from the cost of these operations
(generating public keys may be expensive, e.g. in RSA). Evidence suggests that
these cryptographic operations should not undermine the instant nature of IM
as they are implemented and studied elsewhere (e.g. [27], [56]). More concrete
cost-efficiency characteristics of IMKE are available from our implementation
(see §7).

To use IMKE as a generic PAKE protocol, clients do not need to send dy-
namic public keys to the IM server (or to be subsequently verified by the server).
In a modified IMKE protocol, a client might perform one public key encryption
and the server one public key decryption. A modified PAKE phase of IMKE is
given below. However, we have not analyzed this modified protocol.

A→ S : IDA, {KAS}ES
, {f1(PA)}KAS

(6.1)
A← S : {RS , f2(PA)}KAS

(6.2)
A→ S : f3(RS) (6.3)

Note that, the modified IMKE protocol does not provide forward secrecy. For
comparison, we consider the version of Halevi-Krawczyk protocol [23] that pro-
vides mutual authentication without forward secrecy (given below in simplified
form). Assume that MACK(X) is the MAC of X under key K.

A← S : RS ,KUS (6.4)
A→ S : IDA, RS , {KAS , f1(PA, RS ,KAS , IDA, IDS)}ES

(6.5)
A← S : MACKAS

(RS , IDS , IDA) (6.6)

Another similar protocol9 is the basic Kwon-Song two-party protocol [30]. All
these protocols require one public key encryption and one decryption. However,
each public key operation may require multiple steps depending on the data block
size. Data encrypted (or decrypted) in the Halevi-Krawczyk and Kwon-Song
protocols may exceed the block size, which will increase the cost of the public
key operations. As noted earlier, IMKE always performs public key operations
only on random quantities which appear to fit in a single block size for all public
key cryptosystems.

7 Implementation of IMKE

We have implemented IMKE using the open source Jabber server and client on
the Linux operating system.10 We chose jabberd2 [41] as our IM server and Gaim

9 i.e. a protocol that provides mutual authentication, using a known public key, but
does not provide forward secrecy. Forward secrecy can be added to such a protocol
by incorporating a Diffie-Hellman exchange.

10 For details of IMKE implementation, see [34].



20

[39] as IM client. We added IMKE as another mechanism for authentication while
keeping the existing Jabber mechanisms (e.g. PLAIN, DIGEST-MD5) available. As
Jabber is a distributed IM service, we see Jabber as the most natural platform to
deploy IMKE incrementally. Table 8 summarizes cryptosystems and parameters
for the implementation of IMKE.

Public key encryption RSA 1024/2048-bit key

Symmetric encryption AES-128 (CBC mode)

Hash functions SHA-1, RIPEMD-160 (160-bit output)

MAC functions HMAC using SHA-1

Source of randomness /dev/urandom

Table 8. Cryptosystems and parameters for the IMKE implementation

Empirical Performance Analysis. We tested the performance of IMKE in
two different settings. By separating the IMKE implementation-specific code
(both for the server and client), we made a performance test client from that
code to measure the protocol running time. The actual running time of the
protocol as in the ordinary Gaim client was also measured. The IMKE-enabled
Jabber server was run on an IBM xSeries 345 server, and the Gaim clients, as
well as the test clients, were run from IBM IntelliStation M Pro workstations
under Linux.

The clients were run manually (around 20 times) for each of the IMKE and
XMPP protocols and measures were taken. The login time includes executing
all the steps in the XMPP authentication (see [48, p.31–33]), plus getting the
contact list (containing only three entries) from the IM server. The client-to-
client key setup phase includes the public key distribution time as well as the
actual key setup time.

Login
(msec)

C-C key setup
(msec)

File transfer
(MB/sec)

XMPP 212 – 5.67

IMKE 393 73 5.57

Table 9. Comparison of the XMPP and IMKE Gaim implementation

Client Time Server Time Total

msec 180.25 25.72 205.99

% 87.5 12.5 100

Table 10. Division of the PAKE phase execution time (test client)

Table 9 shows the IMKE PAKE phase takes almost twice as much time
as the XMPP authentication. However, as the IMKE authentication takes less



21

than half a second, a user barely notices any difference. The client-client or
client-server message encryption and decryption, including the generation and
verification of MAC and sequence number, take negligible time as they require
only symmetric key operations. Table 10 shows that the IM server does only
12.5% of the computation required in the PAKE phase. This is desirable for a
typical IM setup, because the server must handle a large number of users (with
limited resources) while users’ machines generally remain under-utilized.

Usability Issues. Our IMKE-Gaim client does not support “Remember pass-
word” because malware can use a stored password (from a predictable disk lo-
cation) to impersonate a user. Therefore, a user must (manually) input the
password on every login attempt. The client public key distribution and client-
to-client key setup phases together require only 73 msec (see Table 9) of the
chat initiator’s time, i.e. a user can initiate more than 13 conversations per sec-
ond. Therefore, users do not notice any delay while starting a conversation (text
message or a file transfer).

Incremental Deployment. The IMKE-enabled Jabber server handles IMKE
clients as well as standard Jabber clients. Also communications between IMKE
and standard Jabber users are possible. The communication channel between
an IMKE client and the IMKE-enabled Jabber server is encrypted, while the
communication channel between a standard Jabber client and the IMKE-enabled
Jabber server is plaintext. Hence IMKE can be incrementally deployed in a large
IM network.

Lessons Learned. Our implementation used a fixed set of cryptosystems and
parameters (see Table 8). Piggybacking onto existing XMPP messages, the sup-
port for negotiating public/symmetric key encryption systems as well as MAC
functions can be provided to the communicating parties (client-server or client-
client) without introducing any extra message.

In the PAKE phase of IMKE, both the server and a client perform one public
key encryption and decryption each; in addition, the client generates a public key
per login. It is well-known that the RSA public key generation is significantly
more expensive than RSA encryption/decryption operations. Table 10 shows
that the IM server does only 12.5% of the computation required in the PAKE
phase. This is desirable for a typical IM setup, because the server must handle
a large number of users (with limited resources) while users’ machines generally
remain under-utilized. However, when using IM from a (computationally) low-
powered hand-held device, a public key cryptosystem with cheap key generation
(e.g. ElGamal) would be more appropriate.

Using sequence numbers in the AES encryption is required to stop replay
attacks as well as to reduce cryptanalysis of identical cipher blocks resulting
from the same plaintext messages. We could use AES-CTR (AES in the Counter
mode; see [20]) to get different cipher blocks when sending the same plaintext
message. However, the OpenSSL (version 0.9.7e) that we used does not directly



22

implement11 AES-CTR, and AES-CBC with sequence number appears well-
suited and more efficient than AES-CTR in IMKE.

8 Concluding Remarks

IMKE enables private and secure communications between two users who share
no authentication tokens, mediated by a server on the Internet. The session key
used for message encryption in IMKE is derived from short-lived fresh secrets,
instead of any long-term secrets. This provides the confidence of forward secrecy
to IMKE users. IMKE allows authentication of exchanged messages between two
parties, and the sender is able to repudiate a message. Also, IMKE users require
no hardware tokens or long-term user public keys to log in to the IM server.

Group-chat and chat-room [35] are heavily used features in IM. A future
version of IMKE would ideally accommodate these features, as well as an online
server public key verification method (e.g. public password [23]). Introducing
methods to ensure human-in-the-loop during login, e.g., challenging with an au-
tomated Turing test, can stop automated impersonation using stolen/compromised
user name and password. However, deploying such a method for very large IM
networks may put an enormous load on IM servers; measures as outlined by
Pinkas and Sander [45] can help minimize this.

The growing number of IM users in public and enterprise world provides
evidence that IM is increasingly affecting instant user-communication over the
Internet. We strongly advocate that security of IM systems should be taken
seriously. IMKE is a step towards secure public IM systems. Note that typical
end-users of IM systems are casual. A secure IM protocol, implemented in a
restrictive user interface, might force such casual users to switch to a competing
product that is less secure but more user-friendly. We emphasize that usability
issues must be considered while designing a secure IM system.

Acknowledgements

We thank anonymous reviewers, as well as Liam Peyton, for their constructive
comments which helped us improve the quality of this paper, and all members of
Carleton’s Digital Security Group for their enthusiastic discussions on this topic,
especially Glenn Wurster, Anil Somayaji and Julie Thorpe. We thank Paul H.
Drielsma of ETH, Zurich for carrying out a security analysis of IMKE using
AVISPA [1]. The first author is supported in part by the Public Safety and Emer-
gency Preparedness Canada (PSEPC) Program. The second author is Canada
Research Chair in Network and Software Security, and is supported in part by an
NSERC Discovery Grant, the Canada Research Chairs Program, and MITACS.

11 There is an OpenSSL-based AES-CTR implementation by Viega et al. [54, p.189-
192].



23

References

1. A. Armando et al. The AVISPA tool for the automated validation of Internet
security protocols and applications. In Computer Aided Verification - CAV 2005,
volume 3576 of LNCS, 2005. Project website, http://www.avispa-project.org.

2. R. J. Anderson and S. Vaudenay. Minding your p’s and q’s. In Asiacrypt ’96,
volume 1163 of LNCS, 1996.

3. R. Battistoni, E. Gabrielli, and L. V. Mancini. A host intrusion prevention system
for Windows operating systems. In ESORICS’04, 2004.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Crypto
’93, volume 773 of LNCS, 1994.

5. M. Bellare and P. Rogaway. Provably secure session key distribution: the three
party case. In ACM Symposium on Theory of Computing (STOC ’95), 1995.

6. S. Bellovin and M. Merritt. Encrypted Key Exchange: Password-based protocols
secure against dictionary attacks. In IEEE Symp. on Security and Privacy, 1992.

7. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: a password-
based protocol secure against dictionary attacks and password file compromise.
In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 244–250, Fairfax, Virginia, USA, 1993. ACM Press.

8. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Eurocrypt 2004, volume 3027 of LNCS, 2004.

9. N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why
not to use PGP. In ACM Workshop on Privacy in the Electronic Society, 2004.

10. C. Boyd and W. Mao. On a limitation of BAN logic. In Eurocrypt 1993, volume
765 of LNCS, 1993.

11. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer-Verlag, 2003.

12. C. Boyd, P. Montague, and K. Q. Nguyen. Elliptic curve based password authenti-
cated key exchange protocols. In Information Security and Privacy - ACISP 2001.
Springer-Verlag, 2001.

13. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In ACM
Symposium on Operating Systems Principles, 1989.

14. S. M. Cherry. IM means business. IEEE Spectrum Online, 39:28–32, Nov. 2002.

15. ComputerWorld staff. Instant Messaging takes ‘financial’ twist, Apr. 2002. News
article, http://www.computerworld.com/.

16. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Comm.
ACM, 24(8):533–536, 1981.

17. G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to forget
a secret (extended abstract). In STACS ’99, volume 1563 of LNCS, 1999.

18. W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992.

19. Y. Ding and P. Horster. Undetectable on-line password guessing attacks. ACM
Operating Systems Review, SIGOPS, 29(4):77–86, 1995.

20. M. Dworkin. Recommendation for block cipher modes of operation:
Methods and techniques, Dec. 2001. NIST Special Publication 800-38A,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

21. L. Gong. Optimal authentication protocols resistant to password guessing attacks.
In Proceedings of the 8th IEEE Computer Security Foundations Workshop(CSFW
’95), pages 24–29, 1995.



24

22. L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly
chosen secrets from guessing attacks. IEEE Selected Areas in Comm., 11(5), 1993.

23. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Transactions on Information and Systems Security, 2(3):230–268, 1999.

24. Incognito Systems. iGo Incognito. http://www.igo-incognito.com/.
25. E. Isaacs, A. Walendowski, and D. Ranganathan. Mobile Instant Messaging

through Hubbub. Comm. ACM, 45(9):68–72, 2002.
26. IT Strategy Center Staff. The coming IM threat, May 2005. News article,

http://www.itstrategycenter.com/itworld/Threat/viruses/coming im threat.
27. H. Kikuchi, M. Tada, and S. Nakanishi. Secure Instant Messaging protocol pre-

serving confidentiality against administrator. In Advanced Information Networking
and Applications (AINA’04), 2004.

28. N. Koblitz and A. Menezes. Another look at “provable security”. Journal of
Cryptology, 2006.

29. T. Kwon. Practical authenticated key agreement using passwords. In Information
Security - ISC 2004, volume 3225 of LNCS, 2004.

30. T. Kwon and J. Song. Efficient and secure password-based authentication protocols
against guessing attacks. Computer Communications, 21(9):853–861, 1998.

31. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28(2), 2003.

32. C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based schemes using
a prime order subgroup. In Crypto ’97, volume 1294 of LNCS, 1997.

33. P. D. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key
exchange based on RSA. In Asiacrypt 2000, volume 1976 of LNCS, 2000.

34. M. Mannan. Secure public instant messaging. Master’s thesis, Carleton University,
July 2005. http://www.scs.carleton.ca/ mmannan/publications/msthesis.pdf.

35. M. Mannan and P. C. van Oorschot. Secure public Instant Messaging: A survey.
In Privacy, Security and Trust (PST’04), 2004.

36. M. Mannan and P. C. van Oorschot. On Instant Messaging worms, analysis and
countermeasures. In ACM Workshop on Rapid Malcode (WORM’05), 2005.

37. M. Mannan and P. C. van Oorschot. A protocol for secure public Instant Messaging.
In Financial Cryptography - FC 2006, LNCS (to appear), 2006.

38. A. Menezes, P. C. van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

39. Open Source. Gaim: A multi-protocol Instant Messaging client. Version 1.0.2,
http://gaim.sourceforge.net/.

40. Open Source. Gaim-e. http://gaim-e.sourceforge.net/.
41. Open Source. The jabberd project. Version 2.0s6,

http://jabberd.jabberstudio.org/2/.
42. G. Orgill, G. Romney, M. Bailey, and P. Orgill. The urgency for effective user

privacy-education to counter social engineering attacks on secure computer sys-
tems. In ACM Information Technology Education, 2004.

43. V. N. Padmanabhan and L. Subramanian. An investigation of geographic mapping
techniques for internet hosts. ACM Computer Comm. Review, 31(4), 2001.

44. S. Patel. Number theoretic attacks on secure password schemes. In IEEE Sympo-
sium on Security and Privacy, 1997.

45. B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In ACM
Computer and Communications Security, 2002.

46. P. Riikonen. Secure Internet Live Conferencing (SILC), protocol specification, Feb.
2004. Internet-Draft. http://www.silcnet.org/docs/draft-riikonen-silc-spec-08.txt.



25

47. R. L. Rivest and A. Shamir. How to expose an eavesdropper. Comm. ACM,
27(4):393–394, 1984.

48. P. Saint-Andre. Extensible messaging and presence protocol (XMPP): Core, Oct.
2004. RFC 3920, Status: Standards Track. http://www.ietf.org/rfc/rfc3920.txt.

49. SecurityPark.net Staff. Instant messaging: communications godsend or security
back door?, July 2005. News article, http//www.securitypark.co.uk/.

50. A. Shamir and N. van Someren. Playing ‘hide and seek’ with stored keys. In
Financial Cryptography - FC ’99, volume 1648 of LNCS, 1999.

51. K. Subramanyam, C. E. Frank, and D. H. Galli. Keyloggers: The overlooked threat
to computer security. In 1st Midstates Conference for Undergraduate Research in
Computer Science and Mathematics, Oct. 2003.

52. G. Tsudik and E. V. Herreweghen. Some remarks on protecting weak keys and
poorly-chosen secrets from guessing attacks. In IEEE Symposium on Reliable Dis-
tributed Systems, pages 136–142, 1993.

53. U.S. Securities and Exchange Commission. Sarbanes-Oxley Act, Jan. 2002.
http://www.sarbanes-oxley.com/.

54. J. Viega, M. Messier, and P. Chandra. Network Security with OpenSSL. O’Reilly,
2002.

55. T. Wu. The secure remote password protocol. In Proceedings of the Internet Society
Network and Distributed System Security Symposium, pages 97–111, Mar. 1998.

56. Zone Labs. IMSecure. http://www.zonelabs.com/.


