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 16 

Summary 17 

Goals: This report aims to present a clear protocol to (a) deploy proximal canopy sensors into single 18 

high-wire trellis Concord (Vitis labruscana cv Bailey) vineyards and (b) to convert the canopy sensor 19 

response into an indication of vine size (pruning weight). The protocol is designed to be robust and 20 

practical for easy adoption in commercial systems. Evidence will be presented of the efficacy of vine 21 

size prediction using the protocol in multiple research and commercial vineyards. 22 

Key Findings: Using different vineyards and pruning crews the protocol performed well in over 80 % of 23 

vineyards. It permitted growers to generate maps of actual vine size within vineyards. These maps 24 

provide a valuable indication of the current site-specific production potential and a baseline to assess 25 

changes in vine size over time. In a few vineyards, the proposed simplified calibration process did not 26 

generate a clear relationship between the canopy response and vine size, which may be due to changes 27 
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in vine shape in highly mechanized systems.  28 

Impact and Significance: Managing vine size is critical to the long-term sustainability of cool climate 29 

viticulture. It is also critical to managing quality in all viticulture systems. However, convincing growers 30 

to routinely measure vine size to manage it more effectively has historically been difficult due to the time 31 

involved and the difficulty of translating the data into a decision process. The proposed protocol uses 32 

technology and targeted sampling to minimize the effort required and presents more coherent information 33 

that growers can quickly react to. Grower adoption of this protocol should promote continual vine size 34 

measurement with the goal of decreasing vine size variation within vineyards. 35 

Keywords: canopy management; pruning; Concord (Vitis labruscana cv Bailey); normalized difference 36 

vegetation index (NDVI) 37 

 38 

Overview 39 

Statistically and visually the response from proximal canopy sensing systems has been linked to 40 

indicators of vine size1,2,3,4. However, the scientific literature has been focused on specific research 41 

objectives and has been limited in most cases to small plot or single block investigations. In reports linked 42 

to whole vineyard blocks in commercial applications, the canopy sensor data has not been explicitly 43 

calibrated or validated against measured vine parameters1,5. There is a lack of information that is directly 44 

relevant to commercial applications of these proximal sensing systems. This includes a generic protocol 45 

for sensor deployment and data capture and a robust but efficient methodology for a block or vineyard-46 

specific calibration of the relative sensor response to an absolute vine size parameter. Given the success 47 

of proximal canopy sensor deployment in research and trial plots for vine size estimation, the intent of 48 

this research is i) to fill a knowledge gap for translation by providing a protocol for the commercial 49 

adoption of tractor-mounted proximal canopy sensing systems and ii) to provide some statistics on the 50 

accuracy and precision of vine size mapping from the use of the protocol on multiple commercial 51 

enterprises. This information will assist growers in making decisions about technology adoption and 52 

transfer and suitability for their production system. The intent here is only to generate the best possible 53 

vine size maps under commercial constraints. The value of vine size maps will be determined by the 54 

quality of decisions that are ultimately made on the data.  55 

Multispectral imaging systems that measure reflectance of visible and near-infrared (NIR) light from 56 
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leaves were one of the earliest technologies adopted in precision viticulture (PV). Initially these imaging 57 

systems (canopy sensors) were used for disease monitoring and the identification of ”hotspots” associated 58 

with different canopy signatures6. This quickly evolved into applications to assess the natural variability 59 

in canopy development (such as vine size or the area of canopy leaf per square meter of ground [leaf area 60 

index or LAI]) and for mapping spatial variation in canopy vigor7,8,9. The original use of canopy sensors 61 

for PV predominantly used aerial and satellite platforms in warm to hot viticulture regions. More recent 62 

work focused on proximal sensors mounted on either vehicles4 or low-flying unmanned aerial vehicles 63 

(UAVs)10, with applications in hot, warm and cool climate viticulture regions. Regardless of the mode of 64 

mounting, or the climate of the site, all multispectral canopy sensors tend to operate the same way. The 65 

sensor captures the reflectance of visible and NIR light from the canopy in multiple bands, typically in 66 

the green, red and NIR regions. This information reflects the amount of photosynthetically active biomass 67 

under the sensor. Healthy plants absorb red (and blue) light for use in photosynthesis and reflect green 68 

light (hence they appear green). They also strongly reflect NIR light. Unhealthy plants reflect more red 69 

(and blue) light and absorb more NIR light. These differences mean that ratios between green, red and 70 

NIR light can give a good indication of whether a plant is healthy or unhealthy.  71 

The same type of sensor can be mounted on different platforms and this affects the type of data acquired.  72 

1) Aerial and satellite-based systems use cameras usually capture large images that cover entire 73 

vineyards. The pixel size within an image is determined by the elevation of the sensing platform 74 

and the quality of the camera (optics and throughput) but is typically 2 – 30 m2 for satellite 75 

systems and 0.2 – 3 m2 for aerial systems.  76 

2) UAV platforms can use cameras to capture higher resolution imagery (smaller pixel sizes of < 77 

10cm2), but over much smaller areas. As a result, any one image may only partially cover a 78 

vineyard. The UAV-derived images require stitching together (mosaicking) to create a full 79 

vineyard image10.  80 

3) Vehicles (tractors, self-propelled sprayers, etc…) can be used to mount proximal canopy sensors. 81 

These are not cameras that take an image like the sensors on satellites or UAVs. The proximal 82 
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sensors are scanning systems with a small field of view of < 1 m2 usually. They scan the canopy 83 

every second and record the reflectance. Each data point (one per second) is geo-referenced using 84 

a Global Navigation Satellite System (GNSS, also known as a GPS) receiver. These systems 85 

generate irregular point data that requires interpolation to generate a canopy reflectance map. In 86 

contrast, the satellite-, aerial- or UAV-mounted camera systems immediately generate an image 87 

(or map), although some image analysis may be required to obtain the best visual 88 

representation11,12. 89 

remote sensing works well in viticulture regions that are characterized by a Mediterranean-type climate, 90 

because dry and clear weather allows images to be taken throughout the growing season. In these systems, 91 

the interrow cover crop has senesced if imagery is taken mid to late season and therefore the cover crop 92 

does not affect the reflectance in an image.. In cool climate viticulture regions, summers may often be 93 

cloudy and wet. This creates a risk that satellite and some aerial systems may not be able to take images 94 

at key growth stages due to cloud cover. Cool climate viticulture also favors narrow walled trellis systems 95 

to allow sunlight into the canopy and to promote fruit maturation13. This has the effect of minimizing the 96 

flat area of the canopy (as viewed from overhead i.e. an aerial or space platform) and maximizing the 97 

viewed area of the interrow. The interrow is often under an active cover crop that does not naturally 98 

senesce and so produces its own spectral signal, which can make it difficult to discern between vines and 99 

cover crops. Timely acquisition and mixed pixel effects are therefore problematic for coarser (> 0.5 m) 100 

pixel imagery in cool climate viticulture. 101 

Ground-based platforms (e.g. tractor-mounted) are considerably more flexible than remote platforms for 102 

sensing. The timing of surveys can be determined by the grower. During the growing season, most all 103 

vineyards undergo a large regime of cultural practices providing a good opportunity for data collection 104 

at no additional machinery cost. This is equally true in warmer climates where remotely-sensed imagery 105 

is a plausible alternative. However, the flexibility associated with proximal sensing systems can create 106 

problems. It allows for the possibility of poor sensor mounting leading to unusual or incorrect 107 

measurement. In contrast, the overhead, directly downward-looking sensing from remote platforms 108 

provides a standard orientation and it is only the pixel size that effectively varies between systems.  109 

Theory of canopy sensing in vineyards with optical sensors 110 

Canopy sensing in vineyards is usually performed around veraison when vine size is largest14. In 111 

commercial New York Concord vineyards, where this study took place, approximately 40-50 % canopy 112 
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growth is achieved by bloom with the remaining 50-60 % occurring in the month after bloom15. 113 

Additional late season canopy growth, if any, typically comes from lateral shoots on vines under high 114 

vine water status; however, the majority of Concord vineyards are own rooted and unirrigated, which 115 

limits excessive lateral shoot growth. Therefore, maximum vine size tends to be achieved by veraison, 116 

after which and the rate of growth reduces significantly as more vine resources are directed to the fruit 117 

and to storage organs for the subsequent season16. Sensing at veraison has the distinct advantage of 118 

measuring the actual total vine development in the vineyard. It is also necessary when the standard 119 

industry ‘mixed-pixel’ approach is used with remote sensing11 that assumes no or low inter-row cover 120 

crop response and well developed vines. Some recent work has shown promise at being able to use 121 

canopy sensors earlier in the season to estimate canopy size using high-resolution aerial imagery17 or 122 

proximal sensing platforms4. Although early season options exist, the proximal sensing for this study 123 

was performed around veraison to conform with current commercial industry applications. 124 

The use of vine size in Concord grapevines, measured as the mass of first year dormant cane prunings 125 

per unit canopy length, has long been used to predict potential vine productivity and adjust pruning 126 

levels1819. The theory is that the mass of cane prunings is reflective of the level of vegetative growth in 127 

the previous season and a predictor of canopy growth and light interception for the next season20. Crop 128 

control management, such as pruning, shoot thinning, or fruit thinning, can be adjusted based on vine 129 

size to maintain crop load balance, i.e. exposed leaf area:fresh fruit weight21. In Concord, on high-wire 130 

sprawl training systems, the direct relationship between vine pruning weight (PW) and total vine leaf 131 

area at veraison has been demonstrated (Fig. 1) 22. The objective of this canopy sensing protocol is to 132 

relate proximal canopy sensor measurements with vine pruning weight and therefore vine exposed leaf 133 

area.  134 

 135 

<<Figure 1 near here>> 136 

 137 

Figure 1 The relationship between vine size and total vine leaf area in single high-wire cordon trained 138 

and cane pruned ‘Concord’ grapevines in Fredonia, NY. In undivided canopy training systems, 0.50 kg/m 139 

pruning weight and approximately 10 m2/m leaf area is considered near optimum to maximize canopy 140 

light interception and minimize internal canopy shading.  141 
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 142 

Mounting a sensing system on a vehicle provides considerable flexibility in orientating the sensor to the 143 

canopy. Similarly to aerial/space platforms, it is possible to obtain a downward-looking overhead view, 144 

but it is also possible to obtain a side-view of the canopy at various elevations above the ground. In high-145 

wire trellis (‘sprawl’) systems a side-mounted sensor can be adjusted to target the developing region of 146 

the canopy side-curtain. This capability permits the canopy sensor response to differentiate larger, longer 147 

cane vines from smaller, shorter cane vines during any stage of vegetative development4 (Fig. 2).  148 

 149 

<<Figure 2 near here>> 150 

 151 

Different proximal canopy sensors have different specifications, but all require a separation distance from 152 

the target (canopy) to operate correctly. For the most common commercial proximal canopy sensors, the 153 

width of the field of view is ~60-80 % of the separation distance from the target2324. A limitation with 154 

optical multispectral Vis-NIR canopy sensors is that they saturate at moderate to high leaf areas (LAI > 155 

3)25. Mounting the proximal canopy sensor above the canopy looking downwards leads to saturation of 156 

the signal very early on and an inability to distinguish high and low vigor vines by mid-season4. Similarly, 157 

side-mounting the sensors at cordon wire height also creates saturation issues for the same reasons. From 158 

experiences at the Cornell Lake Erie Research and Extension Laboratory (CLEREL) in single high-wire 159 

cordon juice-grape vineyards, mounting the sensor side-on to the canopy ~ 0.8 m above the ground and 160 

~ 1 m away from the canopy has proven to be effective in a wide range of situations. Typically, this 161 

mount is measuring the canopy response in a strip from 0.5 to 1.1 m above the ground (with the cordon 162 

wire height usually being 1.7 – 1.8 m in these systems). It is therefore avoiding any inter-row cover crop 163 

or under-vine weeds in well-managed vineyards. If the cover crop or weeds are poorly managed, and are 164 

allowed to grow up into the canopy, then they will also generate a reflectance and confound the vine 165 

canopy response. Not every vineyard system is identical and the cordon height and row dimensions may 166 

vary so there must be some flexibility in the mounting height. However, the key issue is to mount the 167 

sensor at a height so that it is sensing an area of the developed (or developing) canes where there is some 168 

canopy porosity2.  169 

 170 
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Major Observations and Interpretations 171 

Protocol 172 

In the first instance the protocol and its rationale for operation are presented. 173 

1) Sensor mounting and survey 174 

For mid to late season vine vigor surveys, sensors should be mounted on a vehicle at ~0.8 m height so 175 

that they are horizontally scanning the developing area of the canopy. The type of vehicle is not important 176 

and some alternative mountings are shown (Fig. 3). However, the height should be adjustable to 177 

accommodate different trellis heights, canopy management and vehicle constraints. It is important to 178 

remember that mounting the sensor too high where the canopy is well-developed will generate a saturated 179 

signal that is not suitable for mapping.  180 

 181 

<<Figure 3 near here>> 182 

 183 

Scanning should be done in association with vineyard operations, which will typically be spray 184 

operations. This produces a swathing density of 1:2 or 1:3 rows for two and three row sprayers 185 

respectively. Sensing every third row in commercial vineyards generates a swathing width of ~8 m, so 186 

high spatial density data will still be collected. 187 

2) Raw data processing 188 

Following the survey, data must be downloaded and pre-processed. Proximal canopy sensors typically 189 

return geo-referenced band information and/or specific vegetative indices (VIs)26. The raw data should 190 

be trimmed to remove non-sensible canopy reflectance data (bearing in mind that expected values of 191 

individual bands and VIs will change as canopies develop and/or sensor set up is altered). A histogram 192 

of band values and/or VI values can be generated to identify and remove outliers if present. As a default, 193 

trimming to ±3 standard deviations is recommended as a standard first step. Histogram analysis also 194 

helps to ensure that the canopy reflectance and VI responses are not negatively skewed, i.e. that there 195 

was no saturation of the VI response due to poor sensor set up or due to sensor malfunction. If outliers 196 
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or non-uniform distributions are observed, these should be investigated and determined to be true or 197 

erroneous before continuing. The trimmed VI data can then be used to generate VI maps. Data should be 198 

interpolated onto a standard grid (typically equivalent to the average row by vine spacing). There are 199 

many commercial and freeware options to perform interpolation and mapping but a good protocol should 200 

be followed27. If data are not correctly interpolated, then the subsequent estimations of vine size from 201 

these data will be erroneous. 202 

3) Sampling design for calibration 203 

From the VI map, rows that traversed areas of high and low canopy response should be identified and 204 

approximate sample locations should be identified for the collection of pruning weight data to calibrate 205 

the sensor response to vine size. The objective is to identify 3-5 rows per block with the intent to take 4-206 

8 samples per row to obtain 22-25 samples per block or ‘single production unit’. This can be adjusted as 207 

necessary for blocks with very short or long rows. Minimizing the number of rows is a deliberate strategy 208 

to minimize the time and the effort required for pruning crew to collect the additional information. Once 209 

these rows have been targeted, normal pruning operations can continue for the rest of the vineyard. The 210 

proposed sample density with a quasi-stratified sampling scheme should give a good estimation of the 211 

mean vine size in the production unit29 and also generate data across the range of observed canopy sensor 212 

values. In commercial situations, the rows to be sampled should be discussed and mutually agreed to 213 

with the grower. It is possible to constrain the sampling to rows that were actually scanned by the canopy 214 

sensors. However, this puts more onus on the grower and the pruning crew to identify the right rows, so 215 

this limitation has deliberately not been incorporated into the protocol.  216 

It is important to clarify the ‘single production unit’ term as a sampling unit. Individual vineyard blocks 217 

are typically managed uniformly. In larger vineyards, multiple contiguous blocks may in reality be 218 

managed as one large (segmented) area. If this is the case, then in theory the sampling and calibration 219 

can be spread over the entire area with the same number of calibration samples29, provided of course the 220 

area has the same variety and rootstock. In reality it is advisable to take more samples; however it is not 221 

necessary to sample each individual block at the suggested density (22-25 samples per block). If 222 

management is neither uniform nor continuous between blocks then each block should be treated as 223 

independent and sampled separately. This is true for both in-season and previous season management. 224 

Previous management strategies may affect vineyards for many years. Because of this, caution must be 225 

exercised when aggregating blocks into ‘single production units’ and should only be done when there is 226 

clear knowledge of continuous uniform treatment over many years. Similarly, only areas of common 227 
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variety 228 

4) Manual vine measurements for calibration 229 

Once the target rows are identified, pruning crews can be sent into the rows to collect pruning weights. 230 

Vigor maps should be provided to assist the pruning crew in identifying the preferred sample sites in 231 

areas of relatively high, low and medium sensor response. Crews must be instructed to;  232 

i) avoid sampling in panels that are abnormal, e.g. much shorter or longer than average, or 233 

panels that have missing or young renewed/replanted vines, and  234 

ii) not to sample at the edges of any individual block (the two end-panels or end rows). Growing 235 

and sensing conditions are atypical at the edges of a block and unsuitable sites for sampling 236 

and calibration.  237 

At each sample site, pruning weights are collected by weighting the mass of first year wood that would 238 

normally be removed at pruning time within the panel (between the two post lengths) using a hand scale 239 

at a resolution of ~100g33. In hand-pruned vineyards, manual pruning can be performed as per normal 240 

and according to the grower’s preference. In vineyards where pruning is normally achieved through 241 

mechanical means, hand pruning should approximate the mechanical outcome.  242 

Sample location must be recorded. It is suggested to do this in the first instance by recording the total 243 

number of panels in the row and the panel counts along the row that are sampled. Sample sites can be 244 

geo-located using GPS, but recording the row and panel (post) location should always be done as it 245 

provides the most precise location, especially for repeated measurements over time. Row by Panel 246 

information can also be used to geo-reference the pruning weight samples using ortho-rectified high 247 

resolution imagery in a GIS platform. This approach may be preferable in commercial situations as it 248 

takes the responsibility for geo-referencing away from the grower (or pruning crew) and puts it on the 249 

service provider.  250 

Once the manual sample sites are geo-referenced, the canopy sensor data can be interpolated onto the 251 

sample sites with the same interpolation method used to map the canopy sensor data. This co-locates the 252 

canopy sensor data and the PW measurements so that a calibration regression can be generated to relate 253 

the sensor response to vine size.  254 

5) Error sources in canopy sensing and vine size measurement 255 
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There is a strong potential for outliers that do not fit the general response in these spatial data. The 256 

approach proposed here has deliberately been chosen to account for what is expected in commercial 257 

conditions (and not research conditions). There are several potential sources of error in the protocol and 258 

some unusual (or outlying) values are to be expected because;  259 

a) There are no constraints placed on the sampling scheme (pruning crew) to sample in the 260 

same rows that were sensed. Therefore some PW measurements could be (will probably be) 261 

collected from non-sensed vines. Sensing and sampling the same vines can be forced, but 262 

the decision was made to test the protocol without this requirement as this is more likely to 263 

be the default in commercial systems.  264 

b) The sensor only measures one side of the vine, the PW measurement is taken for the entire 265 

vine. 266 

c) Low-cost GPS receivers do have errors greater than the row width that introduces 267 

inaccuracy in the geo-referencing of the sensor data. 268 

d) The short-range random variation in vine size (pruning weight) in these systems is known to 269 

be a significant part of the overall variation29 and this short-term variation will impact the 270 

goodness of fit for the calibration. This effect is smoothed by using panel measurements of 271 

PW and correct interpolation35 to generate values across 3-vine units rather than individual 272 

vines. 273 

e) The swathing width for the canopy sensor is variable and will differ between vineyards 274 

which makes direct comparison between the results from different vineyards difficult. 275 

f) Human errors occur which may include errors associated with a poor choice of panel to 276 

sample (non-representative of the area), errors in recording or transcribing observations or 277 

errors in data processing among others.  278 

6) Data clean-up and calibration of the canopy sensor response to vine size. 279 

Numerous experimental and controlled studies2,3 have shown that vine size is expected to be positively 280 

correlated to a canopy sensor response. Therefore, it is not expected to find points where this relationship 281 

falls down, for example locations with a high canopy response but a small vine size or vice versa. 282 

However, for the reasons outlined above, errors are expected in the data. The presence of these erroneous 283 
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points can be easily identified by plotting the vine size against the canopy response. Figure 4a illustrates 284 

this. The square points are indicative of very high and very low vine sizes associated with an average 285 

canopy response. In this case the VI used is the normalized differences vegetation index (NDVI)28. These 286 

points can be considered abnormal measurements and are probably associated with one or more of the 287 

error sources identified previously. These abnormal measurements should be removed as a first step 288 

before any analysis and, where possible, the reason for these determined. 289 

Following the removal of any abnormal data, linear regression can be used to fit a relationship between 290 

the canopy response and vine size. The low sample size means that an individual point has the potential 291 

to have a large effect on the regression fit. In initial studies, robust linear regression techniques were 292 

trialed to correctly approximate the slope of the regression fit. Results were not encouraging (data not 293 

shown). As a manual alternative, outlying points in the PW vs. canopy response plots were identified ‘by 294 

eye’ and omitted from the calibration. Since this is a subjective approach, the maximum number of points 295 

omitted was set at 15 % of the sample size after removal of any abnormal measurements. This is termed 296 

the 15 % rule. If no outlying points were observed, then no data should be deleted. Figure 4 graphically 297 

demonstrates this process for one of the study blocks and the effect it has on the regression fit between 298 

NDVI and PW.  299 

 300 

<<Figure 4 near here>> 301 

 302 

Once cleaned, a linear regression can be applied to the data29. This generates a local calibration function 303 

that can be used to transform the (relative) canopy response map into an (absolute) estimate of vine size 304 

(pruning weight). The proposed data trimming and calibration (regression) procedure has been designed 305 

to identify the correct gradient of the local VI-PW relationship. The hypothesis is that by discarding the 306 

potential (and expected) outliers from the dataset a more robust calibration is achieved.  307 

7) Vine size mapping 308 

The final step is to apply the local calibration to the interpolated canopy sensor data to create vine size 309 

maps. It is important to ensure that the legend used is suitable for the viticulture system and differentiates 310 

vine sizes that are of interest to the end-user.  311 
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 312 

Observations from Protocol Deployment 313 

Using the proposed protocol, canopy sensing and vine vigor mapping using the same sensor was 314 

effectively performed on several commercial enterprises using several different types of on-farm vehicles 315 

(tractors, quad-bikes, sprayers/harvesters). Two examples of sensor mounting are shown in Figure 3. 316 

Provided the sensor was well placed and correctly oriented to the growing region of the vine, good results 317 

were obtained regardless of the vehicle used. This clearly demonstrates the versatility of the proximal 318 

sensors and the ability to obtain canopy reflectance data under differing conditions. 319 

Effectively recording the relative canopy reflectance is only the first piece in spatially managing vine 320 

size. Mapping vine size, not a canopy reflectance value, depends on effective local calibration of the 321 

sensor response to vine size. To achieve this we have proposed to sample along transects of interest to 322 

generate good calibration data while minimizing the effort needed. The results from 34 blocks surveyed 323 

using this approach showed that good calibrations between the sensor response and vine size were 324 

achieved in 80% of fields (27 of the 34 fields) provided a rigorous data trimming process was applied to 325 

the data (Table 1) to ensure that potentially erroneous data were removed. Sensing and measurement 326 

errors can occur causing noise in the data and, without trimming, the errors can skew results. The 327 

proposed protocol outlines simple rules to achieve the data trimming that may remove up to 15 % of the 328 

data and is termed the ‘15 % rule’. This approach has worked well in this study. These rules can be easily 329 

implemented by industry and do not require any specialized software. Accepting this approach and 330 

getting used to working with spatial errors in the sensor and manual data is an adjustment that may take 331 

time.  332 

 333 

<<Table 1 near here>> 334 

 335 

Statistical analysis30 of the potential effect of the pruning crew (CLEREL vs Commercial) across the two 336 

years on calibrating the manual measurements to the sensor response showed no difference between the 337 

CLEREL and commercial pruning crews. Since the CLEREL pruning crew was constant over the two 338 

years, the regression fits for CLEREL sampled blocks were also compared across years with no 339 
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differences observed31. The proposed Protocol on this evidence appears simple enough and/or robust 340 

enough to cope with labor variation within commercial situations, which is encouragement for wider use. 341 

Example Maps/Outputs. 342 

Two examples of the final calibrated pruning weight maps that were delivered to growers from this survey 343 

are shown in Fig. 5. The maps are presented on a common legend, although the scale differs. There is a 344 

clear difference in mean pruning weight (PW) between the two blocks with Grower 1 Field 6 having a 345 

higher PW (kg/m). There are also clear within-field patterns of higher and lower PW evident in both 346 

maps, which will translate into clear differences in long-term production potential32. However, the 347 

patterns of within field variation of PW are very different between the two fields. Grower 7 Field 1 has 348 

‘hotspots’ of very high PW and trends that are oriented along a NE-SW axis, which is in contrast to the 349 

N-S oriented rows. The patterns in this field appear to be driven by environmental variation in the field. 350 

In contrast, in the Grower 1 Field 6 block, there is a general trend from high to low across the rows (East 351 

to West). Variation is limited within individual rows and there is a ‘blockiness’ to the variation that 352 

indicates that (row) management differences are driving vine size variation with some additional 353 

underlying environment-induced variability. 354 

In both fields, there were three transects taken to collect PW samples (white circles). The sample area is 355 

always defined as a panel-length (i.e. typically 3 vines between two posts and is usually ~ 7.3 m or 24’ 356 

in length - further details are outlined later in the protocol). In Grower 7 Field 1, there are areas of high 357 

and low canopy response (PW) within each transect and the pruning crew have managed to sample areas 358 

of high, medium and low canopy response. In Grower 1 Field 6, it was the rows themselves that were of 359 

high (East), medium (middle) and low (West) response. 360 

 361 

<<Figure 5 near here>> 362 

 363 

Broader Impact 364 

The methods and analysis employed in this study have deliberately tried to incorporate the likely errors 365 

if the protocol were to be widely adopted by the industry. The fits here typically had R2 values in the 366 

range of 0.3-0.6, which is lower than that observed in similar scientific studies2,3. If greater care was 367 
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taken to target pruning weight measurements to rows (vines) that were actually sensed, then better fits 368 

(R2) would be expected, as has been seen in the controlled research studies. However, from a grower and 369 

an agronomic perspective, it is not the goodness of fit (R2) that is critical, but the correct identification 370 

of the gradient in the linear regression. The data trimming approach proposed here has shown that the 371 

protocol is able to generate a close approximation of the known gradient (Fig. 6 – the validation of the 372 

15 % rule). The more PW calibration samples that are taken, the more accurate the estimation of the field 373 

mean will be and the higher the probable R2 value (e.g. Grower 9 Field 1 in Table 1). However, growers 374 

must always weigh up the time cost vs. the additional information quality when increasing sampling 375 

sizes. The proposed approach using ~23 samples has been shown to be able to provide an adequate 376 

estimation of field mean for PW33. This should hold some value as a whole block PW mean estimation 377 

even if the data cannot be related to the spatial canopy sensor response to generate vine size maps (e.g. 378 

Grower 5 Field 1 – Table 1). 379 

The 15 % rule for data-trimming is presented here as a suggestion. It has worked well within this study 380 

but needs wider application to determine if it is the right approach. It is important to reiterate that it is 381 

not necessary to remove 15 % of the data if the PW vs. VI plot does not have values that are likely to be 382 

having an adverse effect on the gradient of the regression fit. However, it is not recommended at this 383 

point to remove more than 15 % of the data.  384 

A threshold R2 value of 0.30 (equivalent to r = 0.55) has been identified for determining if the predicted 385 

PW map has agronomic value. This is again subjective and should be treated as a suggestion, not an 386 

absolute cut-off. Strong fits (high R2 values) are not expected in these noisy real-world situations because 387 

of methods involved. However, if a map is explaining 30-50 % of the variation in PW (according to the 388 

statistical analysis) than it should hold some intrinsic management value for a grower. Discussions with 389 

growers when presented with maps like those in Fig. 5 have certainly borne this out. This highlights also 390 

the effective difference between a statistical and agronomic significance. The data presented via the 391 

protocol appears to have a lot more agronomic value to growers than the pure statistical values may 392 

indicate. One grape-growing enterprise in the Lake Erie AVA now uses these maps to guide all routine 393 

vineyard management.34  394 

The success from trialing the protocol in the Lake Erie viticulture region in 2012-2013 has led to the 395 

Cornell Cooperative Extension and Penn State Extension programs providing a loan scheme for canopy 396 

sensors to growers in the Lake Erie region. This has seen a considerable uptake of canopy scanning by 397 

local growers with approximately 450, 750 and >1200 acres of vineyards in the Lake Erie Region scanned 398 
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in 2014, 2015 and 2016 respectively35. Some of this includes vineyards scanned multiple times during 399 

the season to give information on canopy development during the season. 400 

The lack of statistical difference in regression fits between the various commercial pruning crews and 401 

the CLEREL pruning crew indicates that the protocol is fairly robust for application. If there were issues 402 

with applying the protocol, it would be expected that there would be more errors, and likely lower R2 403 

values, with the grower pruning crews. This is because the CLEREL pruning crew is familiar with 404 

scientific research and protocols, unlike commercial pruning crews, and the CLEREL crew were more 405 

familiar with this particular protocol having completing 15 of the 34 surveys. In contrast, there were 406 

multiple commercial pruning crews involved in the survey, each of whom had less experience with the 407 

protocol than the CLEREL crew.  408 

The survey results (Table 1) show that in a few cases the proposed protocol does not always generate a 409 

relationship between the canopy sensor response and the pruning weights. No relationship was observed 410 

for Grower 1 Field 1 for either 2012 or 2013. This is the most intensively mechanized vineyard in the 411 

survey and uses a minimal prune system with machine hedging and little hand follow-up. Using vine 412 

pruning weight as a surrogate for leaf area was originally developed for manually cane-pruned Concord 413 

vines on a sprawl system with little or no additional canopy management, such as shoot positioning or 414 

canopy division. It is understandable in these systems that pruning weight would relate to undisturbed 415 

canopy growth and would have a reasonable relationship to NDVI. Machine-hedged systems with 416 

minimal hand follow up pruning will generate high shoot numbers and the canopy structure changes to 417 

have shorter canes, smaller leaves, and an increased density around the cordon. It is hypothesized that in 418 

these cases, pruning weight may not always relate very well with the exposed or displayed leaf area and 419 

may also show little relationship with canopy scanning of the side-curtain (as proposed here). Such 420 

intensive machine-managed pruning systems are not currently common, but are predicted to be more so 421 

in the future. This hypothesis needs to be further tested and an alternative approach to proximal canopy 422 

sensing may be required in these vineyards. High vine size vineyards are also likely to be poor candidates 423 

for this protocol. Large, well filled vines will also produce a saturated signal making it impossible to 424 

generate a relationship between a VI and vine size. This may possibly be an issue when adapting the 425 

protocol to irrigated vineyards in warm/hot regions where thermal units and water can be supplied at 426 

non-limiting rates to produce large vines. 427 

A protocol has been proposed and tested for the deployment of proximal canopy sensors into commercial 428 

vineyards to map vine size. The protocol was successful at producing spatial maps of vine size in over 429 
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80% of applications across two seasons in Concord vineyards. The protocol was developed and tested 430 

under commercial conditions, however the success of it will ultimately be determined in future years. 431 

Vine size mapping is the first step toward better vine size and production management in vineyards. 432 

 433 

Experimental Design 434 

General Description of the Lake Erie Region and juice grape production in New York 435 

The Lake Erie Region is a cool-climate viticulture region in the North-East USA. The growing region is 436 

confined to a narrow strip along the New York and Pennsylvania shore of Lake Erie where the meso-437 

climate is sufficiently affected by Lake Erie to permit grape production36. The region is dominated by a 438 

single variety, Concord, for juice grape production. Concord production practices are very uniform in the 439 

region with the majority of Concord vines trained to a single high-wire trellis at a row spacing of ~2.7 m 440 

and a vine spacing of ~2.4 m37. The uniformity in variety and production practices makes this of interest 441 

for region-wide experimentation and extension. Although this is a cool-climate production system, the 442 

trellis system used is similar to the sprawl systems used in warmer regions, and the protocol should be 443 

transferable to other regions with some modification for local conditions. 444 

Sensors used in this study 445 

The CropCircle AS430 (HollandScientific, Lincoln, NE, USA) is an active (light emitting) sensor that 446 

records the reflectance from an object at 670 nm, 730 nm and 780 nm corresponding to the Red, Red-447 

edge and Near-Infrared (NIR) portion of the electro-magnetic spectrum (EMS)23. The reflectance data 448 

was logged at 1 Hz to a GeoScout datalogger (HollandScientific, Lincoln, NE, USA) and geo-located 449 

with a WAAS-enabled Garmin 18x GPS (Garmin Ltd. Olathe, KS, USA). Data were recorded as .csv 450 

files that are compatible with a wide range of statistical and GIS software platforms. 451 

The Greenseeker RT100 (Trimble Navigation Ltd., Sunnyvale, CA, USA) is an active sensor that records 452 

reflectance in the Red and NIR section of the EMS24. Data was collected at 5 Hz then averaged to 1 Hz. 453 

The GreenSeeker data was logged on a GeoExplorer XM field computer and geolocated with the on-454 

board WAAS-enabled GPS receiver. Data were logged as shapefiles. 455 

Survey details 456 
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The protocol was tested in two consecutive years (2012 and 2013) on 11 different enterprises. Several 457 

growers surveyed multiple blocks (management areas), giving a total of 25 unique blocks. Of these 25 458 

blocks, there were eight blocks that were sampled in both years. One block, Grower 9 Field 1, was 459 

sampled as one management unit in 2012 but two management units in 2013, due to different pruning 460 

strategies employed in different parts of the block in 2013. Overall, data were obtained from 18 and 17 461 

discrete ‘blocks’ in 2012 and 2013 respectively, giving a total of 35 unique surveys. In 2012, six blocks 462 

were sampled by CLEREL and 12 by growers. In 2013, nine blocks were sampled by CLEREL and seven 463 

by growers. For blocks that were sampled in both years (eight fields), the 2013 samples were taken at the 464 

same location as the 2012 to provide temporal continuity.  465 

Validation of the proposed 15 % rule for data clean-up in the calibration data. 466 

To test the validity of the proposed 15 % rule (see the Protocol - Section 6), a validation was done with 467 

the largest data set available (N = 70; Grower 9 Field 1 in 2012). The original data were subset at a 468 

sampling rate of 0.35 (N = 24). The random sub-setting was performed five times with replacement. The 469 

data trimming process outlined in the protocol was then applied to each subset. This sampling rate was 470 

chosen to approximate the median sampling density from the fields in this survey (N = 25) and the 471 

recommended sampling density29 to estimate the field mean (N = 23). Linear regression was performed 472 

on the 5 subsets for both the ‘raw’ subset and the trimmed subset data. For comparison, the equivalent 473 

‘global’ regression was plotted for each condition (N = 70 without trimming and N = 65 after trimming).  474 

Figure 6a shows the linear regression fits for each original subset (N=24), while Figure 6b shows the 475 

same linear fits using only 22 points after two probable outliers were identified and removed from each 476 

subset. The global response is also shown in each plot. Note that the gradient and regression equation for 477 

the global fits with and without the outliers removed was almost identical due to the larger sample size 478 

giving a more robust fit. The gradients of the trimmed subset data (Fig. 6b) are more uniform and overall 479 

more closely resembled the global gradient. Each subset shows a shift up or down that is a result of error 480 

in the estimation of the mean from using a limited number of samples. For the ‘raw’ untrimmed data, 481 

Subsets 1 and 4 show very different gradients (Fig. 6a). This demonstrates empirically that the manual 482 

removal of a few points that were probable (and expected) outliers produced a more robust estimation of 483 

the global gradient from the subsets.  484 

 485 
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<<Figure 6 near here>> 486 

 487 

Comment on calibration fits (including information on data removed)  488 

Table 1 shows the results from each field sampled in 2012 and 2013. The R2 values of the calibration fits 489 

post-processing ranged from 0.17 – 0.73 and 0.03 – 0.56 in 2012 and 2013 respectively. The lowest fit 490 

in 2013 (Grower 5, Field 1) showed no trend at all. It was not possible to identify outliers within the 491 

cloud, thus no processing was performed. This field was sampled by the CLEREL pruning crew in both 492 

years, and in both years the field had a poor relationship between NDVI and PW.  493 

In both years there were three fields with R2 < 0.3 after processing and only two fields in 2012 with R2 494 

> 0.6. Given the error sources within production systems and the methods of data acquisition, high R2 495 

values are not expected. This was not a controlled experiment. To assist growers, an arbitrary threshold 496 

value of R2 = 0.3 is suggested as a level at which a calibration could be considered justified for 497 

management use. Based on this threshold value, the calibrated PW maps for 83 % and 76 % of fields in 498 

2012 and 2013 respectively could be used for spatial management.  499 

 500 

 501 
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Figure 1 The relationship between vine size and total vine leaf area in single high-wire cordon trained 

and cane pruned Concord grapevines in Fredonia, NY. In undivided canopy training systems, 0.50 kg/m 

pruning weight and approximately 10 m2/m leaf area is considered near optimum to maximize canopy 

light interception and minimize internal canopy shading. (Previously unpublished data associated with 

the Bates (2008) study, pers. comm. Dr Terence Bates, Cornell Lake Erie Research and Extension 
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Laboratory, Portland, NY)  

 

 

 

 

 

 

 

 

 

Figure 2 Illustration of the change in presentation of the canopy to high-wire and low-wire side-oriented 

proximal sensors at different growth stages.  
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Figure 3 Examples of mounting of the Crop-Circle sensor on a (left) harvester-sprayer and (right) an 

all-terrain vehicle. 
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Figure 4 An example of data trimming. Figure 4a (left) shows the plot of pruning weight (kg/m) vs NDVI 

for one of the surveyed Concord vineyards. Figure 4b shows the location of points along rows in the 

vineyard. There were three values that were considered erroneous and removed before any analysis 

(denoted by ■). Note that two of these abnormal values were grouped at the end of the westernmost row, 

a possible edge effect. Two other probable ‘outliers’, denoted by (○), were subsequently also manually 

trimmed. Again one of these is near a boundary condition (start of the easternmost row in Fig. 4b). 

Regression lines are shown for i) all data ( ̶ ̶ ̶ ̶ , N = 25, R2 = 0.02), with abnormal values (■) removed (- 

- -, N = 22, R2 = 0.19) and with abnormal and probable (○) outliers removed ( ̶  ̶ , N = 20, R2 = 0.43). 
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Figure 5 Examples of pruning weigh maps generated in commercial Concord vineyards using the 

proposed protocol. Field details are given in Table 1. Points indicate the location of manual pruning 

weight measurements for the field-specific calibration between NDVI and PW. In both fields, pruning 

weight measurements were taken from three transects. 
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Figure 6 Comparison of regression fits from subset data (N=24) from Grower 9 Field 1 using the raw 

data (Fig. 5a) and after application of the suggested data clean-up and the 15 % rule in the protocol (N = 

22, Fig. 5b).  
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Table 1 Field-level results from Concord vineyards of the sample sizes (N) and co-efficient of variation 
(R2) from fitting pruning weight data to NDVI data before and after applying the 15 % data trimming 
rule.  

Grower and Field ID Pruning wt. 
collected by 

2012 data 2013 data 

Raw data Post trimming Raw data Post trimming 

  R2 N R2  N  R2 N R2  N 

Grower 1 Field 1 Grower 0.03 25 0.17 22     

Grower 5 Field 1 CLEREL 0.00 35 0.21 31 0.03 32 0.03 32^ 
Grower 1 Field 2  Grower 0.12 24 0.28 21     
Grower 2 Field 1 Grower 0.24 26 0.41 23 0.22 23 0.40 21 
Grower 1 Field 2 Grower 0.17 25 0.42 22 0.10 25 0.25 22 
Grower 2 Field 2 Grower 0.33 27 0.43 25     
Grower 6 Field 1 CLEREL 0.06 23 0.44 18 0.06 20 0.36 17 
Grower 1 Field 3 Grower 0.25 25 0.46 22     
Grower 1 Field 4 CLEREL 0.42 27 0.48 25     
Grower 7 Field 1 CLEREL 0.32 29 0.48 27 0.30 29 0.40 27 
Grower 2 Field 3 Grower 0.37 16 0.53 14     
Grower 8 Field 1 CLEREL 0.48 25 0.58 23 0.18 25 0.32 22 
Grower 2 Field 4 Grower 0.46 36 0.59 34     
Grower 1 Field 5 Grower 0.54 25 0.60 23     
Grower 1 Field 6 Grower 0.42 25 0.60 23 0.02 25 0.33 21 
Grower 2 Field 5 Grower 0.51 22 0.60 20     

Grower 9 Field 1† CLEREL 0.55 70 0.61 65 0.30 40 0.47 
0.53 

21 
15 

Grower 1 Field 7 Grower 0.58 31 0.73 29     
Grower 2 Field 6 CLEREL     0.00 35 0.25 17 
Grower 10 Field 1 CLEREL     0.04 26 0.26 21 
Grower 3 Field 1 Grower     0.28 55 0.36 53 
Grower 4 Field 1 Grower     0.17 24 0.40 22 
Grower 11 Field 1 CLEREL     0.23 33 0.44 30 
Grower 3 Field 2 Grower     0.36 21 0.44 19 
Grower 4 Field 2 Grower     0.35 21 0.56 19 

† Field split in 2013 – two different pruning strategies within the block. ^ Data not trimmed as no trend in raw data 

 


