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Abstract Most document analysis applications rely on the
extraction of shape descriptors, which may be grouped into
different categories, each category having its own advan-
tages and drawbacks (O.R. Terrades et al. in Proceedings
of ICDAR’07, pp. 227–231, 2007). In order to improve
the richness of their description, many authors choose to
combine multiple descriptors. Yet, most of the authors who
propose a new descriptor content themselves with compar-
ing its performance to the performance of a set of single
state-of-the-art descriptors in a specific applicative context
(e.g. symbol recognition, symbol spotting…). This results
in a proliferation of the shape descriptors proposed in the
literature. In this article, we propose an innovative protocol,
the originality of which is to be as independent of the final
application as possible and which relies on new quantitative
and qualitative measures. We introduce two types of mea-
sures: while the measures of the first type are intended to
characterize the descriptive power (in terms of uniqueness,
distinctiveness and robustness towards noise) of a descriptor,
the second type of measures characterizes the complemen-
tarity between multiple descriptors. Characterizing upstream
the complementarity of shape descriptors is an alternative to
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the usual approach where the descriptors to be combined are
selected by trial and error, considering the performance char-
acteristics of the overall system. To illustrate the contribution
of this protocol, we performed experimental studies using a
set of descriptors and a set of symbols which are widely used
by the community namely ART and SC descriptors and the
GREC 2003 database.
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1 Introduction

Over the last decades, there has been a growing interest about
performance evaluation in the domain of graphics recogni-
tion. Many contests have been organized, concerning raster-
to-vector conversion [2–4], arc segmentation [5] and symbol
recognition [6,7]. Most symbol recognition methods rely on a
two-step procedure: (1) symbol description (representation)
by extracting a feature vector with one (or more) descriptor(s)
and (2) supervised classification of the symbols to recognize,
based on their feature vectors. Several shape descriptors have
been proposed in the literature [8–10] and most of them have
been applied to the task of symbol recognition.

This paper is focused on the first step of symbol descrip-
tion, which is a crucial step that may be used for many other
tasks in the field of document analysis (symbol spotting…).
Ramos et al. have introduced in [1] a taxonomy of the differ-
ent shape descriptors frequently used for symbol representa-
tion. The new categorization they propose is made according
to the properties of the different shape descriptors, pointing
out their strengths and weaknesses. One of the main objec-
tives of their work is to facilitate, for a given application, the
choice of the best descriptor in that context.
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However, when considering a problem of symbol recogni-
tion, selecting the descriptor which is best suited for a given
type of symbol and/or noise can be a hard, or even an impos-
sible, task. Instead, one may be interested in combining dif-
ferent descriptors from different categories in order to benefit
from the advantages of all the descriptors to be combined. The
combination may be performed at the level of the descriptor
(early fusion) or at the level of the classifiers (late fusion).
Early fusion is usually implicitly done with powerful classifi-
ers like neural networks [11], boosting classifiers [12,13] and
Support Vector Machines [14]. In those methods, descriptors
are extracted and concatenated as a single feature vector.
Later on, during the training process, each classifier com-
bines the features from the different descriptors. However, for
general applications where the number of classes is high and
the symbols to recognize can be counted by thousands, these
expert classifiers reach their limits as their performance may
decrease drastically. In this case, late fusion schemes where
the combination is performed at the level of the classifier
are generally preferred [15]. Late fusion methods have been
applied to shape descriptors for symbol recognition [16,17].
Even so, in these papers, the performance characteristics of
the descriptors in terms of descriptive power were not eval-
uated (only the performance for recognition was studied).
Additionally, the complementarity of the descriptors to be
combined was not investigated upstream, even though it may
be very useful when choosing the set of descriptors to be com-
bined and the combination scheme which is best suited to this
particular set of descriptors.

To the best of our knowledge, very few works have
been proposed in the literature concerning the evaluation of
the performance characteristics of symbol descriptors, most
evaluations being focused on the final application. A meth-
odology for characterizing the performance of shape descrip-
tors for symbol recognition has been proposed in [18]. This
paper additionally provides a general discussion concerning
the main difficulties and problems one may be faced with
when setting the data, evaluation metrics and evaluation pro-
tocol, to characterize the performance of a symbol recog-
nition method. Delalandre et al. [19] propose a solution to
generate ground-truth based on a system that builds synthetic
graphical documents. In [20], two main performance char-
acterization metrics have been proposed, but we will see that
these measures have several drawbacks that need to be com-
pleted (see Sect. 3). Jouili et al. [21] propose a performance
evaluation for symbol recognition based on graph matching
measures. This evaluation is essentially quantitative, based
on precision and recall rates.

In this paper, we propose an experimental protocol and
both qualitative and quantitative measures for characterizing
the descriptive power and the complementarity of different
shape descriptors for symbol description. This methodology
is as independent of the final application (symbol spotting,

recognition) as possible. Contrary to the above-mentioned
performance evaluation methodologies, we do not consider
any classifier; at most we consider some dissimilarity or dis-
tance measure and the nearest neighbour rule, to character-
ize for instance the uniqueness and distinctiveness of a given
descriptor. We introduce an innovative protocol and two types
of measures: while the measures of the first type are intended
to characterize the descriptive power (in terms of uniqueness,
distinctiveness and robustness towards noise) of a descriptor,
the second type of measures characterize the complementar-
ity between multiple descriptors. Concerning the measures
of the first type, we first recall the definitions of confusion
matrices, recognition rate, precision, recall and Cumulative
Match Characteristics (CMC) curves. Even though some of
these measures are already used by many researchers in
our community, our contribution here is that we link them
to the notions of distinctiveness and uniqueness. Second,
we introduce two measures that are original in the field of
document analysis. These two measures are respectively
the tolerance intervals, which characterize the robustness of
descriptors towards noise, and a qualitative measure based
on an analogy with Doddington’s zoo, widely known in the
field of biometrics, characterizing the symmetries in the con-
fusions. Concerning the measures of the second type, we
introduce original measures to characterize upstream the
complementarity between multiple descriptors. These mea-
sures constitute an alternative to the usual approach where
the descriptors to be combined are selected by trial and error,
considering the performance characteristics of the overall
system. It may also be helpful when choosing the best com-
bination scheme for a given set of descriptors.

To illustrate our methodology, we present a case study
using two well-known statistical descriptors: the Angular
Radial Transform (ART) descriptor [22], based on region
pixel values and the Shape Context (SC) [23] descriptor,
based on contours. We use noisy versions of the GREC 2003
database (cf. Fig. 4), which is well known and widely used by
researchers working in the field of document analysis. It has
to be noted that with adequate dissimilarity or distance mea-
sures (e.g. edit distance) our methodology can also be applied
to structural descriptors. Moreover, the proposed framework
may be further used for characterizing the complexity of any
symbol database.

The paper is organized as follows. In Sect. 2, some inno-
vative measures for evaluating the descriptive power of dif-
ferent shape descriptors, their robustness towards noise and
their complementarity are proposed. In Sect. 3, we propose
an experimental protocol and perform experimental results
using ART and SC descriptors on the GREC 2003 database.
These results are analysed to highlight the interest of using
the proposed protocol and measures. While Sect. 4 provides a
discussion about the measures we propose, Sect. 5 concludes
this paper and presents the future work.
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2 Evaluating the descriptive power of the descriptors
and the complementarity between descriptors

In many applications such as symbol spotting, symbol rec-
ognition, the richness of a descriptor is related to its ability
to group the different occurrences of one given symbol
(uniqueness of the representation) and to discriminate them
from other symbols (distinctiveness). In this direction, Valv-
eny et al. have proposed in [20] two measures characterizing
respectively the uniqueness and the distinctiveness of a shape
descriptor: homogeneity and separability. While homogene-
ity is based on the distances between the descriptions of
different occurrences of one symbol, separability is based
on the distances between descriptions of different symbols.
In this work, a good descriptor is characterized by high values
of both homogeneity and separability. These measures are
generic and may be used in many applicative contexts where
a distance matrix between all the elements of the database
can be computed. However, they have three main drawbacks.
First, it is difficult to fix the thresholds which are necessary
to characterize high values of these measures, since the dis-
tributions of the distances between feature vectors vary a lot
from one database to another. Second, in many applications,
we have a model image (which may be considered as the
original symbol) and noisy versions of this model that we
need to confront to all the models in the database. These two
categories of images (models and noisy symbols) have to be
considered separately, which is not the case with homogene-
ity and separability measures. Indeed, they rely on a distance
matrix computed between all the symbols in the database,
whatever their type. Third, in general the confusions between
symbols are not symmetric (e.g. symbol 1 may be confused
with symbol 2 and not the opposite). And neither homo-
geneity nor separability characterizes the symmetry of the
confusions. Therefore, homogeneity and separability, which
provide a coarse characterization of the richness of the dif-
ferent descriptors, have to be completed by other measures
which overcome the drawbacks listed earlier.

To conceive such measures (which will be defined in
Sects. 2.3 to 2.8), we first need to define more precisely the
concepts of uniqueness and distinctiveness (see Sect. 2.1)
and further to propose a protocol which is independent of the
final application (see Sect. 2.2).

2.1 Definitions

Let us focus on the very conventional case where, for each
symbol i in the database (with i = 1, . . . , c), we have in
the descriptor’s representation space a symbol model Si and

ni noisy versions of this model Ŝi
j

(with j = 1, . . . , ni ).
In this case we can consider that a descriptor provides a per-
fect representation of a given symbol i when:

Fig. 1 Adaptation of Doddington’s zoo (see Sect. 2.7) in our context.
F1 and F2 are the two features of the descriptor’s feature vector. In
this example, we consider the Euclidean distance. The filled shapes are
the models, each model having six noisy versions (empty shapes where
noise is represented by dots). Dashed circles are situated at a distance
θ from the models. The symbol “circle” is a sheep, the “triangle” is a
lamb, the “square” is a wolf and the “rhombus” is a goat

– the representation of i is unique, i.e. feature vectors of

noisy versions Ŝi
j

of Si are closer to Si than to any other
symbol model Sl (with l �= i). Let us denote by d the
distance (or dissimilarity measure) of interest. The rep-
resentation of i may be considered as perfectly unique
when:

∀ j = 1 . . . ni , ∀l = 1 . . . c st l �= i,

d(Ŝi
j
, Sl) > d(Ŝi

j
, Si ) (1)

– the representation of i is distinctive, i.e. Si is closer to

its noisy versions Ŝi
j

than to noisy versions Ŝm
l of other

models Sl :

∀l = 1 . . . c st l �= i, ∀m = 1 . . . nl ,

d(Ŝl
m
, Si ) > max

j=1... ni
d(Ŝi

j
, Si ) (2)

Let us introduce the following notation: N N (Ŝ j
i ) being the

nearest model of Ŝ j
i in the descriptor’s space (i.e. the result of

the 1-nearest neighbour rule). The definitions of the unique-
ness (see Eq. 1) and distinctiveness (see Eq. 2) of the symbol
i may be respectively reformulated as follows:

∀ j = 1 . . . ni , N N (Ŝ j
i ) = Si (3)

∀l = 1 . . . c st l �= i, ∀m = 1 . . . nl , N N (Ŝl
m
) �= Si (4)

For instance, the symbol “circle” in Fig. 1 is characterized
by both perfect uniqueness and distinctiveness, while the
symbol “triangle” is perfectly unique but not distinctive.
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Equations 3 and 4 illustrate the notions of uniqueness and
distinctiveness. However, they are not very useful in prac-
tice, because they only characterize perfect levels of unique-
ness and distinctiveness. Relaxing them in order to allow
the characterization of different levels of uniqueness and
distinctiveness would require the introduction of additional
parameters such as thresholds applied on the distance val-
ues. These parameters are difficult to settle in practice. In
order to characterize the uniqueness and distinctiveness of
a given descriptor, we therefore need to define a specific
methodology.

2.2 Protocol

In order to characterize efficiently the descriptive power
of different shape descriptors in terms of uniqueness and
distinctiveness, we introduce the following protocol, which
is independent of the final application (spotting, recogni-
tion…). First, the distances between all the noisy symbols and
all the models are computed. Second, we apply the k nearest
neighbour rule (k N N ) in order to associate with each noisy
symbol its k nearest models in the descriptor’s representation
space. Then, we can compute, for each descriptor, measures
characterizing its descriptive power and robustness towards
noise. Additionally, the complementarity between multiple
descriptors may be measured.

In the remaining part of this section, we present two types
of measures. The measures of the first type, introduced in
Sects. 2.3 to 2.7, characterize indirectly the levels of unique-
ness and/or distinctiveness (which are too parameter-depen-
dent to be computed directly) of a single descriptor. We
first recall in Sects. 2.3 to 2.5 the definitions of confusion
matrices, recognition rate, precision, recall and Cumulative
Match Characteristics (CMC) curves. Even though some of
these measures are already used by many researchers in our
community, our contribution here is that we link them to
the notions of distinctiveness and uniqueness. Second, we
introduce two measures that are original in the field of doc-
ument analysis. These two measures are respectively the
tolerance intervals (see Sect. 2.6), characterizing the robust-
ness of descriptors towards noise, and a qualitative measure
based on an analogy with Doddington’s zoo, widely known
in the field of biometrics, characterizing the symmetries in
the confusions (see Sect. 2.7). Concerning the measures of
the second type, we introduce in Sect. 2.8 original measures
to characterize upstream the complementarity between mul-
tiple descriptors. These measures constitute an alternative
to the usual approach where the descriptors to be combined
are selected by trial and error, considering the performance
characteristics of the overall system. It may also be helpful
when choosing the best combination scheme for a given set
of descriptors.

Table 1 A contingency matrix M . nil is the number of noisy versions
Ŝ j

i of symbol i which nearest model is Sl in the representation space of
the studied descriptor

ni · − n·l n·1 n·2 … n·c

n1· n11 n12 … n1c

n2· n21 n22 … n2c

.

.

.
.
.
.

.

.

.
. . .

.

.

.

nc· nc1 nc2 … ncc

2.3 Confusion matrix

A confusion matrix M is a quantitative measure characteriz-
ing the descriptive power of a given descriptor. It is a contin-
gency matrix computed from the array of distances between
the descriptions of the noisy symbols and the models. This
matrix contains c rows and c columns, where c is the number
of models (see Table 1).The value in the cell nil of the con-
fusion matrix is the number of noisy versions Ŝ j

i of symbol
i which nearest model is Sl in the descriptor’s representation
space:

nil =
ni∑

j=1

δ
(

N N (Ŝ j
i ) = Sl

)
(5)

with N N (Ŝ j
i ) being the model which is the nearest to Ŝ j

i
(i.e. the result of the 1N N rule following our protocol) and

δ
(

N N (Ŝ j
i ) = Sl

)
= 1 if the nearest model of Ŝ j

i is Sl , 0

otherwise. If we denote by n = ∑c
i=1

∑c
l=1 nil the total

number of noisy symbols, the descriptor may be consid-
ered as perfectly describing the database when the confusion
matrix is diagonal (i.e. trace(M) = n).

Even if the confusion matrix is in general defined by using
the 1-nearest neighbour rule (see Eq. 5), we can characterize
the behaviour of the descriptor in an enlarged neighbourhood
of the noisy symbol by considering confusion matrices M(k)

associated with higher ranks k, by defining:

nil(k) =
ni∑

j=1

δ
(

k N N (Ŝ j
i ) = Sl

)
(6)

where kNN(Ŝ j
i ) is the kth nearest model to Ŝ j

i (i.e. the result
of the k N N rule following our protocol). We can note that the
confusion matrix M shown in Table 1 is the same matrix as
matrix M(1), while matrix M(k) with k > 1 may be obtained
by replacing the values nil in Table 1 with the nil(k) defined
in Eq. 6. In the remaining part of this article, we consider by
default confusion matrices at rank k = 1, unless we explic-
itly specify that we consider higher ranks k > 1 (for CMC
curves for example, see Sect. 2.5).
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2.4 Recognition rate, precision and recall

This section is dedicated to quantitative measures character-
izing the richness of a given descriptor in terms of uniqueness
and/or distinctiveness.

First of all, the recognition rate (RR) provides the per-
centage of noisy symbols such that their nearest model is
the “good” one. It is computed from the confusion matrix
(see Table 1 and Eq. 5) as follows:

R R = trace(M)

n
(7)

It has to be noted that we can also compute the recognition
rates at any rank k > 1 by using the confusion matrix M(k)

(see Eq. 6):

R R(k) = trace(M(k))

n
(8)

Hereafter, we consider by default the recognition rate at rank
k = 1, unless we explicitly specify that we consider higher
ranks of k (for CMC curves for example, see Sect. 2.5).

While the recognition rate gives some information about
the descriptive power of a descriptor on the whole database,
one may be interested in the behaviour of the descriptor for
a particular symbol. We can note that a symbol i which is
badly described in the descriptor’s representation space is
associated with a large number of extra-diagonal elements
nil and/or nli (with l �= i) in the confusion matrix (see Eq. 5).
A low distinctiveness for symbol i is characterized by high
values of the column cells nli. On the other hand, a low
uniqueness for symbol i is characterized by high values of
the row cells values nil (see the definitions of distinctive-
ness and uniqueness given in Sect. 2.1). The level of distinc-
tiveness and uniqueness for a given symbol i may therefore
be respectively measured by using precision P(i) and recall
R(i), where:

P(i) = nii∑c
l=1 nli

(9)

R(i) = nii∑c
l=1 nil

(10)

To characterize the distinctiveness and uniqueness for the
whole dataset, one may consider only the scalar value cor-
responding to the average precision and/or recall among all
the symbols i = 1 . . . c:

P = 1

c

c∑

i=1

(
nii∑c

l=1 nli

)
(11)

R = 1

c

c∑

i=1

(
nii∑c

l=1 nil

)
(12)

We can note that, in the special case where the number ni

of noisy versions of symbol i is the same for all the c sym-
bols i , the mean recall equals the recognition rate (given that∑c

l=1 nil = ni , by construction).

2.5 Cumulative match characteristics curve

In order to characterize the behaviour of the descriptor
in an enlarged neighbourhood of the symbols to describe
(not only considering the nearest model), we may consider
the recognition rates at ranks k > 1. The Cumulative Match
Characteristic (CMC) curves are most widely used for eval-
uating the performance characteristics of semi-automated
recognition systems where N candidates are proposed to a
(often human) supervisor, the role of the supervisor being
to select the good candidate. Such curves are useful to
quickly visualize the cumulated recognition rates at different
ranks k:

C MC(k) =
k∑

r=1

R R(r) (13)

where R R(k) is the recognition rate at rank k ≥ 1 (see Eq. 8).
For an example of a CMC curve see Fig. 7. If the CMC curve
reaches a sufficiently high value at a rank k being tractable for
the supervisor, then the semi-automated system is considered
as effective.

2.6 Characterization of the Robustness towards noise

In this section, we present the Tolerance Interval, which has
been defined in the context of face recognition in [25] in
order to characterize the robustness of descriptors towards
noise. Tolerance Intervals may be calculated in the case
where the amount of noise is controlled by one parame-
ter ω (i.e. in general when the noise is synthetically added
to the images). For example, for Gaussian white noise the
parameter is the standard deviation: ω = σ . The recog-
nition rate is computed as a function of the value of the
noise parameter. A Tolerance Interval (TI) at p% may be
defined as the range of values of parameter ω such that
the recognition rate R R remains greater than 1 − p/100.
Examples of Tolerance Intervals are given in Table 3. For
a fixed p, the larger is the Tolerance Interval, the more
robust is the descriptor. Tolerance Intervals characterize in
a compact way the robustness of a descriptor towards a
given type of noise; they may be very helpful when choos-
ing the descriptor which is best suited to a specific kind
of noise.

2.7 The zoo qualitative characterization

All the previous measures are intrinsically quantitative.
In particular, we have shown how the precision and recall
measures may be used at the symbol level to characterize
the asymmetries in the confusions of a single descriptor for
a given symbol (e.g. symbol i may be confused with others

123



92 M. Visani et al.

and not the opposite). However, when trying to compare the
descriptive power of multiple descriptors for a given symbol,
it is difficult to consider jointly multiple precision and recall
values. That is why we introduce a qualitative measure based
on the definition of categories of symbols. Our categoriza-
tion is inspired from Doddington et al.’s terminology [26].
This terminology was first introduced in the field of speaker
recognition for biometrics. Figure 1 provides examples of
the different categories. We give the original definitions
by Doddington et al., followed by their adaptations in our
context.

– “In our model, sheep dominate the population and sys-
tems perform nominally well for them”. In our context,
sheep are the symbols which are well represented by
the descriptor, with both high uniqueness and distinctive-
ness. Therefore we can define a sheep i as a symbol asso-
ciated with high values of both precision and recall. In
Fig. 1 the symbol “circle” is a sheep;

– “Lambs, in our model, are those speakers who are partic-
ularly easy to imitate”. In our context, lambs are symbols
characterized by a low distinctiveness and therefore asso-
ciated with a low precision. In Fig. 1 the symbol “triangle”
is a lamb;

– “Wolves, in our model, are those speakers who are partic-
ularly successful at imitating other speakers”. In our con-
text, lambs are symbols characterized by a low uniqueness
and thus associated with a low recall. In Fig. 1 the symbol
“square” is a wolf;

– “Goats tend to adversely affect the performance of sys-
tems by accounting for a disproportionate share of the
missed detections”. A goat is a model such that its noisy
versions are in general farther than a given threshold θ to
all the models (dotted circles in Fig. 1, in the case of an
Euclidean distance). In Fig. 1 the symbol “rhombus” is a
goat.

While in the case of sheep the descriptive power of the
descriptor may be considered as satisfactory, in the case of
goats the descriptive power is low. But, for a given symbol,
the behaviours of two different descriptors may differ. For
instance, symbol i may be a sheep with descriptor D1 and
a wolf with descriptor D2. At the level of the whole data-
base, these behaviours may be complementary, e.g. in the
case where symbol i is a sheep with descriptor D1 and not a
sheep with descriptor D2, and vice-versa for symbol j . In that
case, the description may be improved by combining the two
descriptors, instead of considering a single descriptor. That
is the reason why, in the following section, we introduce
measures to characterize the complementarity of different
descriptors.

2.8 Ensemble measures characterizing the complementarity
of different descriptors

In this section, we introduce quantitative measures of the
complementarity between different descriptors. We can note
that, in most cases, confronting the confusion matrices of
different descriptors does not help to characterize their com-
plementarity. Indeed, while the confusion matrix provides
information at the symbol level, the complementarity occurs
at the level of the noisy image. For instance, when the con-
fusion matrix says that, for a given symbol i , only 15 noisy
versions over 30 are well described by descriptor D1 and by
descriptor D2, these 15 well-described images may be the
same (in this case the two descriptors are not complementary
at all for this symbol) or totally distinct (in this case the two
descriptors are perfectly complementary for this symbol),
but from the confusion matrix we cannot guess which case
we are dealing with. That is why we introduce the following
complementarity measures that may be computed at differ-
ent ranks k ≥ 1, with Ŝ j

i being a noisy version of the original

model Si and k N N D(Ŝ j
i ) the kth nearest model of Ŝ j

i in the
representation domain associated with the descriptor D:

U (k) =
c∑

i=1

ni∑

j=1

δ
({

k N ND1(Ŝ j
i ) = Si

}
∪

{
k N ND2(Ŝ j

i ) = Si

})

(14)

I (k) =
c∑

i=1

ni∑

j=1

δ
({

k N ND1(Ŝ j
i ) = Si

}
∩

{
k N N D2(Ŝ j

i ) = Si

})

(15)

ID1(k) =
c∑

i=1

ni∑

j=1

δ
({

k N N D1(Ŝ j
i ) = Si

}
∩

{
k N ND2(Ŝ j

i ) �= Si

})

(16)

ID2(k) =
c∑

i=1

ni∑

j=1

δ
({

k N ND2(Ŝ j
i ) = Si

}
∩

{
k N ND1(Ŝ j

i ) �= Si

})

(17)

C(k) =
c∑

i=1

ni∑

j=1

δ
({

k N ND1(Ŝ j
i ) �= Si

}
∩

{
k N ND2(Ŝ j

i ) �= Si

})

(18)

The measure U (k) is the number of noisy images such
that their kth nearest model is the “good” one for at least one
of the two descriptors D1 or D2. The measure I (k) is the
number of noisy images such that their kth nearest model
is the “good” one for both descriptors D1 and D2. We can
note that, by construction, I (k) ≤ U (k). The measure ID1 is
the total number of noisy images such that their kth nearest
model is the “good” one for descriptor D1 but not for D2
(and vice-versa for ID2). We can note that U (k) = I (k) +
ID1(k) + ID2(k). Finally, C(k) is the total number of noisy
images such that their kth nearest model is not the “good”
one, neither for descriptor D1 nor for D2. We can note that
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C(k)+U (k) = n, where n is the total number of noisy sym-
bols in the database. Figure 8 provides a visual example of
such measures with descriptors ART and SC. Let us note the
following relationship: I (k)+ID(k)

n = R RD(k), where R RD(k)

is the recognition rate at rank k (see Eq. 8) associated with
descriptor D. Of course the measures given in Eqs. (14–18)
can be directly extended with more than two descriptors.

The numbers of images which are well represented by
one descriptor but not by the other one (i.e. ID1 and ID2)
allow us to quantify the complementarity of the two descrip-
tors. In particular, the value of U (1) is the maximal number
of symbols that may be well-described at rank 1 (i.e. the
objective value) when conceiving a strategy for selecting,
for each symbol, the best descriptor for this symbol. The
more the objective value U (1)

n exceeds the maximal recog-
nition rate of the two descriptors, the more complementary
are these two descriptors. Characterizing the complementar-
ity between descriptors is very interesting, as considering
a combination of complementary descriptors may improve
the richness of the description of the symbol compared to
considering a single descriptor.

3 Experimental study

In this section, we perform an experimental study to illustrate
the effectiveness of the measures we define in Sect. 2. The
objective is to show how to use these measures for (1) com-
paring multiple descriptors in terms of descriptive power and
noise robustness and (2) measuring the complementarity of
multiple descriptors. For this purpose, we consider two well-
known shape descriptors (that will be described in Sect. 3.1):
ART and SC. The main objective here is not to character-
ize the performance of these two descriptors, but rather to
illustrate the contribution brought to the community by our
innovative protocol and measures. We selected ART and SC
among the large variety of available shape descriptors for two
main reasons. First, because of the paper size limit, we could
not consider more than two descriptors. Second, ART and SC
belong to different categories of shape descriptors (ART is
2D while SC is a 1D descriptor based on contours). This fact
certainly makes them complementary to some extent, which
is interesting to illustrate our complementarity measure.

This section is organized as follows. A brief description
of the considered descriptors is given in Sect. 3.1. Next, the
databases we use and their features are detailed in Sect. 3.2.
Then, in Sect. 3.3 we compute and analyse the measures pro-
posed in Sect. 2.

3.1 Statistical shape descriptors

Among the various shape descriptors that have been proposed
in the literature [8–10], we selected in this paper two well-

Fig. 2 Real parts of the basis functions of the descriptor ART, for n
from 0 to N = 2 (from top to bottom) and m from 0 to M = 11 (from
left to right). It has to be noted that their imaginary parts are similar
except the quadrature phase difference

known statistical descriptors which are essentially different
in their primitives: Angular Radial Transform (ART) [22] and
Shape Context (SC) [23]. While ART is based on a 2D prim-
itive (region inside the image) and provides a polar-based
feature vector, SC is a 1D primitive (relying on the extrac-
tion of shape contours) resulting in a histogram-based feature
vector.

3.1.1 The ART descriptor

The ART descriptor [22] is the result of a complex 2D trans-
form defined on a unit circle using polar coordinates. More
precisely, ART coefficients are defined by the projection of
the original image represented in polar coordinates on a basis
of orthogonal complex functions Vn,m(ρ, θ) = Am(θ)Rn(ρ)

(cf. Fig. 2). These basis functions are defined by multiplying
a radial function Rn of parameter n by an angular function
Am of parameter m, the pair of parameters (n, m) defining
the order of the coefficient Fn,m .

Invariance to similarity transforms is achieved by (1) using
an exponential functional in the angular function (to get
invariance towards rotations) and (2) centring and scaling the
shape image before computing the coefficients (to achieve
invariance towards scale and translation).

Finally, the distance between shapes is measured by the
Manhattan (L1) distance.

3.1.2 The SC descriptor

The SC descriptor [23] is based on relative spatial locations
between some points extracted from the contours of the shape
to analyse. Figure 3 illustrates its underlying principle. The
shape to be described is represented by a discrete set of points
extracted from the external and internal contours of the shape.

This descriptor can be considered invariant to scaling if
the background is not too complex, since the radial distances
are normalized by the average distance between all the pairs
of points of the shape. In addition, it is invariant towards
translation and can easily be made invariant towards rotation.
And, given that the SC descriptor provides coarse informa-
tion extracted from the whole shape, it is relatively robust
towards occlusions.
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Fig. 3 Principle of the SC descriptor. a shape to be described, b con-
tour points sampled from this shape, c set of vectors associated with
the reference point p extracted from the contour, d classes (bins) used
for the histograms, e histogram of the coordinates of the vectors shown
in c (i.e. shape context of point p), f set of shape contexts of the shape
shown in a

Even though the χ2 distance was initially used to compare
shape contexts from different symbols [23], more recently
numerous authors have chosen to consider shape contexts
as feature vectors and to compare them by using the L2

(Euclidean) distance [24].

3.2 Experimental protocol

In our experiments, we consider the GREC 2003 symbol
database [6]. This database contains 150 models of sym-
bols, which are used to generate noisy versions by apply-
ing the Kanungo algorithm [27]. The Kanungo noise is an
additive noise applied to binary images; it is controlled by
six parameters. Among these parameters, we chose to vary
α and β, which simulate the presence of an ascending amount
of noise in the image. When α decreases, the probability
for a symbol pixel to be inverted and considered as a back-
ground pixel increases (which may be seen as some kind of
“salt” noise), while when β decreases the probability to invert
a background pixel as a symbol pixel increases (“pepper”
noise). It has to be noted that these probabilities of inversion
decrease according to the distance from the contour of the
shape. Five databases, each one containing 30 random noisy
versions of each of the 150 model symbols are generated for
each α = 1

2N , with N varying from 2 to 10 by a step of 2
(cf. Fig. 4). Five databases are constructed similarly by vary-
ing parameter β. At the end, we obtain a database containing
the 150 model images (one image per symbol model) and 10
test databases, each one containing 30 × 150 = 4, 500 noisy
symbols.

Fig. 4 Symbol # 86 with different levels of noise (from left to right,
unnoisy symbol, first row: noisy symbol with noise α at levels N = 2
and N = 8, second row: noisy symbol with noise β at levels N = 2
and N = 8

In this experiment, we compare each noisy image from
the 10 noisy databases to the database containing the model
images. For this purpose, we use for each descriptor its asso-
ciated distance (the Manhattan distance for ART and the
Euclidean distance for SC) and the protocol presented in
Sect. 2.2.

3.3 Experimental results

The analysis of the experimental results is in four steps. Dur-
ing the first step (Sect. 3.3.1), a coarse evaluation of the per-
formance characteristics of the descriptors ART and SC is
provided. For this coarse evaluation, we consider the usual
performance measures (recognition rate, precision and recall,
see Sect. 2.4). The second step (Sect. 3.3.2) is a comparison of
the robustness of the two descriptors towards noise. For this
comparison, we compute Tolerance Intervals (see Sect. 2.6)
and we consider the two different types of Kanungo noise
(α “salt” noise and β “pepper” noise). Then, a subset of dat-
abases (among the most noisy) are selected for the third step
of the analysis (Sect. 3.3.3). The third step is a detailed anal-
ysis relying on the confusion matrices (see Sect. 2.4), the
CMC curves (see Sect. 2.5), and the qualitative measures we
introduce in Sect. 2.7. The fourth step, given in Sect. 3.3.4,
is a study of the complementarity of ART and SC, based on
the complementarity measures defined in Sect. 2.8.
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Table 2 Mean recall and
precision associated with the
two descriptors on the databases
with the levels of noise α = 1

2N

and β = 1
2N (with

N = 2, 4, 6, 8, 10)

The values between brackets are
the corresponding standard
deviations. We can note that the
mean recall equals the
recognition rate because the
number ni = 30 of noisy
versions is constant over all the
symbols i (see Sect. 2.4)

N Descriptor Noise α Noise β

Mean precision (SD) Mean recall (SD) Mean precision (SD) Mean recall (SD)

2 ART 100% (0) 100% (0) 100% (0) 100% (0)

SC 99.06% (0.059) 98.98% (0.076) 99.23% (0.05) 99.09% (0.066)

4 ART 94.69% (0.201) 96.09% (0.193) 100% (0) 100% (0)

SC 99.14% (0.055) 98.87% (0.081) 98.99% (0.057) 98.80% (0.08)

6 ART 93.05% (0.232) 94.71% (0.217) 99.74% (0.032) 99.58% (0.052)

SC 99.13% (0.059) 98.8% (0.092) 97.55% (0.09) 96.33% (0.148)

8 ART 90.60% (0.24) 90.53% (0.251) 89.46% (0.279) 91.87% (0.269)

SC 98.814% (0.071) 98.76% (0.09) 71.96% (0.396) 66.33% (0.402)

10 ART 63.6% (0.335) 52.91% (0.339) 19.09% (0.355) 28.64% (0.447)

SC 95.19% (0.089) 94.69% (0.121) 3.30% (0.151) 4.4% (0.168)

Fig. 5 Recognition rates R R (at rank 1) as a function of the level N of noise, with a noise of type α (left) and β (right)

3.3.1 Overview of the performance characteristics of ART
and SC

The recognition rate (RR), depending on the type and amount
of noise, is given in Table 2 and Fig. 5. We can note that, as
explained in Sect. 2.4, the recognition rate equals the mean
recall in our case where the number ni = 30 of noisy ver-
sions is constant over all the symbols i . Table 2 also gives the
mean precision (at rank k = 1 and the standard deviations of
the recognition rate and mean precision. We can see that, for
both descriptors and both types of noise, the quality of the
description decreases when the amount of noise increases.
We can also note that the decrease is more abrupt in the pres-
ence of β noise. For levels of noise N > 2, SC is superior to
ART for “salt” noise (α-noise) while ART is superior to SC
for “pepper” noise (β-noise). When N ≤ 2 ART is always
superior to SC, whatever kind of noise is applied.

We can easily understand why the performance of SC
decreases drastically in the presence of “pepper” noise: SC
is based on points sampled from the contour of the symbol
(cf. Fig. 3). When pepper noise is added to the image, the

shape contours are modified. In that case, the SC description
is computed from inaccurate points and becomes imprecise.
Conversely, “salt” noise has a thinning effect on the sym-
bol. Therefore, when the α-noise increases, the amount of
information available for computing ART is reduced, which
makes ART description unstable (see the high standard devi-
ation values in Table 2).

3.3.2 Comparison of the Robustnesses of ART and SC
towards noise

From Table 2 and Fig. 5, we compute the Tolerance Inter-
vals (TI) (described in Sect. 2.6) corresponding to descriptors
ART and SC, towards α-noise and β-noise. The TIs at levels
p = 5% and p = 20% are given in Table 3.

The results in Table 3 are consistent with the shapes
of the curves in Fig. 5. In particular, in the presence of
α-noise, the TI of ART is narrower than the TI of SC, which
implies that SC is more robust than ART towards α-noise. For
β-noise and descriptor SC, the fact that the TIs at p = 5%
and p = 20% are both equal to [1, 6] is due to a drastic drop
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Table 3 Tolerance Intervals (TIs) of ART and SC towards Kanungo
noise of type α and β

Type of noise α-noise level N β-noise level N

p = 5% p = 20% p = 5% p = 20%

ART [1, 4] [1, 8] [1, 6] [1, 8]
SC [1, 8] [1, 10] [1, 6] [1, 6]
These TIs are computed by using the recognition rates given in
Table 2.The noise levels N are such that α = 1

2N , (respectively β = 1
2N )

Fig. 6 From left to right: symbols 11, 87 and 125

in the recognition rates between the levels of noise N = 6
and N = 8. Table 3 shows the decrease in the quality of the
description when the amount of noise is increased. In par-
ticular, none of the two descriptors is tolerant at p = 5%
towards a noise of level N = 10 (neither for α-noise nor
for β-noise). Consequently, the rest of this section is devoted
to the detailed analysis of the results for the levels of noise
N = 6 and N = 8 for α and β. Indeed, when applied on these
databases, the behaviour of the descriptors is representative
of the general case where the noise is not too strong and at
least one of our two descriptors remains robust.

3.3.3 Detailed analysis of the performance characteristics
of ART and SC

To provide a more detailed analysis of the descriptors’ behav-
iours, we show in Table 4 some extracts of the confusion
matrices (see Sect. 2.3) for symbols 11, 87 and 125 (see
Fig. 6). We consider these particular symbols because, in the
presence of β-noise (at levels 6 and 8), they are subject to
confusions. Let us now focus on the database with noise β

at level N = 6 (Table 4a and c). Among the 4,500 noisy
symbols of the whole database, ART badly describes only
19 noisy symbols. All of these 19 poor descriptions come
from confusions between symbols 87 and 125. On the other
hand, the SC descriptor badly describes 165 noisy symbols
over 4,500, among which 29 poor descriptions are due to
confusions between symbols 11 and 87.

To go deeper into the analysis of the database with β-noise
of level N = 6, let us consider additionally the precision and
recall measures (see Sect. 2.4) associated with the symbols
11, 87 and 125 and the qualitative definitions introduced in
Sect. 2.7. From this analysis, we conclude that

Table 4 Extracts of the confusion matrices of the descriptor ART on
databases with noise β and levels (a) N = 6 and (b) N = 8 and of
the descriptor SC on databases with noise β and levels (c) N = 6 and
(d) N = 8

GT Nearest model

11 87 125

(a) ART with noise β at level N = 6
11 30 0 0

87 0 11 19

125 0 0 30

(b) ART with noise β at level N = 8
11 30 0 0

87 0 0 30

125 0 0 3

(c) SC with noise β at level N = 6
11 1 29 0

87 0 30 0

125 0 0 30

(d) SC with noise β at level N = 8
11 0 22 8

87 0 12 18

125 0 2 28

– symbol 11 (respectively symbol 125) is a sheep for
descriptor ART (resp. SC), as the quality of the descrip-
tion of this symbol is satisfying (indeed P = 1 and R = 1
for symbol 11 with ART and P = 0.81 and R = 1 for
symbol 125 with SC);

– symbol 125 (respectively symbol 87) is a lamb for
descriptor ART (resp. SC), as other symbols may be con-
fused with it. Indeed, P = 0.61 for symbol 125 with ART
and P = 0.51 for symbol 87 with SC;

– symbol 87 (respectively symbol 11) is a wolf for descrip-
tor ART (resp. SC), as this symbol may be confused with
other symbols. Indeed, R = 0.37 for symbol 87 with
ART and R = 0.03 for symbol 11 with SC).

A preliminary statistical study has shown that the dat-
abases are very homogeneous for both descriptors [20]. This
means that the number of goats is very reduced in this con-
text. Therefore, we did not look for goats, which would
have required the settlement of an additional parameter θ

(see Sect. 2.7). The fact that symbol 11 is a wolf for symbol 87
in the presence of pepper noise for descriptor SC is easily
understandable. Indeed, the pepper noise located at the cen-
tre of the cross in symbol 11 may be confused with the small
circle at the centre of symbol 87 (see Fig. 6). With ART, 11
noisy occurrences of symbol 87 have the “good” model 87
as nearest neighbour, while the remaining 19 occurrences
have the model 125 as nearest neighbour. This phenomenon
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Fig. 7 The CMC curves associated with the databases (first column): α = 1
26 and α = 1

28 and (second column): β = 1
26 and β = 1

28

makes us guess that there is an overlap between the images
of symbols 87 and 125 in the ART description space.

In addition, Table 4 shows that these dissymmetries in the
confusion matrix increase when more pepper noise is added
to the symbols (between levels N = 6 and N = 8). For
instance, when the level ofβ-noise reaches N = 8, symbol 87
becomes a wolf for symbol 125 in the SC space, as the images
of symbols 87 become closer to the model 125 than to the
model 87.

From this point of view, characterizing the results of the
descriptions not only at the first rank (i.e. using the nearest
model), but at higher ranks (i.e. using the k nearest models) is
very important. Indeed, in the case where there is an overlap
between two symbols (e.g. in the case of symbols 87 and 125
for ART), the “good” model may be among the two nearest
models but not necessarily the nearest one. And we can con-
sider that, if the “good” model is among the two nearest mod-
els, the quality of the description is better than if the “good”
model is farther. In other words, we can consider that a wolf
model which is near its lamb (see Fig. 1) is better described
than a goat. In order to take into account higher ranks k > 1,
we consider the CMC curves (see Sect. 2.5) shown in Fig. 7.
Figure 4a and c shows that most of the confusions of the
descriptor SC at rank 1 with noise α (see Table 2) are solved
at ranks 2 or 3. This means that the descriptive power of SC in

the presence of α-noise is relatively good, because even the
noisy symbols which are badly classified by using the 1N N
rule are well classified when considering the 3N N rule. On
the contrary, we can see from Fig. 4d that the descriptive
power of SC is bad with β-noise of level N = 8, as the CMC
curve of SC does not reach 100% recognition rate before rank
k > 20.

From Table 4a and c, we can also note that, with noise
β at level N = 6, while ART does not manage to discrimi-
nate between symbol 87 and symbol 125, SC perfectly dis-
criminates between these two symbols. And vice-versa for
symbols 11 and 87 in the same database. Therefore, we can
consider that ART and SC are complementary for symbols
11, 87 and 125 in the particular database with noise β at level
N = 6. Which means that combining ART and SC to obtain
a single descriptor may improve (on average) the quality of
our description, compared to a single descriptor. Now let us
expand our study of the complementarity of ART and SC to
the whole dataset.

3.3.4 Analysis of the complementarity of ART and SC

To end this experimental study, we measure the comple-
mentarity of ART and SC by the measures defined in
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Fig. 8 Measures
U (k), I (k), IART(k) and ISC(k)

(with k = 1, denoted as
U, I, IART and ISC for the sake
of readability) with different
levels of noise

Eqs. (14–18), where D1 = ART and D2 = SC. The results
are given in Fig. 8.

From that figure we can see that both descriptors are really
complementary on the four databases. For the two databases
with a noise level N = 6, we can see that the two descrip-
tors are perfectly complementary as C = 0 with the two
types of noise (even if ART is superior to SC in the presence
of β-noise while SC is superior to ART in the presence of
α-noise). It means for instance that, for a task of recogni-
tion, any query symbol from these noisy databases may be
correctly classified automatically by using the ART and SC
descriptors. Provided an ideal adaptive descriptor selection
method that would select, for each query symbol and each
type of noise, the best performing descriptor for this particu-
lar symbol. With a noise level of N = 8, we can observe high
values of both IART and ISC, which means that combining
ART and SC may enhance the average quality of descrip-
tion of the symbols, whatever type of noise is present in the
images, compared to a single descriptor.

3.3.5 Conclusion of the experimental section

The results given in this section have shown that SC is
superior to ART in the presence of “salt” noise while ART
is superior to SC in the presence of “pepper” noise. Both
descriptors are robust towards a small amount of noise but
their performance decreases drastically when the amount of
noise increases (especially with “pepper” noise). However,
the SC descriptor remains more robust than ART with salt
noise. We can also note that these two descriptors are comple-
mentary. Therefore, combining them may enhance the qual-
ity of description of a symbol compared to that of a single
descriptor.

4 Discussion

Well-known and widely used evaluation measures such as
the recognition rate (RR) and the Precision-Recall values

(see Sect. 2.4) are very useful to measure whether a given
descriptor is adapted to a particular context. They provide
performance characteristics on a set of evaluation databases
which are supposed to be representative of the images the
system will find in a real environment. However, when no
descriptor is superior to the others on all the databases (for
different types of noise for example), then the issue of the
usefulness of the evaluation measures proposed in Sects. 2.5
and 2.6 arises. Thereby, the Tolerance Interval quickly gives
an idea of the robustness of descriptors towards noise, while
the CMC curves characterize the quality of the description
in the neighbourhood of the noisy symbols.

Nevertheless, the descriptive power of a given descrip-
tor may vary from one symbol to another. Indeed, in any
database and for any descriptor there are symbols which are
well-described and others which are not (provided a database
of sufficient complexity). In this context, using the qualita-
tive measures introduced in Sect. 2.7 becomes useful, since
it allows us to detect the overlapping symbols. The informa-
tion given by these measures is equivalent to the information
given by the CMC curves, but detailed for each symbol in
the database, while the CMC remains general.

The complementarity measures (see Sect. 2.8) provide
information about the benefit we can expect from the combi-
nation of multiple descriptors. Hence, the best configuration
for a pair of descriptors is to be perfectly complementary,
which is the case for ART and SC on the databases of noise
level N = 6, for both α and β noise. Measuring upstream
the complementarity of shape descriptors is an interesting
alternative to the most widely used approach consisting in
selecting the descriptors to be combined by trial and error,
considering the performance characteristics of the overall
system.

It has to be noted that the complementarity measures can
also be used to characterize the complexity of a given data-
base. Indeed, if we consider a well-chosen set of mutually
complementary descriptors and that this set of descriptors
gives poor results on a given database (i.e. the value of C is
high), we can consider that this database is highly complex.
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On the contrary, when (considering the same set of descrip-
tors) the value of C is small (i.e. only a small number of
samples are badly represented by all the descriptors), the
database can be considered as less complex. When, in addi-
tion, the value of I almost equals the value of U (i.e. all the
descriptors describe correctly almost all the samples), the
complexity of the database may be considered as low.

To conclude this discussion, we can note that all the mea-
sures introduced in Sect. 2 may also be applied to several
structural descriptors. Indeed, we have seen that what we
only need in our protocol is a confusion matrix including
distances or dissimilarity measures between noisy symbol
descriptors and models. In this case, we can easily extend
this framework to structural methods based on graph repre-
sentation and graph similarity measures which quantify the
effort needed to match one graph with a another [28–30].

5 Conclusion

In this paper, we introduced an experimental protocol and
measures for characterizing the performance of descriptors
in the context of symbol description. The measures we intro-
duced are of two types. While the first type of measures is
devoted to the descriptive power of each descriptor taken sep-
arately in terms of uniqueness, distinctiveness or robustness
towards noise, the second type of measures aims at evaluat-
ing the complementarity of a set of descriptors. Concerning
the first type of measures, we first recalled the definitions
of confusion matrices, recognition rate, precision, recall and
Cumulative Match Characteristics (CMC) curves. Although
some of these measures are already known by many research-
ers in our community, our originality is that we linked them
to the notions of distinctiveness and uniqueness. Second, we
introduce two measures that are new in the field of docu-
ment analysis. These two measures are respectively the tol-
erance intervals, characterizing the robustness towards noise,
and a qualitative measure characterizing the symmetries in
the confusions. Concerning the measures of the second type,
we introduce original measures to characterize upstream the
complementarity between multiple descriptors. These mea-
sures may assist the researchers when selecting the descrip-
tors to be combined, instead of selecting them by trial and
error downstream.

We analysed experimentally a didactic case study (consid-
ering the widely-known descriptors ART and SC), to illus-
trate the effectiveness of the measures we defined. Even if the
main objective of this experimental part is didactic and not
directly to draw conclusions about the performance char-
acteristics of ART and SC, it highlights the relevance of
combining SC and ART for describing symbols.

It has to be noted that the complementarity measures may
be additionally used for characterizing the complexity of a

given database: the basic idea behind this is that, when a well-
chosen set of mutually complementary descriptors gives poor
results on a given database, we can consider that this database
is highly complex. As a conclusion, our measures may there-
fore be helpful for various purposes concerning performance
evaluation, in the field of document description and analy-
sis. We are currently working on an ambitious performance
evaluation campaign relying on our protocol and measures,
dedicated to symbol description by shape descriptors.
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