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Abstract
A method for quickly designing and implementing

HW/SW systems is described. The method is based on the
model of a flexible target architecture consisting of a
dedicated controller that interacts with one or more pro-
cessing elements. From a Statemate™  specification, the
dedicated controller is extracted, and mapped onto a
Xilinx™ FPGA. The software part of the specification is
translated to C code. The C routines are modified by a set
of tools to provide the interface between the software part
and the hardware part of the system. A sample application
illustrates the feasibility of the approach.

1: Introduction

State-charts [3, 7], a variation of the classical finite-
state machine (FSM) model, are widely used for the spe-
cification of systems. Like conventional FSM´s, state-
charts are based on states, events, and transitions. They
differ from conventional FSM´s in several ways: They
introduce hierarchical and concurrent states, and the for-
malism describing transitions between states is more
elaborate than that of FSM´s. One notable difference
between state-charts and FSM´s is the ability to reenter a
previously visited state via a history mechanism. This
feature actually goes beyond the realm of finite-state
computational models, and will not be used in this paper.

The graphical representation of FSM´s – state-transi-
tion diagrams – is well known [6, 10]. State-charts were
originally created as a visual formalism to overcome the
sequential and flat nature of state-transition diagrams [7].
The state chart formalism became the basis for
Statemate™, a tool from i-Logix, Inc., for the develop-
ment of systems [8, 11]. As state-charts are primarily
control-oriented, Statemate features activity-charts, a
language similar to state charts, for the specification of
functional and data-flow aspects of systems.

Statemate is routinely used by engineers to model reac-
tive or embedded systems. Often the implementation of
such systems consists of a mixture of hardware and soft-

ware modules. Statemate descriptions are abstract, and
also sufficiently implementation-independent. Statemate
is therefore a natural choice for the specification part of a
HW/SW Codesign process (furthermore, there are a vari-
ety of simulation and analysis methods available in
Statemate, which we will not review in this paper).

On the implementation side, Statemate at first sight
appears to be sufficiently well-equipped: It offers code
generators for Ada, C, and VHDL. This is sufficient as
long as pure software (C or Ada code) or pure hardware
solutions (VHDL code, to be mapped to a hardware struc-
ture) are created. The result of the C and the Ada code
generator needs a Unix runtime environment to function.
The VHDL code generator produces algorithmic VHDL
code that can be mapped to hardware using synthesis
tools. Mixed HW/SW implementations, however, cannot
be generated without considerable additional effort by
designers, as Statemate is unable to generate the neces-
sary interfaces between the two implementation domains.

Statemate´s code generators are primarily used to cre-
ate visual interactive prototypes, which simulate the
behavior of the system. They can be enriched with visual
elements (panels) that give users and developers the "look
and feel" of the specified behavior. Still, the goal of
HW/SW Codesign is the creation of HW/SW systems,
and based on our experience converting a Statemate pro-
totype to a final HW/SW implementation is very time-
consuming. Fortunately, Statemate is not a closed system,
and allows the extraction of information from its data
base. With the Dataport  interface parts of the code gener-
ation step of Statemate can be replaced with custom tools,
while retaining the possibility to create visual prototypes.

In this paper we propose a direct and automated way to
generate the three major components of a mixed HW/SW
implementation based on Statemate specifications: the
hardware subsystem, the software subsystem, and the in-
terface between the two. The HW subsystem is produced
circumventing the code generation of Statemate. For the
rest of the specification, C code is generated using the
Statemate code generator. Additional tools provide the in-
terface between the SW and HW subsystems. An FPGA
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is synthesized from the description of the HW subsystem.
The software runs on standard microprocessors; the pro-
cessors and the controller speak to each other over a bus.
The synchronization between the individual elements is
achieved via interrupts. An overview of our method is
shown in Fig. 1.
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Fig. 1: Overview of the method

We aim at the development of embedded control sys-
tems, consisting of sensors, actuators, a dedicated con-
troller, and one or more processing elements. Such
control systems are applied in car electronics, medical
equipment, or household appliances. To demonstrate our
method, we have created an experimental platform that is
identical to our architecture, except that the sensors and
actuators are replaced with a serial I/O mechanism. The
behavior of the environment of the control system is
simulated by a PC. As an example, we built an automatic
switchboard, which can handle several callers in parallel.

In section 2, we briefly discuss state-chart principles
and describe the generation of FPGA-based controllers
from Statemate descriptions. Section 3 gives an overview
of our target architecture, and describes the generation of
the HW/SW interface. In section 4 we present an
example, and discuss the results we obtained. Section 5
summarizes our approach, and proposes future work.

2: From state-charts to FPGA´s

2.1: A short review of state-chart principles

Finite-state machines constitute the most successful
formalism for the specification of control-oriented sys-
tems. Their simple visual representation, as well as their
relation to regular expressions, have made them indis-
pensable in the development of software and hardware

systems. The long history in designing embedded con-
trollers using FSM´s has led to a rich body of literature
covering all aspects of FSM synthesis [1, 17]. The only
drawback of FSM´s is their lack of structure: Their inher-
ent flat and sequential nature makes the specification of
complex systems a difficult task. Those limitations have
been overcome by the introducing state-charts [7].
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Fig. 2: A simple state-chart

State-charts are a visual formalism that lets designers
specify hierarchy, concurrency, and also nondeter-
minisms. Consider the state-chart depicted in Fig. 2 where
the top-level state S0 consists of three substates S1, S2,
and S3. S1 and S2 are basic states, while S3 is further de-
composed. S0 is called an OR-state; OR-states are used to
structure a state-chart hierarchically. S3 is called an
AND-state; AND-states are used to specify concurrency.
AND-states are indicated by dashed lines dividing them
into segments that run concurrently. S3, the only AND-
state in the diagram, has two concurrent substates S4 and
S5. Like conventional FSM´s, state-charts receive events,
perform transitions, and produce outputs. The syntax and
semantics of transition labels, however, has been en-
hanced. State-chart transitions are of the form
event[condition]/action (e.g. the transition from S1 to
S2). Apart from basic events, many special events can be
used in a diagram, such as whether a state has been
entered, or whether a condition has changed. The transi-
tion from S9 to S2, for instance, describes a time-out
event. Hierarchical states are entered through "default
connectors",which are denoted by arrows with a bubble
attached to one end. When an OR-state is entered, the
next state will be the one denoted by the default connector
(S0 is entered through S1). When an AND-state is
entered, all of its concurrent substates are entered through
the default connector (S3 is entered through S6 and S8).
If a concurrent substate is left, all of its concurrent states
are exited, too. State-charts can be linked to the data-flow
language of Statemate called activity-charts. State-charts
can start, stop or resume activities via actions, and they
can receive events from activities.



2.2: State-chart synthesis

From a Codesign point of view, a Statemate specifica-
tion, consisting of state-charts and activity-charts, is
almost perfect for the specification of systems. However,
control is obviously separated from data. This somewhat
violates the Codesign principle of completely implemen-
tation-independent specifications [2], because such a
separation usually induces an implementation of control
and data in distinct modules. In practical applications,
however, this charateristic of Statemate specifications
does not seem to affect the quality of implementations.

The Statemate code generators are not sufficient to
create complete HW/SW implementations [13], because
they do not synthesize HW/SW interfaces. We therefore
developed a backend to Statemate that maps state-
/activity-chart combinations to a simple target architec-
ture shown in Fig. 5. It consists of a processor, a con-
troller implemented as an FPGA, memory elements, and
I/O compoents, which are connected by a bus. Since such
architectures are based on the concept of separating con-
trol and data, we can exploit Statemate´s control/data sep-
aration by cutting out the control portion of a specifica-
tion, and mapping it to an FPGA. This flexible architec-
ture is suitable for many control applications that can be
generated using a set of EDA tools, as shown in Fig. 3.
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Fig. 3: State-chart synthesis process

For the extraction of the controller, we have developed
s2k, a tool that uses Statemate´s Dataport interface [12]. a
library of functions to query Statemate´s database. As the
state-chart formalism induces a tree structure in a natural
way, s2k recursively stores the state information in an in-
ternal tree format. For every node in the tree, a list is cre-
ated representing the transitions leaving the node. The
tree is successively flattened by replacing abstract AND-
and OR-nodes with their respective substates. The result
of the process is a list of basic (non-hierarchic, non-con-
current) states. The substitution of OR-states is straight-
forward (Fig. 4 (a)). The replacement of AND-states is

more complex, as – according to state-charts semantics –
entering an AND-state means entering all of its concur-
rent substates simultaneously. It is therefore necessary to
replace AND-states by Cartesian products of their sub-
states, as depicted in Fig. 4 (b).

When flattening the tree, transitions must be carefully
rerouted to their appropriate new targets. When replacing
OR-states, the process is straightforward. For AND-
states, the sources and targets of transitions have to be
modified to represent the compound states that originated
from the original sources and targets of those transitions.
Transitions leaving the AND-state must also be attached
to the appropriate new compound states. In our current
implementation, the tree is traversed to find all transitions
leading into an AND-state, and those transitions must be
modified accordingly. After the replacement of all AND-
and OR-states, s2k removes any remaining nondeter-
minisms according to standard algorithms [10, 18].

The presented approach may suffer from state-explo-
sion for highly concurrent state-charts with additional
nondeterminisms. This problem is well-known, and the
synthesis of hierarchically structured state-charts has been
investigated in [4, 5], where the idea of flattening FSMs
was dismissed. Pathological cases can be constructed [3],
but for smaller examples the straightforward approach can
be successful, as shown in our example. In [4], the direct
mapping of the state-chart tree to a network of communi-
cating FSM´s is proposed, but in [5], which builds upon
the work of [4] the obvious timing problems that would
result from such an approach are mentioned. The solution
proposed in [5] resolves some of the problems, and thus
suggests a baseline for future research.

From the resulting list of states, s2k (state to K ISS)
creates a table in KISS format [15, 16]. It uses a simple
binary encoding for triggers and actions, and a one-hot
encoding for conditions. The codes of triggers and condi-
tions are combined to form larger words, which represent
the actual inputs of the state table. For the states, s2k  gen-
erates a one-hot encoding, which turned out to produce
the best results in all our applications. Along with the
state table, all codes are stored in a separate interface
description file, which provides the basis for the genera-
tion of the HW/SW interface. The KISS file is converted
to a BLIF (Berkeley Logic Interchange Format) [15] file
using SIS, a tool developed at UCB [15, 16]. SIS interac-
tively synthesizes and optimizes sequential circuits. The
BLIF output is converted to an XNF file by TOS, a syn-
thesis tool developed at the Technical University of
Munich, Germany [14]. TOS has been especially
designed for the synthesis of FPGA´s. It provides scripts
to generate and optimize implementations for Xilinx™´s
XC4000 family. TOS produces XNF netlists, which can
be directly used by Xilinx´s XACT™ system[19, 20, 21].
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3: HW/SW aspects

3.1: The target architecture

An overview of the target architecture is shown in Fig.
5 a), its implementation is depicted in Fig. 5 b). It consists
of a Xilinx™ XC4000 FPGA, which is the system´s con-
troller, a Motorola 68008 processor [9], ROM and RAM
memory banks, and serial and parallel I/O components.
The components are connected by an eight-bit bus.

The controller has two sets of inputs; one is connected
to the system bus, the other is connected to a special area
in memory. The first set represents the triggers (events) of
the system; they are valid for only one control cycle. The
triggers are generated by software routines executed by
the processor. When an action is finished, the processor
enables the FPGA, and writes data on the bus. The other
set of inputs represents conditions that are valid indefi-

nitely. In software, conditions are implemented as
boolean variables with fixed addresses; in hardware, con-
ditions are implemented with latches that are also con-
nected to the second set of inputs of the FPGA. The actual
inputs of the controller are formed by concatenating ele-
ments of the two sets of inputs. Conditions are updated by
software routines, and the asynchronous inputs change
accordingly. As conditions are encoded one-hot, any
compound condition consisting of basic conditions con-
nected by not-, and-, and or-operators can be represented.

The output of the FPGA is eight bit wide, and – like
the triggers – connected to the system bus. The output
words represent the actions of the underlying state-chart.
When it sends an action code on the bus, the controller in-
terrupts the processor. An interrupt request service routine
switches to the appropriate action routine. The action
routine performs the desired action, and returns the next
valid word for the controller. Our architecture uses two
levels of interrupts, one for I/O, the other for the HW/SW
interface. During the execution, conditions might be
updated. They are immediately available to the FPGA,
but are not consumed before the next control cycle.

In its current form our target architecture only supports
eight different basic conditions, which limits the size of
state-charts that can be transformed to FPGA´s consider-
ably. The number of latches can, however, be easily in-
cremented. It is only limited by the available pins on the
FPGA. For small packages (84 pins, of which 16 are used
for power supply; three more reserved for chip-select,
processor interrupt, and a data-valid signal), 64 pins can
be used for I/O. Of these, eight could be used for triggers,
and eight for outputs (giving a total of each 255 repre-
sentable triggers and actions). This leaves a maximum of
48 basic conditions that could be used in state-charts,
certainly enough for many embedded control systems.

3.2: The HW/SW interface

The FPGA synthesis process results in a fully func-
tional Xilinx XC4000 chip. External input and output sig-
nals are connected via tri-state buffers defined by s2k. It
assigns unique binary encodings to all events, conditions,
and actions of the specification. The encodings with their
symbolic names are stored in an interface description
file.For the activity-chart(s) of the specification, we use
the Statemate code generator [13]. Code for activities can
be generated in the form of independently running tasks,
or in the form of (self-terminating) procedures. Our target
architecture obviously implies the second method.
Therefore, actions that stop or resume activities are pro-
hibited. Statemate generates a header file containing data
definitions and C prototypes for every routine, and C
source files for the actual implementation of activities.
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Fig. 5: Target architecture

Parsing the description file with the interface generator
ig , we separate the HW/SW interface into a HW-to-SW
and a SW-to-HW part. ig  first generates the SW-to-HW
part, producing a boolean variable for every condition it
encounters. For the triggers, an enumeration data type is
created. Further, a code segment in the form of a CASE-
statement is generated that maps the symbolic triggers to
corresponding binary codes. A predefined routine writes
binary sequences (code words) on the system bus, where
they are read by the controller. Every action routine the
processor performs produces a trigger, which can be one
of the triggers defined in the description file, or a null
trigger. Our current implementation is restricted to just
one resulting trigger per action routine, as the generation
of several events "at once" would inevitably enforce a
queuing mechanism to avoid losing triggers. If a null
trigger occurs, the controller can still perform transitions
based on the set of inputs representing conditions. For
those transitions, the trigger inputs are treated as don't-
cares. Finishing the SW-to-HW part, return sequences for
the action routines produced by Statemate are generated.

In the second part of the process, ig  possibly has to
generate additional routines. These originate from basic
actions in the state-chart, such as changing the value of a
condition. As the controller cannot provide this function-
ality, the processor must carry out a corresponding rou-

tine. Then every routine is associated with its binary code
in the description file. These codes are used to interrupt
the processor. When the processor receives an interrupt, it
retrieves the code of the current action from the bus, and
interprets it as the address of an interrupt routine. In addi-
tion, ig  generates a ´main routine´ that runs when the sys-
tem is idle otherwise, and listens for external events. This
routine is also used for the handling of I/O interrupts.

4: Applying the method

To demonstrate our method, we selected an automatic
switchboard as an example. It routes external callers to
recipients on an internal phone network consisting of,
e.g., technical help desks, an information desk, and a
marketing desk. The switchboard can handle several
callers in parallel. It automatically responds to external
calls, and possibly puts callers on hold if it is just busy
handling another call. During heavy-load times, several
callers might be queued that way. The other part of the
switchboard plays a message asking the caller to enter
another digit, where every digit represents a different in-
ternal connection. Based on that key, an internal connec-
tion is established. Fig. 6 shows the model of the switch-
board. The two main parallel states represent the two ba-
sic functions of the system, answering external calls, and
making internal connections. The model is simplified in
that an infinite supply of internal connections is assumed.
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Fig. 6: State-chart of Switchboard example

The implementation of the model had to be simplified:
As we cannot build a real phone network, we simulated it
with a PC. Random requests of a simple program on the
PC simulate external callers. Internal connections are
simulated by updating a bar chart on a simple display that
is connected to the parallel port of the target architecture.
The bar chart shows the number of callers connected to
the various internal desks.



Converting the state-chart of Fig. 6 to KISS format,
s2k generated an FSM with 45 states, 9 input bits and four
output bits. The nine input bits are the result of five basic
conditions and the encoding of seven events plus the null
event. The four output pins originate from the encoding of
12 actions plus the null action. From the KISS file, SIS
[16] produced a network of 168 nodes and 766 literals.
TOS [14] converted the resulting BLIF file to an XNF
netlist consisting of 115 CLB´s. Both SIS and TOS
achieved considerable optimizations of the network.

Based on the associate activity-chart (which is not
shown here), the Statemate code generator produced 12
routines corresponding to the activities that are started
from the state-chart. ig  generated five boolean variables
for the basic conditions, the code to handle triggers in
both binary and symbolic form, and the return sequences
for the routines generated by Statemate. The state-chart
shows that no additional routine had to be generated, as
the only action not starting an activity, tr(UNIT_BUSY),
is associated with starting an activity, and therefore a
routine had been generated already.

5: Conclusion and future work

We have shown that it is possible to generate HW/SW
systems from a specification consisting of state- and
activity-charts. In certain aspects, our method is more
powerful than the currently available code generators for
state-/activity-charts, as it not only generates hardware
and software implementations, but also the HW/SW
interface. On the other hand, it is less flexible than the
software prototypes of Statemate, and less efficient than
the state-chart synthesis method proposed in [5]. The
method of [5], however, can – in contrast to our method –
not represent conditions in state-charts.

Regarding future work, we will further investigate
whether additional state-chart features not considered in
out current implementation can be mapped to FPGA´s. As
our method suffers from state explosion for complex
state-charts, we will also look for more efficient ways to
synthesize state-charts. We will also enhance our method
to cover MIMD multi-processor systems by adding a
queuing mechanism for triggers to our target architecture.
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