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Abstract 

This paper presents the implementation of a prototype network level 
intrusion detection system. The prototype system monitors base level 
information in network packets (source, destination, packet size, time, 
and network protocol), learning the ‘normal’ patterns and announcing 
anomalies as they occur. The goal of this research is to determine the 

applicability of current intrusion detection technology to the detection of 
network level intrusions. In particular, we are investigating the possibility 
of using this technology to detect and react to worm programs. 

1 Introduction 

Three aspects of network/distributed systems make these systems more vulner- 
able to  attack than independent machines: 1) networks typically provide more 

resources than independent machines, 2) network systems are typically config- 
ured to  facilitate resource sharing, and 3) global protection poIicies which are 

applied to  all of the machines in a network are rare. 
Others researchers, such as Lunt [1l1 101 and Vaccaro [14], have applied 

intrusion detection techniques at the machine level of a computer system. In 

‘This work was supported in part by the Office of Saleguards and Security of the US Dep. 
of Energy through the Safeguards Systems Group (N-4) of Lor Alamos National Laboratory. 
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contrast, the research project described in this series of reports is aimed at  in- 
vestigating the applicability of intrusion detection techniques to detect network 

level intrusions. In particular, we are investigating the possibility of developing 

a system which can detect and react to  worm programs. A “worm” program 
is characterized by the fact that the program moves from one node in a net- 
work to  another. The Internet worm of November 1988 1121 provided ample 
demonstration of the fact that computer networks are susceptible to this type 
of attack. 

Our strategy is simple. First, our network security system will learn normal 

network behavior and store this information in a profile data base. By letting the 
system learn the local network behavior, we avoid the risk of leading the network 
security system astray by imposing on it a preconceived notion of intrusive 
behavior. Second, after the network security system builds a representative 
profile of the local network the system is allowed to produce a classifying rule 
set that characterizes the network. This rule set is eventually compiled into 
an executable image. Finally, the compiled version of the network security 
system is run in a real-time network environment. If the network behavioral 

patterns change with time our network security system only requires a period 

of relearning the new behavior before it is brought back on-line. As such, our 

network security system is ideal for intrusion detection on any dynamic network. 
The first phase of this research project is described in the technical report 

The Archiiecfure of a Nefwork Level Intrusion Deieciion System [7]. It  demon- 
strated our method of data collection from an Ethernet local area network and 

explained the importance of data preprocessing. In addition, i t  proposed the use 

of a Learning Classifier system and Genetic Algorithm to learn normal network 
behavior, and to  possibly detect anomalous activity indicative of a network level 
intrusion. 

The second phase of this research project is the subject of this report. Along 

with an overview of our earlier work, this report provides a detailed description 

of the Learning Classifier system and Genetic Algorithm and how it  is currently 

implemented using MIT Scheme. 

‘ 

2 Background 

Protection encompasses the infegn‘ty, confideniiality, and availabiliiy of the re- 
sources provided by a computing system. Historically, protection has been pro- 
vided in the context of a security model 191. Security models are based on the  

concept of an action which is applied to a set of resources (frequently called ob- 

jects) .  Each action can be attributed to an individual user, the initiator of the 

action. A security model specifies which actions are permitted based 011 the ini- 
tiator of the action, the objects involved in the action, and the contest in  which 
the action is requested. Importantly, every action performed in the computing 
system must be validated by an implementation of the security model. 
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There are at least three ways in which arcomputing system based on the 

security model approach can be compromised: an incorrect implementation of 
the model, an inaccurate authentication of the user, or an insider attack. 

Any implementation of a security model is at best an approximation of the 
model. The more complex the model, the more likely i t  is that  there is a 

discrepancy between the implementation and the model. Any such discrepancy 
must be viewed as a means by which the integrity, confidentiality, or availability 

of a resource could be compromised. 
The implementation of a security model incorporates an authentication mod- 

ule which is used to  identify the individual initiating actions in the system. At 
best, the authentication module provides a high level of confidence that the 
individual initiating an action has been correctly identified. Regardless of its 

complexity, every authentication module can be compromised. M‘hen the au- 
thentication module is compromised, i.e., an individual is incorrectly identified, 

the security model no longer provides protection for the resources of the com- 
puting system. 

Finally, the security model approach does not address the problems asso- 

ciated with an insider attack. It is possible that an individual who has been 
granted the right to  manipulate an object may abuse that right. This possibility 
is not addressed in most security models. As such, a privileged individual can 
compromise the integrity, confidentiality, or availability of the resources which 
he or she has been authorized to  manipulate. 

Given these difficulties, several researchers have proposed that the traditional 

security model be augmented with an intrusion detection system [S, 11, 10, 141. 
Any set of actions that attempt to  compromise the integrity, confidentiality, or 

availability of a resource is termed an iniruszon. An rniruder is the individual 
or group of individuals who initiates the actions in the intrusion. Iiitrusion 

detection systems are based on the belief that an intrusion will be reflected by a 

change in the ‘normal’ patterns of resource usage. As such, intrusion detection 

systems have been developed to monitor specific types of activities and announce 

anomalies in the behaviors observed. The anomalies announced by an intrusion 
detection system serve as an indication that an intrusion may be in progress. 

If the intrusion detection system bases its monitoring on the actions per- 

formed by an individual (as in the IDES system), the monitoring can be viewed 

as an on-going authentication process. In this sense, the individual’s behavior 
will continue to authenticate his or her identity as long as those activities are 
within an acceptable variance of the normal behavior for the individual. How- 
ever, if the activities performed by an individual differ significantly from their 

normal profile, then there is reason to  suspect that an intrusion has occurred. 

Like security models, intrusion detection systems are not immune to attack. 
Because behaviors change over time, intrusion detection systems must be capa- 
ble of adapting to reflect changes in the actions that they monitor. As sucli, a 

careful intruder can ‘teach’ the intrusion detection system a new behavior pat- 
tern which may culminate in invalid access to  resources in the system. In this 
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context the intrusion detection system serves to  increase the time i t  takes to 

compromise the resources of the system and may increase the probability that 
the intruder will give up or be caught by alternate mechanisms. 

The research project described in this series of reports represents an attempt 
to apply the techniques associated with intrusion detection to the network level 
of a computing system. As with the IDES system [ll], our system is based on 
a statistical characterization of normal behavior. Like Wisdom and Sense [14] 

our system utilizes a Learning Classifier System (LCS) in conjunction with a 

Genetic Algorithm (GA) to Iearn which measures yield the best characterization 

of normal behavior. In addition, our view of the network data flow coincides 
closeIy to that of the network security monitor being developed at the University 
of California, Davis [SI. 

' 

3 Overview 

The primary assumption of our network security system is that normal net- 
work traffic will be characterized by discernible patterns of data flow, and that 

intrusive behavior will in some way violate those patterns. One approach to 
designing a network security system is to define network behavior patterns that 

indicate intrusive or improper use of the network and then look for the occur- 
rence of those patterns. While this may be capable of detecting known varieties 

of intrusive behavior, it  would allow new or undocumented types of attack to go 
undetected. Furthermore, individual networks may not follow similar patterns 

of usage. As such, any standardized characterization of a network would be 

rendered useless. 
For these reasons, we have made the decision to build a system which learns 

normal patterns of network behavior and then detects deviations from those 
patterns. By employing a learning phase in our network security system, an 

accurate characterization of the network can be determined regardless of the 

dynamic nature of network behavior. If the network behavioral patterns change 
with time our network security system only requires a period of relearning the 
new behavior before anomalous activity can again be detected. As such, our 
network security system is ideal for intrusion detection on any dynamic network. 

After investigating several models of machine learning we have decided to 

structure our learning system on the rule-based classifier system and genetic al- 
gorithm model developed by John Holland and others [SI. In principle, anoma- 
lous events are separated out of a continuous stream of noisy or irrelevant data 
by a rulebased classifier system. The genetic algorithm effectively narrows the 

rule space of the learning classifier system. 
Conceptually, our network security system is divided into the three modules 

illustrated in Figure 1. The network moniforing and preprocessing module sam- 
ples the network transmissions to create a valid profile of the network data flow. 

Currently, this module stores all network information to a data base file. Infor- 
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mation stored in this profile data base is preprocessed for the learning classifier 
system. This module will eventually supply the learning classifier system with 

a continuous stream of network data packets in a real-time environment. 

The learning classifier module parses the network data packet into discrete 
pieces of information. Each piece of information affects the rules in the rule- 
based classifier either directly or indirectly. The end result of the learning 
classifier system is to learn normal patterns of network traffic and flag deviations 

from those patterns. In practice, a learning phase must precede the prediction 
phase of the classifier system. 

The genetic algorithm module modifies the predictive rules of the learning 
c b i f i e r  system to better characterize the network behavioral patterns. During 
rule evaluation phase, each prediction rule has a strength value that is revised 
based on its latest prediction of the current state of the network. Using this 
strength value, the genetic algorithm purges those prediction rules which have 
a low strength value , and generates new prediction rules from combinations of 

those rules which have high strength values. 
Information flow begins at the monitoring module and continues through 

to the learning classifier module. After an initial phase of rule evaluation has 
completed, prediction rule strength information is sent to the genetic algorithm 

module where genetic operators update the prediction rule set. The new rule set 
is returned to  the learning classifier module where network state classification 
is resumed. Eventually, as a stable rule set is reached, the genetic algoritlim 

module(3) is removed from the system. 

4 Data Sampling 

In today's computer networks, data collection may not be a simple task.  Data 

travelling through the cables or airwaves of a network is no more than a stream 

of bits. Transmitting and receiving stations must somehow piece together each 

bit to form a coherent message. Many different protocols exist which define 
how data is to  be assembled into a packet of meaningful information. Decoding 
an information packet requires prior knowledge of the protocol being used on 
a particular network. When networks do not follow one of the protocols as de- 

fined by the International Standards Organization (ISO) decoding the incoming 

information packet may not be possible. 
Furthermore, many computer systems require both specialized software and 

a priviledged status to access the network bit stream. Most often, existing 

network monitoring software allows network access to some degree, but generally 
does not provide detailed transport information or allow the collection of packets 

destined for another machine. In either case, the validity of the network data 

flow profile would be marginal at  best. 
Because of the problems involved in data collection, we have constructed our 

own network monitor. The following section addresses three aspects of network 
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Figure 1: Basic architecture of intrusion detection system. 

data collection: 1) the choice of data to be collected, 2) the method of collection, 
and 3) the preprocessing of data for the learning classifer system. 

4.1 A Choice of Data 

Since the goal of this project is directed toward intrusion detection at  the net- 
work level a natural choice of data to collect is the network traiisiiiission packet 

In particular, we look at the packet generated at the Data Link Control lager 

of the OS1 hierarchy. At this layer, the network packet can be partitioned into 

iranspori informaiion and deliverable data [13]. Transport inforniation gener- 

ally consists of the source-destination address pair and some type of checksum 
on which the integrity of the packet is determined. Tkansport information is 
added to the packet as defined by the Data Link Control layer protocol and is 

implemented by hardware in most instances. As such, transport information 

cannot be directly affected by the user of a network. In other words, transport 
information is an artifact of the system and not the user. We therefore con- 
sider transport information to  be unbiased data. Unbiased data  is siinply the 
information in a network packet that cannot be made deceptive by a fraudulent 

user. 
On the other hand, deliverable data is information which is passed through 

the higher layers of the OS1 hierarchy and generally consists of user information, 
such as key strokes or large aggregates of text. In general, deliverable data is 
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encapsulated by various header and trailer information which is required by 
the OS1 layer protocols. Since deliverable data can be accessed either directly 

or indirectly using the interface software at a specific OS1 layer, a fraudulent 
user can easily modify this information to be deceptive. We therefore consider 

deliverable data to  be biased data. It may even be the case that deliverable 

data  is encrypted and cannot be easily interpreted by a monitoring system. For 
these reasons, we have decided to collect only the transport information part of 
the network transmission packet and to ignore all other packet information. 

4.2 The Network Interface 

Since detecting an intrusion is not dependent on the specific method used to 
monitor packets, any mechanism capable of obtaining a valid data sampling is 
satkfactory. Currently, we are using a software package that allows monitoring 
of an Ethernet local area network. 

All data collection takes place on two SUN 3 workstations using Lance Eth- 
ernet controllers. One workstation receives external network traffic via the Cam- 

pus Data Communication Network (CDCN). The CDCN is a broadband network 
and is the backbone along which UNhf traffic is handled. The other workstation 

monitors Ehternet traffic within UNM's Computer Science subnet. 

To monitor Ethernet traffic, we use the Network Interface Tap (NIT) facility 
provided by SUN Microsystems as part of their SUN Operating System network 
software utilities [l]. At this time, N I T  is the only software available on our 
hardware configurations which allows promiscuous monitoring of the Ethernet 
network. 

4.2.1 Network  Interface Tap ( N I T )  

NIT is a facility composed of several sireams modules and drivers which pro- 

vide link-level network access. As such, KIT is capable of both reading from 
and writing to the Ethernet device. NIT performs this service by placing itself 

between the Ethernet device and a user process. When NIT is initialized as a 

reading device, it attempts to read the packets that enter the Ethernet device 
buffer and write them to a stream. When initialized as a writing device, NIT re- 

quires the user process to supply an input stream which is then transmitted out 
onto the network through the Ethernet device. The components which collec- 

tively provide this service are the inferface (ni t i f )  [2], pocket filier (nit-pf) [3], 
and buffering (nit-buf) [4] modules. 

4.2.2 The Monitor Applicat ion Program 

The network monitor application is comprised of the NIT interface module and 
the NIT buffering module. At this time, we do not use the NIT packet filter 
module. 
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Functionally, the monitor program polls the read side of the NIT device untiI 

a specified time-out occurs. Within the frolling loop, packet information is read 
from the NIT stream device and written to a file for processing at a later time. 

The relationship between the Ethernet device, the NIT facility, and the monitor 
application program is demonstrated in Figure 2. 

Ethernet 0 Conuoler 

Ethernet Buffer 

NIT Buffer 

1 

Figure 2: NIT interface facility. 

As mentioned earlier, only the transport information portion of the network 

packet is utilized. All other information is discarded by the monitor application 

program. In addition to  the transport information obtained from the Ethernet 

packet, RIT prepends a timestamp and a cumulative packet drop count to each 

packet obtained from the Ethernet device. The collection of information from 
each packet includes the timestamp (both seconds and microseconds), the drop 

count, packet size, source-destination address pair, and the overlying network 
protocol. As such, a total of 30 bytes from each observed packet is written to a 

file for offline processing. 

By using the NIT facility, we have been able to collect on average 90 percent 
of all packets on the Ethernet network’. This results is a collection rate of 

approximately 160 packets in a one second interval or more than 1 Megabyte of 

data every four minutes. We feel that  this is an acceptable collection percentage 

when considering the volume of traffic handled on the two monitored rietworks. 

and a nice priority of u - l O ” .  

’The value of 90 percent was achieved by running the monitor process with root priviledge 
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4.3 Data Preprocessing c 

Of the data currently saved, only the timestamp value, packet size, source- 
destination address pair, and network protocol descriptor are used within the 

learning classifer system. The cumulative packet drop value is of interest only 

to verify the performance of our monitoring application program. There are two 

reasons for preprocessing the data. 

1. Data compression 
In the cases of sourcedestination addresses, packet sizes, and network 

protocols the raw data can be compressed without loss of relevant infor- 
mation. This results in data which is easier for the learning classifer system 
to manipulate and which requires less off-line disk space for storage. A 

real-time strategy may not require data compression. 

2. Expansion of information 

In the case of timestamp information, the basic second count provided can 

be augmented to  include contextual information such as hour of day and 
day of week. This allows the learning classifier system to  build net.work 
behavior profiles that are based on human temporal patterns. 

5 The Learning Classifier System 

The input to the learning classifier system is simply a stream of tuples derived 
from the network transmission packet described earlier. The tuples specify the 

source, destination, size, time, and protocol used in an Ethernet transmission. 
Using this stream of tuples the classifier system must perform two functions. 
First, i t  must develop a rule-based model of normal network behavior by observ- 
ing the tuple sequence. Second, based on the network model and recent tuples it 
must decide whether the network is in a normal or abnormal state. To perform 

these two functions the system uses four categories of rules, an historical data 

base, and an output interface. The relationship between these components is 
illustrated in Figure 3. 

5.1 Rule Categories 

1. Aggregat ion  and event  de tec t ion  ru les  

These rules attend directly to  the network transmission tuples. They 
maintain various statistical counts and may flag significant events. The 
information produced by these rules is used by the higher level decision 

making rules and to  the data base update rules that  build an historical 
profile of network behavior. 

Examples of this rule class include rules that count the number of packets 

sent over the network in the last minute, count the number of packets sent 
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Figure 3: The Learning Classifier System. 
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between one source-destination machine pair in the last ten minutes, or 

flag the receipt of a packet from outside the local network. 

2. Data base update rules 

These rules attend to the values pceted by the aggregation and event 
detection rules. They update the data base that profiles the past network 

behavior. 

For instance, the standard deviation for the count of packets seen in the 
last minute might be under consideration as a meaningful measure of the 
network state. In this case there would be an update rule which attends 
to the aggregation rule counting the number of packets transmitted in  
the last minute. When the aggregation rule fires, this update rule would 

use the ne19 count t o  update the mean and standard deviation values for 

packets in the last minute in the data base. 

i 

3. Threshold rules 

These rules also attend to  the aggregation and event detection rules. They 
embody thresholds on the individual measures to  which they attend. They 

fire with a value of abnormal if the threshold which they embody is es- 
ceeded, and with a value of norma1 otherwise. 

For example, a threshold rule that measures the number of standard devi- 
ations away from the mean value of packets transmitted in the last minute 
will fire abnormal if a certain number of standard deviations is esceeded. 

4. Prediction rules 

These rules attend to  one or more threshold rules. If all of the threshold 
rules to  which they attend fire as abnormal then prediction rules predict 

the network state to  be abnormal. Otherwise they predict the network 
state t o  be normal. 

Prediction rules have a strength rating attached to them which reflects 
their past success in predicting the true network state. StrengtIi ratings 
are revised based on feedback from the output interface in a manner which 

will be discussed shortly. Prediction rules are the only rules which are 

candidates for deletion from the rule base, or for use in rule reproduction, 
by the genetic algorithm. 

For example, there would be a prediction rule that attends to  the thresli- 

old ruIe for monitoring the  number of packets sent in the 1st  minute. If 
the threshold rule fires because the current count exceeded two standard 
deviations the prediction rule would fire as abnormal. During strengtll 
revision, this prediction rule would be rewarded if its prediction of the 

network state was correct. If its predictlon of the network state \vas in- 
correct the prediction rule would be punished. 
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WHEN ( evaluation-condition ) DO 
IF ( firing-condition ) THEN 

ELSE 

ENDIF 

he-side-effects 

false-side-effecfs 

ENDDO 

Figure 4: The standard rule form. 

5.2 The Standard Rule Form 

All rules are represented in the standard form as seen in Figure 4* .  The 
evaluation-condifion for a rule is a set of one or more conditions that upon 
satisfaction may indicate that the rule is to  be evaluated. For instance, the 
evaluation-condition for most aggregation rules is simply the receipt of a new 
network transmission packet. For data base update and threshold rules it is the 

firing of the aggregation rule on which they depend. For prediction rules it is 
the firing of any of the thresholds rules on which they depend. 

The firtng-condttion for a rule is the circumstance under w~liicli it performs 
a state action. A state action updates information variables that may be either 
local to the rule or global to all other rules in the system. 

To illustrate the use of the standard rule form, consider the monitoring of 
network packets transmitted in a one minute time period. The set of rules that 

would perform this task would include: 1) an aggregation rule that would count, 
network packets, 2) a data base update rule that would record count statistics, 
3) a threshold rule that would measure and report abnormalities in standard 
deviations from the count mean, and 4) a prediction rule that would report the 

network status. 

The aggregation rule that counts the number of packets transmitted in the 

last minute would be evaluated when a new network packet has entered the 

system. Its firing condition is the completion of a one minute period. This 
period is determined by information stored in the network packet3. lf a one 

minute period has completed the rule executes its true-side-effect of updating 
a global count variable to the one minute packet count and reinitializing its 
local count variable to  zero. If a one minute peroid has not completed the rule 

performs its false-side-effect of simply updating its local count variable for the 
current minute. The rule form for such an aggregation rule is shown in Figure 5. 

The data base update rule which attends to the aggregation rule will be 

2This is true for all rule classes except the prediction rules. Prediction rules adhere Lo the 

jEach network packet has a time stamp that can be used to derive a discrete lime frame. 

standard rule execution flow, but are implemented as bit vectors. 
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WHEN ( new packet recieved )bo 
IF (one minite has elapsed ) THEN 

plm-count = count 
count = 0 

fire packet-last-minute aggregation rule 

count = count = 1 

ELSE 

ENDIF 
ENDDO 

Figure 5: Rule Form - Aggregation Rule. 

WHEN ( packet-last-minute aggreagation rule fired ) DO 

plm-samples = plm-samples + 1 

plm-sum = plm-sum + plm-count 
plm-mean = plm-sum / plm-count 

claculate new standard deviation 

no false side effects 

IF ( true ) THEN 

ELSE 

ENDIF 
ENDDO 

Figure 6: Rule Form - Update Rule. 

evaluated if the aggregation rule h a s  fired (;.e. if a one minute time period 

has completed). Its sole purpose is to  record count statistics for the number 
of network packets transmitted in the last one minute period. The rule has a 
firing condition that  is always true, and its true-side-effect updates the profile 

data base. There is no false-side-effect for this particular rule. The rule form 

for a packets last minute update rule is shown in Figure 6. 

Like the data base rule, the threshold rule will be evaluated if the aggregation 
rule has fired. When this rule is evaluated the firing-condition determines if the 

last packet count has exceeded a number of standard deviations away from the 
count mean. In essence, the firing-condition is always true. The true-side-effect 
sets a global variable that indicates the standard deviation being monitored has 

been exceeded, and the false-side-effect sets a global variable that indicates the 
standard deviation has not been exceeded. the rule form for a threshold rule js 

given in Figure 7. 

The prediction rule attends to  the threshold rule and is evaluated if the 

threshold rule has fired. The firing condition for this rule, like the threshold 
rule, is always true. It has a true-side-effect of a normal network state prediction 
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WHEN ( packet-last-minute aggreagation rule fired ) DO 

IF ( a b  (plm-mean - plm-count) > 0.5 plm-stdev ) THEN 

ELSE 

ENDIF 

fire 0.5 threshold rule u true 

fire 0.5 threshold rule as false 

ENDDO 

Figure 7: Rule Form - Threshold Rule. 

and a false-side-effect of an abnormal network state prediction. 
The simple standard form for the rule base provides a consistent model that 

can be applied to all four rule classes. In most instances, rules can be generated 
from a standard input format as described in a later section of this paper, while 

preserving rule function modularity. 

5.3 Strength Revision 

Each prediction rule has a sfrength rating which reflects its past success in  pre- 
dicting the true network state. Only prediction rules receive feedback from the 
environment about their performance, and are the only candidates for deletion 

or use in reproduction by the genetic algorithm. The separation of the thresliold 

and prediction rule classes eliminates the need for a bucket brzgade algorithm of 
the sort found in many classifier systems. 

The threshold rules are fed directly by the aggregation and event detection 
rules. The prediction rules, in turn, are fed directly by the threshold rules. 

Initially, each threshold rule feeds just one prediction rule which attends only 

to that threshold rule. In time the genetic algorithm combines the prediction 

rules to create new prediction rules which attend to more than one tlireshold 
rule, and drops the prediction rules corresponding to individual thresholds that 
have proven to be of little use. As long as a threshold rule feeds a t  least one 

active prediction rule it will remain in the system. When there are no longer 
any prediction rules which rely on a threshold rule it can be purged. Similarly, 

aggregation and event detection rules and data base update rules remain in  t he  

system only 8s long as they indirectly supply information needed by any existing 
prediction rule, and are removed when they cease to do so. 

When prediction rules fire there are four possible results, depending on the 

rule prediction and the true network state as shown in Figure 8. 
Results 1 and 2 evaluate the degree to which a rule reflects the stability 

of normal network behavior. Result 1 is rewarded and result 2 is punished. 
Results 3 and 4 evaluate the degree to which a rule is reactive to  abnormal 
network behavior. Result 3 is punished and result 4 is rewarded. At present 
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I I Prediction I Network State I Result 1 Reward I 

1 normal normal correct +1 
2 abnormal normal incorrect -1 
3 normal abnormal incorrect -5 

4 abnormal abnormal correct +10 

Figure 8: Possible prediction results. 

reward and punishment is carried out according to  the following regimen. 

1. 

2. 

3. 

Rules correctly predicting normal network state have their strength in- 

creased by one. This modest reward reflects the fact that for reasonably 
good rules this will be a common occurrence. 

In addition, a restriction on the reward is added for groups of prediction 
rules which embody competing single threshoids on a particular measure. 
For instance, consider the packets transmitted in the last minute measure 

mentioned earlier. There might be several prediction rules which fire as 
abnormal depending on whether the latest count exceeded the mean count 
by more than 2, 3, or 4 standard deviations. If in fact the count never 
exceeded 3 standard deviations from the mean, we would not want the 

rule for 4 standard deviations to be rewarded as heavily as the one for 3. 

The 3 standard deviation rule, being tighter, is clearly more useful. To 

prevent this situation only the most specific member of such families of 

related rules are rewarded at any one time. That is, if all three of the 2,  
3, and 4 standard deviation rules correctly predict a normal state, only 

the 2 standard deviation rule will receive the usual reward of having its 
strength increased by one. The strengths of the other two rules will remain 

unchanged. Useless prediction rules that embody thresholds so loose as to 
never be exceeded, therefore, will not become artificially strong. Instead, 
they will have strengths equal to  another group of useless prediction rules, 

those that are wrong exactly half of the time. 

The above scheme is in effect only during the initial rule evaluation phase 
when prediction rules correspond directly to  threshold families. Applica- 
tion of the genetic algorithm may eliminate the correspondence between 
the two rule classes, therefore strength revision is based on the perfor- 

mance of individual rules. 

Rules incorrectly predicting an abnormal state have their strengths de- 
creased by one. This situation indicates a rule does not accurately reflect 
the stability of normal network behavior. 

Rules predicting a normal state when anomalous behasior is occurring 
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have their strengths reduced by fiGe. This situation shows a rule is insuf- 

ficiently reactive and is therefore penalized fairly heavily. 

4. Rules correctly predicting an abnormal network state have their strengths 

increased by ten. This situation demonstrates the important characteristic 

of reactivity and is heavily reinforced. 

The actual amount of the rewards and punishments for these four situa- 

tions is likely to change as our work progresses. We expect, however, that the 
importance attached to each of the situations will be consistent. 

5.4 System Running Modes 

The network security system can be thought of as operating in three distinct 
modes as illustrated in Figure 3. In profile l e a n i n g  mode only the aggregation 
and event(1) and the data base update(3) rule classes are engaged. This mode 

is used to  build the statistical profile of normal network activity. Care should 

clearly be taken not to run this learning mode while the network is operating 
under anomalous conditions. 

In rule evaluniion mode only the aggregation and event(]), threshold(2), and 
prediction(4) rule classes are engaged. A statistical profile of the network stored 
in the data base is assumed, and running the system gathers data on how well 

the various prediction rules characterize the network state. The success rates of 
the prediction rules are reflected in their strength values, which are constantly 

updated by the strength revision algorithm(7). 
In on-line mode the aggregation and event( l ) ,  threshold(2), and predic- 

tion(4) rules will again be engaged, but will be assumed to have reached a 

stable state. Here the goal is to run fast enough to do real-time network moni- 

toring. In this mode the output interface(5) will give a single normal/abnormal 

decision based on the collective input of the prediction rules, and 110 strength 
revision will occur. 

The first two modes are the ones which will be used during initial devel- 
opment. The third mode is what is envisaged for a more mature version of 

the system. Even having achieved such a mature version, however, it will be 
necessary to periodically run the first two modes in order to adjust to changes 

in network behavior. The need to rerun the learning modes in  a mature system 
would be indicated by the system’s failure to detect attempted intrusions or by 

a series of false abnormal alarms. 

6 The Genetic Algorithm 

The individual threshold rules embody various measures of network behavior. 
The prediction rules can be thought of as hypotheses that combinations of these 

mesures  accurately predict network state. Since the size of the prediction rule 
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space is the power set of the threshold rule set, a relatively small number of 

measures can give rise to  a large number of hypotheses. The function of the 

genetic algorithm is to explore the space of potential prediction rules without 

generating dl of them. 
Each prediction rule has a vector associated with i t  indicating which thresh- 

old rules it depends upon. Each threshold rule has an assigned position in all 
vectors. If a position in a prediction rule’s vector is a 1 then it pays atten- 
tion to the firing of the corresponding threshold rule. If the position is a 0 the 

prediction rule does not pay attention to that threshold rule. 
’ The genetic algorithm takes as input the set of prediction rules and their 

corresponding strengths and vectors. The algorithm purges the rules with weak- 
est strengths from the set, and then uses two genetic operators to generate new 

rules from the vectors of the remaining stronger rules. A step by step description 

of the algorithm follows. 

1. The incoming set of prediction rules is sorted based on their strengths. 
Let the number of rules in the set be P. 

2. The weakest rules are removed from the rule set. Let the number of rules 
removed be A’. 

3. A number of new rules are created from the remaining strongest rules 
using the crossover operator. Let the number of rules created by crossover 
be C. 

4. A number of new rules are also created using the mutation operator. Let 
the number of rules created by mutation be A I .  

5 .  The newly generated rules are given a default strength value. The new pre- 
diction rule set is the union of the newly generated rules and the strongest 

of the incoming rules from which they were generated. M’e require that 
N = C + M ,  so the size of the new rule set is P, the same as the size of 
the existing rule set. 

The crossover operator works by choosing two rules probabilistically from the 

list of the strongest rules. The probability of rule t being chosen is proportional 
to its strength. 

P(z) = strength(z) / (sum of all strongest rules strengths) 

Having chosen two rules, a point within the range of their vector lengths 

is randomly chosen. A new rule vector is formed by using the portion of the 
first rule vector up to the crossover point and the portion of the second rule 
vector after the crossover point. This vector now represents a prediction rule 
which attends to a new combination of threshold rules. The crossover process 

is illustrated in Figure 9. 
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Figure 9: Crossover 
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mutation point = 2 

NewRule -1 

Figure 10: Mutation 

The mutation operator probabilistically chooses one rule from the list of 

strongest rules. It then randomly chooses a vector position and forms a new 

rule vector by changing the value at that position from a 1 to a 0 or from a 0 
to  a 1. The mutation process is illustrated in Figure 10. 

As each new rule is generated by the genetic operators two checks are made. 
First, if the result of an operator is a rule vector consisting of all 0’s the vector 
is discarded and another is generated. Clearly such a prediction rule, which 

attended to nothing, would be useless. Second, each generated vector is com- 

pared to the generating list and the new vectors already generated to see if it 

is a duplicate. If it is then it is also discarded and another is generated. 
Having generated a new prediction rule set the network security system will 

then be run on a substantial amount of tuple transmission data. The default 

strengths of the new rules will be altered over time by the strength revision 
algorithm to reflect their utility to the system. Eventually the new prediction 
rule set and their updated strengths will in turn be submitted to the genetic 
algorithm. 

The assumption is that by combining parts of the strongest rules randomly 
the genetic algorithm will search the potential rule space more efficiently and 

more successfully than conventional heuristic methods. The intent is to combine 
the best features of best first search and random sampling. The algorithm uses 
the strongest rules to pursue branches in the rule space that have proven to 

18 



be successful as does best first search. It aiso has enough randomness in  it 
operators to  help i t  avoid getting stuck at local maxima. 

7 Implementation of a Prototype 

The implementation of a prototype network security system was written in hlIT 

Scheme 7.0.0. The decision to  use Scheme was based on two conditions. First, 
as a functional language, Scheme readily supports a prototype programming 
environment where the modification of source code is simple. That is, elaborate 
Sdeas can be implemented without concern for intricate programming details4. 
Second, hilIT Scheme can compile source code. Compiled code executes much 
faster than interpreted code and, may be necessary for adhering to real-time 

efficiency constraints. 
As described earlier, the learning ciassifier system and genetic algorithm 

are two distinct phases. The learning classifier system employs static rule types 
that  update the network profile data base or make a prediction as to  the state of 
the network. The genetic algorithm defines a subset of the prediction rule space 

based on past performance of individual prediction rules. Implementation of the 
prototype system parallels the learning classifier system and genetic algorithm 
phases outlined in sections 5 and 6. 

7.1 The Learning Classifier System 

The structure of the learning classifier system consists of two separate phases. 

The first phase initializes the rule base such that each rule definition is trans- 

formed into an executable form. The second phase implements an interpretive 
loop. The interpretive loop provides a direct interface between the network 

traiisinission tuples and the learning classifier rule base. 

7.1.1 Rule Structure 

A common rule structure is used for all rules in the rule base. This structure is 
shown in Figure 11. All rules must contain the first four fields along with some 

form of action or effect. The remaining items are optional and included in a rule 

when needed. The rule name is a unique identifier that is used to identify the 
rule in various association lists. The rule t ype  is one of aggregation, tlireshold, 

or update. The eualuaiion condiiion dictates when the rule will be evaluated, 

while the firing condition determines if the true or false effect will take place 
whne the rule is fired. Locals are local variables, such as counters, that  are used 

to  maintain data specific t o  a given rule. Globals-set and defaulis must occur 
in pairs. The globols-sei are state variables that the rule sets and the dejoulfs 

are the values used to  initialize those variables. Notice that each global variable 

‘Such M maintaining linked lists and updating pointer variables. 

19 



;rule ternpiate 
(def-rule ;rule name 

;rule type 
;evaluation condition 
;firing condition 

( 
( 
( 
(:locals 
(:globals-set 
(:defaults 
(:globals-read 
(:trueeffects 
( :falseeffects 
(:predecessor ;threshold rules only 

1 

Figure 11: Rule List Template 

has a unique rule which is capable of altering the value stored in the variable. 
Globals-read are global variables that the rule uses as input. The predecessor 

field is only used with threshold rules. This information is used to determine 
the most specific threshold rule when a set of consecutive threshold rules all fire 
with the same value. 

7.1.2 Ini t ia l izat ion of the Rule Base 

Rules are stored in a rule data base file and are in the form of a Scheme lid. 

Each rule list may be viewed as rule construction information. Esecutable rules 

are produced by a Scheme macro. The macro extracts the rule construction 

information from the rule Iist and inserts that information into the appropriate 
fields of the standard rule form described earlier. When all applicable fields i n  

the standard rule forin have been defined, the macro constructs a closure and 

the executable rule body is placed in a list based on rule type. Each list forms 
a sub-partition of the rule base and includes the rule categories 1) aggregation 
and event detection, 2) data base update, and 3) threshold. Rille lists for the 

packets last minute example are displayed in figures 12, 13, aiid 14. Figure 12 

shows the file list for the packets last minute aggregation rule. Figures 13 and 

14 display the rule lists for the attending data base update and threshold rules. 
In most cases, the order in which rules are fired is not important. However, 

there may be data dependencies among the aggregation and event detection 

rules. In particular, one rule may use values determined by another rule in its 
firing condition or in its rule body. The macro performs a topological sort on the 

aggregation and event detection rules based on the globals-read and globals-set 
fields to insure that the firing order maintains the proper data dependencies. 

The macro also generates secondary information lists which contain internal 
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c 

(def-rule AI-pa&.ts-last-minute 

; #t 

aggregation 

(>=tuple-sec (+ start-time 60)) 

(:locals ((plm-count -1) (start-time -1))) 

(:globals-set (AI-plm-count) ) 
(:defaults (-1)) 

g globah-read (tuple-sec)) 

; name, set true if firing. 

; rule type 

; evaluation condition 

; firing condition 

; local var, init value pairs 
; count of packets last minute 

; global vars attended to 

; true side effects (: true-effec ts 

; make last minute count available 

(set! global (set-alist 'Al-plm-count plm-count global)) 

( 

; show rule firing 

(set! aggregate-fired 

(set-alist 'AI-packets-last-minute #t aggregate-fired)) 

; reset locals for next minute count 

{set! plm-count 0) 

(set! start-time tuple-sec) 

(:false-effects 

(set! plm-count (+ plm-count 1)) 
( 

1 

1 

; false side-effects 

; update count 

F igure  12: Packets Last Minute Aggregation Rule List 
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c 

(def-rule U I-A I-plm-count 

update 

( get-aIist 'Al-packets-last-minute aggregatefired) 

#t 

;rule name 

;rule type 

;evaluation condition 
;firing condition 

; d b  values read, set: U1-plm-samples, Ul-plm-sum, U1-plm-squares-sum, 

; UT-plm-mean, U1-plm-stdev. 

(:globals-read ( AI-pim-count )) 
(:true-effects 

; get current da ta  base values 

(let*( (tmpsamples (+ (get-alist 'U1-plm-samples dbval) I ) )  

( 

( tmpcount  (get-alist 'AI-plm-count global)) 

( t m p s u m  (+ (get-alist 'UI-plm-sum dbval) tmpcount ) )  

( tmpmean (/ t m p s u m  tmpsamples)) 

(tmpsquares-sum (+ (get-alist 'U1-plm-squares-sum dbval) 

(* tmpcount  tmpcount ) ) )  

;calculate new values and store in the data base 

(set! dbval (set-alist 'UI-plm-samples tmp-samples dbval)) 
(set! dbval (set-alist 'Ul-plm-sum t m p s u m  dbval)) 

(set! dbval (set-alist 'Ul-plm-mean tmpmean  dbval)) 

(set! dbval (set-alist 'UI-plm-squares-sum tmpsquares-sum dbval)) 

(set! dbval (set-alist 'Ul-plm-stdev (sqrt (- (/ tmpsquares-sum tmp-samples) 

(* tmpmean  tmpmean)))  dbyal)) 

(set! update-fired (set-alist 'Ul-Al-plm-count #t  update-fired)) 

Figure 13: Packets Last Minute Update Rule List 
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;rule name 

;rule type 

;evaluation condition 
;firing condition 

(def- rule T I-plm- thresh- 0.5 

threshold 
(get-alist 'Al-packets-last-minute aggregate-fired) 

#t  

(:globals-read (Al-plm-count)) 

(:vector-size (1)) 

; db-values read : U1-plm-mean U1-plm-stdev 

( : t r  ue-effec t s  

(let* (( base-addr (get-alist 'TI-plm-thresh-0.5 thresh-base-addr)) 
( 

(offset 0) 

(index (+ base-addr offset))) 

(con d 

( 
(> (abs (- (get-alist 'AI-plm-count global) 

(get-alist 'Ul-plm-mean dbvd))) 

(bit-string-set! threshold-result index) 

(* (get-alist 'Uf-plm-stdev dbval) 0.5)) 

) 
1 
(set! pred-firing-list (cons index pred-firing-list)) 
(bit-string-set! threshold-fired index) 

1 
1 

1 
1 

Figure 14: Packets Last Minute Threshold Rule List 

23 



information required by other parts of-the learning classifier system and the 
genetic algorithm to  the prediction rule set. 

Initialization of the prediction rule set is accomplished by the constructioii 
of a list of bit-sfrings. Each bit-string has an initial bit position set to 1 that 
corresponds to a unique threshold rule. 

7.1.3 Parameterized Rules 

Threshold rules may be parameterized. Parameterization of the threshold rules 

allows a small set of threshold rules to  cover a large rule space. Take, for exam- 
ple, a set of threshold rules that attend to eight different standard deviations 
from the mean for each half hour in a given 24 hour period. This rille space is 
defined by an 8 by 48 matrix or 384 total rules. By parameterizing the tlireshold 
rule on the half hour variable, we are able to reduce the 364 separate rules to 
only 8 rules, one for each of the standard deviation measures. As a result, a 

savings in both the execution time and the physical size of the rule base was re- 

alized. Currently, we have only used this capability to parameterized threshold 
rules on half hour time slices. 

$ 

7.1.4 The Interpretive Loop 

The interpretive loop provides two integral functions to the learning clasdfier 

system. First, network transmission tuples are introduced into the system with 
each iteration of the loop. Second, the rule base is allowed to iiiteract witli  

the global variables which profile the current state of the network during each 
iteration of the loop. 

Prior to invoking the interpretive loop, the network transmissioii tuple file is 
opened as an i n p u t p o d .  Each iteration of the loop is marked by the introduction 
of a new network transmission tuple into the system. The components of the 

tuple are bound to  the global variables. 

After each tuple component is bound to  the appropriate global variable rule 

class members are evaluated to  determine if they should fire. Depending on the 

operation mode the system, certain rule classes are not evaluated. 
As outlined earlier, there are three modes that the learning classifier system 

can operate in. These modes are “Profile Learning”, “Rule Evaluation)’ and 

“On-line”. The actions that occur during each of the modes are described 

below. 

Profile Learning 

In “Profile Learning” mode only the aggregation and event, and the data 
base update rule classes are evaluated . It is during this mode that vari- 
ables in the network profile data base are updated. 

Rule Evaluation 
In “Rule Evaluation” mode only the aggregation and event, threshold, and 
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Strength 

Evaluation 

Figure 15: Prediction rule evaluation scheme. 

prediction rule classes are evaluated. Prediction rules have their strengths 
revised based on their latest prediction of the current network state. 

On-line 

In “On-line” mode the aggregation and event, threshold, and prediction 
rule classes are evaluated. To date, all testing is performed off-line where 
the network transmission tuple data is read from a historical data file 

rather than an active network. It is assumed that prediction rules will be 

in a stable state while in this mode and will not require their strengths to 
be revaluated. 

In both the rule evaluation and on-line modes evaluation of the prediction 
rule set occurs. To avoid evaluation of the entire rule set, each prediction rule 

member maintains a count of how many threshold rules it attends. When a 

threshold rule fires, i t  decrements the count value for each prediction rule that 
depends on it. M’hen the count value reaches zero for any prediction rule, that 
rule is placed on a prediction rule firing list. The prediction rule evaluation 
scheme is illustrated in Figure 15. 

As the network security system is still in the prototype phase, all three modes 
of operation produce user output. Profile learning mode emits the current data  
base values. Rule evaluation mode emits the network state predictions and 

individual prediction rule strengths. On-line mode emits the network state 
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predictions. Currently, all output-is reported to the standard output interface5 

and to separate data files. 

7.1.5 Strength Revision 

Strength revision is performed in accordance with the current state of the net- 
work as defined by a network state variable, and occurs only while in the Rule 
evaluation mode. Implementation of tbe strength revision is based on the con- 
ditional expression cond. After all the prediction rules have fired (i.e., make a 
prediction as to the network state) the strength revision function is called. I t  

is at this time that the cond expression is evaluated and the strength value of 
each prediction rule that had fired is revised as described earlier. 

i 

7.2 Implementation of the Genetic Algorithiii 

Implementation of the Genetic Algorithm requires two assocattoti lists and a 

number of small helper functions which together perform the genetic operations 
The association lists are produced as a result of the rule base initialization and 
provide a method of data base query. The search key in both association lists 
are individual prediction rule names. The data field in one association list 
consists of rule strengths while the other association list maintains each of the 

prediction rule’s dependence vector. Each dependence vector is implemented 

as a b i f  siring. The association list which holds the prediction rule strengths 

is sorted according to individual strengths. A predetermined number of these 

rules are purged from the list. The corresponding set of rules is also purged 
from the dependence vector list. 

As mentioned earlier, there are two changes which take place to the pre- 

diction rule’s dependence vector. The first change occurs by using a crossover 

operator. The crossover operator is implemented as a probabalistic function 
which takes as an argument the remaining prediction rule list and returns a rule 
pair upon which the crossover is applied. The crossover fuiiction divides each 

of the rule’s dependence vectors at a random location and produces two new 
vectors by swapping and concatenating the halves. By utilizing a similar proba- 

balistic function, the mutation operator selects a single rule from the remaining 
prediction rule list and randomly changes a single value in  the dependence vec- 
tor. 

The number of new prediction rules generated is equal to the number of rules 
purged from the older rule list. These new rules are inserted directly into the 
prediction rule list without any user interaction. As such, the network security 
system can be brought back into full “On-line” operation immediately after 

applying the genetic algorithm module. 

&The green phosphor CRT. 
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8 Summary and F’uture Wbrk 

Considerable work has been done in the area of computer eystem protection. 

For the most part, however, that work has concentrated on protection at the 
level of individual machines and operating systems. The widespread existence of 

computer networks, combined with events such as the Internet worm of Novem- 
ber, 1988, demonstrate the need to address protection issues at the network 
Ievel as well. The focus of our research is to determine the feasibility of network 
level monitoring to protect network resources from attack. 

Our initial goal is to build an off-line prototype system capable of learning 

normal patterns of network use and flagging departures from those patterns of 
normality. Such a system will permit verification of the hypothesis that intrusive 
attacks are in fact detectable as deviations from a rule-based profile of normal 
behavior. In addition, the prototype will allow us to establish wliether the 

behavior profile eventually reaches a state of statistical stability. Our belief is 

that  after an initial learning phase during which both rules and the confidence 
factors attached to them vary rapidly a state of equilibrium will be reached. 
At that point the system will need to be flexible enough to adjust to  genuine 

incremental changes in normal network behavior, but not so flexible as to allow 
an intruder to gradually teach the system to accept new behavior whicli opens 
the network to attack. 

Our short term objective is to  continue the work on the current prototype. 
We will expand the prototype by adding new rules to the rule base, M’e feel 

that  source/destination pairings will prove to be useful in characterizing net- 

work behavior. To implement the rules needed to capture source/destination 

parings, we will need to extend the parameterization of the threshold rules to 
include internal variables such as source and destination identifiers. We also 
need to evaluate the prototype on two different levels. To refine our statistical 
characterization of network behavior, we need to evaluate the statistical distru- 

butions produced by the prototype. To avoid over learning, we will evaluate 

the amount of learning that must take place before the classifying rule set sta- 

blizes. Finally, we hope to construct a meaingful graphical user inferface for the 
network monitoring system. 

Our longer term research goals include moving from an off-line to an on-line 
system in order to  provide real-time network level protection. The move to an 

on-line system will in turn raise the issue of developing appropriate reactions to 

detected intrusions. Attempts to lessen the impact of detected intrusions may 
include delaying or ignoring communications involving the suspected participat- 
ing nodes. 

References 

[l] Sun Macrosystem’s Operafang Sysfem 4.0. Section nit (4P): Protocols. 

27 



r 

[Z] Sun Microsystem’s Operating Sysfem 4.0. Section ni t i f  (4hI): Devices and 

[3] Sun Microsysfem’s Operafing System 4.0. Section nit-pf (411): Devices and 

(41 Sun Microsysfem’s Operafing Sysfem 4.0. Section nit-buf (4M): Devices 

[5] L. B. Booker, D. E. Goldberg, and J .  H .  Holland. Classifier systems and 

[6] Dorothy E. Denning. An intrusion-detection model. In IEEE Symposium 

on Securify and Pn’uacy, pages 118-131. IEEE, 1986. 

f7] R. Beady, G. Luger, A. Maccabe, and hf. Servilla. The architecture of a 

network level intrusion detection system. Technical report, University of 

New Mexico, Department of Computer Science, August 1990. 

[SI L. Todd Heberline, Gihan V. Dias, Karl N. Levitt, Biswanath hlukherjee, 
Jeff Wood, and David Wolber. A network security monitor. I n  IEEE 

Symposium on Securify and Privacy, pages 296-304. IEEE, 1990. 

Network Interfaces. 

Network Interfaces. 

and Network Interfaces. 

c genetic algorithms. Ariificial Infelligence, 40~235-282, September 1989. 

[9] Carl E. Landwehr. Formal models for computer security. A c h y  Compufrng 

Surveys, 13(3):247-278, September 1981. 

[lo] T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection 

expert system. In IEEE Symposium on Securify and Privacy, pages 59-05. 

IEEE, 1988. 

[ll] T.F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P.G. 
Neumann, H.S. Javitz, and A. Valses. Ides: The enhanced prototype. 
Technical report, SRI International, October 1988. 

[12] Eugene F. Spafford. The internet worm: Crisis and aftermath. Connzunz- 

cafions of fhe ACM, 32(6):678-687, June 1989. 

[13] A. S. Tanenbaum. Compufer Networks. Prentice-Hall, Englewood Cliffs, 
N. J., second edition, 1988. 

[14] H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session 
activity. In IEEE Symposium on Security and Privacy, pages 280-289. 

IEEE, 1989. 

28 


