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Abstract

In this paper we prove time and space bounds for the im-

plementation of the programming language NESL on various

parallel machine models. NESL is a sugared typed J-calculus

with a set of array primitives and an explicit parallel map

over arrays. Our results extend previous work on provable

implementation bounds for functional languages by consid-

ering space and by including arrays. For modeling the cost

of NESL we augment a standard call-by-value operational

semantics to return two cost measures: a DAG represent-

ing the sequential dependence in the computation, and a

measure of the space taken by a sequential implementation.

We show that a NESL program with w work (nodes in the

DAG), d depth (levels in the DAG), and s sequential space

can be implemented on a p processor butterfly network, hy-

percube, or CRCW PRAM usin O(w/p + d log p) time and
?

0(s + dp logp) reachable space. For programs with suffi-

cient parallelism these bounds are optimal in that they give

linew speedup and use space within a constant factor of the

sequential space.

1 Introduction

This paper presents a provably time and space efficient im-

plementation of the parallel programming language NESL [6].

NESL is a strongly typed call-by-value functional language

loosely based on ML. It has been implemented on several

parallel machines [8], and has been used both for teaching

parallel algorithms [9, 7], and implementing various applica-

tions [17, 4, 1]. The parallelism in the language is based on

including a primitive sequence data type, a parallel map op-

eration, and a small set of primitive operations on sequences.

To be useful for analyzing parallel algorithms, NESL was de-

signed with rules for calculating the work (the total number

of operations executed) and depth (the longest chain of se-

quential dependence) of a computation. These are standard

cost measures in the analysis of parallel algorithms [23, 22].

In this paper we formalize these rules and give provable im-

plementation bounds for both space and time.

lThe implementation is based on a randomized algorithm for the
fetch-and-add operator and will therefore run within the given time
with high probability.
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The idea of a provably efficient implementation is to add

to the semantics of the language an accounting of costs, and

then to prove a mapping of these costs into running time

and/or space of the implementation on concrete machine

models (or possibly to costs in other languages). The mo-

tivation is to assure that the costs of a program are well

defined and to make guarantees about the performance of

the implementation. In previous work we have studied prov-

ably time efficient parallel implementations of the J-calculus

using both call-by-value [3] and speculative parallelism [18].

These results accounted for work and depth of a compu-

tation using a profiling semantics [29, 30] and then related

work and depth to running time on various machine models.

This paper applies these ideas to the language NESL and

extends the work in two ways. First, it includes sequences

(arrays) as a primitive data type and accounts for them in

both the cost semantics and the implementation. This is

motivated by the fact that arrays cannot be simulated effi-

ciently in the A-calculus without arrays (the simulation of

an array of length n using recursive types requires a fl(log n)

slowdown). Second, it augments the profiling semantics with

a cost measure for space and proves bounds on the space

needed by the implementation based on this measure. These

bounds show that for programs with sufficient parallelism,

the parallel execution requires very little extra memory be-

yond a standard call-by-value sequential execution. These

space bounds use recent results on DAG scheduling [2] and

are non trivial. Although we use these extensions to prove

bounds for NESL, the techniques and results can be applied

in a broader context. In particular we translate NESL into a

generic array language which could be used to express other

array extensions, and the space bounds we derive can be ap-

plied with minor changes to most languages with fork-join

style parallelism, including the call-by-value A-calculus [3].

Cost model. To model time and space in the semantics,

we augment a standaxd call-by-value operational semantics

to return two cost measures. The first is a DAG which rep-

resents the sequential control dependence in the program.

The number of levels in the DAG is the depth of a compu-

tation, and the number of nodes in the DAG is the work of

the computation. Although the operational semantics itself

is sequential, the rules for combining DAGs explicitly de-

fine what constructs are parallel. This is similar to Hudak

and Anderson’s [21] use of pomsets (partially ordered mul-

tisets) to add intensional information on execution order to

the denotational semantics of the A-calculus. The second

cost measure is an accounting of the reachable space used

by a sequential implementation of the language. This in-
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eludes both space for values as well as space for any control

structures—it assumes a reasonably good sequential imple-

mentation. To account for the sharing of space the semantics

uses a store.

Intermediate language and machine. Tosimplify the proof

of the implementation bounds we introduce an intermediate

language and machine. The intermediate language, which

we refer to as the w-my language, makes array allocation

explicit and breaks certain array operations into atomic op-

erat ions. In Section 4 we define the array language and give

atranslation from the core of NESL (Core-NESL) to the lan-

guage.

Our intermediate machine, the P-CEK(q) machine, eval-

uates the array language. The machine works by keeping a

queue of states (threads) that are ready to execute and on

each step processes the first q of these states in parallel. The

parameter q represents the parallelism of the machine—to

allow for multithreading this is typically slightly larger than

the number of processors of the target machine. The fact

that only q states are processed on each step and the order in

which the states are processed play a crucial role in proving

the space bounds. Picking an arbitrary set of q states would

not be space efficient. The P-CEK(l) machine (q = 1) is

a sequential machine and closely corresponds to the CESK

machine [13]. Section 5 defines the P-CEK (q) machine.

Results. Our results are derived, by mapping the Core-

NESL costs first to the array language, then to the P-CEK(q)

machine and finally to the target machines. We show that a

Core-NESL program with w work, d depth and s sequential

space will run in O(w/p + d Iogp) time and 0(s + dp logp)

space, on p processors of either a butterfly network, hyper-

cube or CRC W PRAM. All machine models are randomized,

so the time bounds are with high probability. The random-

ization is needed to implement routing of messages and the

fetch-and-add operation within the specified bounds. The

space bounds refer to the reachable space and do not include

the cost of garbage collection. Determining whether garbage

collection can be performed within the specified bounds is

an interesting area of future research. More detail on our

assumptions about the machines are given in Section 6.

We note that the implementation discussed in this pa-

per does not correspond to the current implementation of

NESL [8]. The current implementation is based on a tech-

nique called flattening nested parallelism [5], which has very

good performance characteristics, but can be space ineffi-

cient because it generates too much parallelism. For exam-

ple the NESL code

{count ({a < b: a in s}) : b in s},

which calculates the rank of each key in a sequence s, cre-

ates nz parallelism (Is I = n). In the current implementation

this would require O(n2 ) space, while in the implementation

suggested in this paper it would require only O(n + p log p)

space since the depth is O(1). We are currently studying

whether we can combine the ideas from the two implemen-

tations.

2 The Language NESL

NESL is a nested data-parallel language designed for pro-

gramming parallel algorithms at a very high level. The goal

in the design was to make parallel algorithms look as close as

possible to standard pseudocode. NESL has a polymorphic

function Quicksort (S)

if (#S <= 1) then S

else

let a = s [#s/21 ;

Sl={ein Sle

S2={ein Sle

S3=fein Sle

.

< a};

‘= a} ;
> a};

R = {Quicksort(v) : “ v in [S1, S3]};

in RIO] ++ S2 ++ R[ll ;

Work = O(n log n) (expected)

Depth = O(log n) (expected)

Space = o(n) (expected)

Figure 1: The Quicksort algorithm in NESL. The operator #

returns the length of a sequence. The expression {e in S I

e < a} subselects all elements of S less than a in parallel.

This operation has constant depth and work proportional

to the length of S. The expression {(?uicksort (v) : v in

[S1, S3] } applies quicksort to S1 and S3 in parallel-the

depth is the maximum of the depth of the two recursive

calls. The function ++ appends two sequences.

type system, a call-by-value semantics, and other than 1/0

and random number generation, is purely functional. Paral-

lelism in NESL is explicit—it uses a set of parallel primitives

on arrays and a parallel map construct. The parallel map

construct maps any expression over the elements of an array

in parallel. Since an expression can itself have parallel calls,

this allows for the nesting of parallel calls. Such nested par-

allelism is crucial for expressing parallel divide-and-conquer

or nested parallel loops (most data-parallel languages don’t

permit nesting [19, 28]). For the purpose of analyzing algo-

rithms, the definition of NESL includes rules for calculating

the work and depth of a computation. These rules specify

the work and depth for the primitives, and how these costs

can be composed across expressions. For example, when

mapping a function over an array of data, the total work is

the sum of the work of the individual applications, and the

total depth is the maximum of the depths of the individ-

ual applications. Figure 1 shows an example of NESL code

for the quicksort algorithm, along with the complexities that

can be derived from these rules. The rules are defined some-

what informally in the original language definition [6] and

are formalized in this paper.

To simplify the presentation of this paper we consider a

language Core-NESL instead of the full NESL. Core-NESL in-

cludes a representative sample of the data types, constants,

and primitive functions of NESL. For data types, it in-

cludes integers, booleans, pairs, homogeneous arrays, and

functions—it omits floating-point numbers, characters, and

user defined datatypes. For constants and primitive func-

tions, we choose a set that is sufficient to simulate the full

set over the included data types with only constant over-

head, except for input/output and pseudo-random number

generation. In NESL, input/output is not permitted in par-

allel calls, so it could be added to the semantics by us-

ing streams and threading them through the computation.

Pseudo-random number generation can be added to the se-

mantics by splitting the seed when making parallel calls.

Core-NESL can also be strongly typed, although we do not

examine any typing issues in this paper.

Core-NESL is a sugared A-calculus extended with a set of
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scalar constants, a set of constant functions on arrays, and

a parallel map operation. Its syntax is defined as follows:

c ::= i I true I false / fst I snd I (scalar const.)

+1-1 *1/1<1
# I elt [ index I pack I (array const.)

<- I addscan I maxscan

e ::= c1 x I Xr.e I (el, ez) I ifel ez es 1

el e2 I letrec J z = el in e2 I

{e’ : x in e} (parallel map)

where i, c, and e range over the integers, constants, and

expressions, respectively. The scalar constants have their

standard definitions. The function # returns the length

of an amay, and the function elt extracts an element from

an array. The function pack takes an array of (value,flag)

pairs. It returns an array containing only the values whose

corresponding flag was true. The function <- writes a set

of values into an array. In particular it takes a pair of ar-

rays in which the first is a source array and the second is an

array of (index, value) pairs. It copies the source array into

a destination mray, and in parallel writes each value into

the corresponding index of the destination array. If array

indices are duplicated, the rightmost (index, value) pair will

always be written, which corresponds to the priority write

scheme for the CRCW PRAM models. The two scan opera-

tions execute parallel prefixes and are used as primitives to

implement various other array operations (such as flattening

nested sequences).

NESL also has other syntactic forms not included in Core-

NESL because they have simple translations to the core syn-

tax. For example the notation {e’ : x in el I e2}, as used

in the example of Figure 1, evaluates e’ using all the el-

ements in x such that e2 is true. This can be translated

to {e’ : x in pack {(z, ez) : z in el }}. Similarly x[i] is just

syntactic sugar for elt z i.

3 Core-NESL Semantics

Core-NEsL’s extensional semantics is based on that of a stan-

dard call-by-value functional language with arrays. We de-

fine an operational semantics for the language describing the

evaluation of an expression to a value. In addition, the se-

mantics also defines the intensional aspects of interest: the

computation DAG and the space. To measure space usage

accurately, we explicitly model data sharing and space allo-

cat ion wit h the use of stores.

We now define the semantic domains and notation used.

A value v is either a constant c or a location 1. We thread a

store through the semantics to map locations to store values

SV, which can be closures, pairs, or arrays.

v ::= C[l

Sv ;:= cl(~,z’, x,e) I (vi, vz) I [vo, . . ..vl]l]

A closure represents a potentially recursive function defined

via Ietrec and consists of its definition environment, its

name, its bound variable, and its expression body. By in-

cluding the function name in the closure, we avoid compli-

cating the semantics with recursive environments. Arrays

of values, locations, and other objects are used throughout

the semantics, so we introduce some convenient notation for

them—array [VO,. ... vn- 1] is also denoted U, where [?71is its

length n. An empty mapping is denoted by ., and the ex-

tension of a mapping with a binding of x to v is denoted

3pace(R, a) =

if a(1) = ii

if a(l) = (vi, vz)

if u(l) = c1(13, z’, x, e)

where S = (J1e~ 1ocs(1, u)

1OCS(C,a) =

1OCS(1,u) =

locs((vl, v2),17) =

1OCS(U,a) =

locs(cl(E, d,z, e), u) =

wh;;e L = E(FV(e) – {x,x’})

Figure 4: Semantics functions used in the profiling semantics

for defining space. The space function defines the amount of

space reachable from a set of roots R. It uses the 10CSfunc-

tion which defines the locations reachable from a location.

FV(e) denotes the set of free variables that appear in e.

13[z + v], where x may be in o!om(ll!). If defined, the ele-

ment bound to x in E is E(x). We also extend this notation

to lookup sets of variables, returning the set of correspond-

ing values.

The semantics relation, written E, a, R + e =&- v, u’; g,s,

adds the costs of evaluation to a standard extensional se-

mantics. The context of the evaluation consists of an envi-

ronment E and store a describing the memory, and a set R

of root locations pointing to data needed by the continua-

tion. In a given context, an expression evaluates to a value

v and a new store a’, with a computation DAG g using s

units of space. The relation is defined by the inference rules

of Figure 2, using the definitions of DAG composition given

in Figure 3 and space given in Figure 4. Figure 5 gives

the semantics (J) and work cost (6W) of constant function

application.

The DAG returned by the semantics represents the de-

pendence graph of the computation, in which the nodes of

the graph represent units of computation and the edges rep-

resent the control dependence. All data dependence are

subsumed by these control dependence and are therefore

not made explicit in the graph. When two computations

are executed sequentially, the graph from one is attached

in series with the graph from the other, and when a set of

computations are executed in parallel, the graphs are con-

nected in parallel. This means that all graphs returned by

the semantics will be series-parallel and will have a single

source and sink. The rules for composing graphs are given

in Figure 3, where @ represents sequential composition, and

@ represents parallel composition. As can be seen from

where @ is used in Figures 2 and 5, the only parallelism

in the Core-NESL semantics is in the array primitives and

the EACH rule. NESL does not execute the two expressions

of a function application el ez in parallel, as does the PAL

model [3]. In the DAGs the ordering among the children of

a node is important (it is needed for our space bounds) so

our representation of DAGs keeps this information.

Given a DAG g returned by the semantics, its work w is

the number of nodes in g and its depth d is the number of

levels in g includlng the source and sink.
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E,u, RF c & c,a; l,space(R, a)

E,u, RF x =&- E(x), a;l, space(RU {E(z)}, a)

E,a, R t Az.e ~ l,c[l H c1(E,., z,e)]; 1, space(RU {1},0) where 1 @ dom(a)

E,a, RUE!(FV(e2)) k el & vl, m;gl, sl E,aI, Ru{vI} t-ez ~m, m;gz, sz
where 1 # dom(u)

E,cT, R+ (el,ea) 41,u2[1H (vi, wz)]; l@gl @g2@l, max(sl, s2)+l

E,cT, Ru E(FV(e2)) U E(FV(e3)) 1- el =& true, al; gl, sl E,cl, RFe2&v, m;g2, sz

E,a, REif el e2 e3 4v, a2; l@gl @g2, max(sl +1, s2)

E,cT, RU E(FV(e2)) U E(F’V(e3)) E el & false, al; gl, sl E,ml, RFe3&v,03; g3, s3

E,cT, RI- if el e2 es =&- v,u3;1 @gl @g3, max(sl + 1,s3)

E[z’ x 1],0[1 + cl(E, z’, x,el)], R + ez =& v,a’; g,s
where 1 # dom(cr)

E,u, R1-letrec z’z==eline2=& v,a’; l@g, s+l

E,a, RUE(FV(e2)) ~ el & c,m; gl, sl E,ol, Rbe2&v2,02; g2, s2 C5(C,V2, U2) = V,U3

E,a, Rt- el ea ~ V,U2 UU3;1 @gl @g2 @69(c, v2, a2), max(sl + 1,s2 + l,space(RU {v}, aa))

E,a, RU E(FV(e2)) 1- el & Z,m; gl, S1 E,uI, RU {1} + ez & vz, ffz; gz, sz

UI(l) = cl(E’, z’, x,e) E’[x’*l][z tiv2], a2, R+e=&v, a3; g,s

E,a, R1--ele2& u,as; l@gl@g2@ l@g, max(sl+l, s2+l, s)

E,a, RUE(FV(e’)) F e & Z,ao; g,s cm(l) = ; ~ = l;!

E[z E+ vj], aj, RUE(FV(e’) – {z}) 1- e’ ~ v~, aj+l; gj, s~ Vje{o,...,1}l} where 1’ @ dom(u)

E,u, R1- {e’ : x in e} =& l’,a~[l’ + ~]; g@ (@~j~ 1) @ (@j), mw(s, n+m~(~))

DAG g

(n, n’, D)

n

on’

(n,;,{})

where n is new

Figure 2: Profiling semantics of Core-NESL.

(CONST)

(VAR)

(ABSTR)

(PAIR)

(IF-TRUE)

(IF-FALSE)

(LETREC)

(APPC)

(APP)

(EACH)

@~=jl(n,, nj,D,)

,n, n’, {(n, ii)} u (J~=~l{(nj, [n’])} u U~=jl Dj)

where n, n’ axe new

Figure 3: Definition of the unitary DAG (1) and serial (CB) and parallel (B) composition of DAGs. DAGs are represented as

a tride (n, n’, D) of the source node, the sink node, and a set of Dairs. each consistimz of a node and an ordered set (array)./// .,
of its children. The newness conditions could be formalized easily by labelling nodes by the expressions they represent.
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c v“ I 15(c.v.u) = Vu’ I 6“ (c. v. u)

+ 1 il+z2 u
.,. , -> .7,.,

1

if 0(1) = (ii, iz)

elt 1 Vj . 1

if 0(1) = (1’, j), cr(l’) = V

# 1 I;l . 1

if u(l) = i7

addscan 1 1’ [1’ * [~~=o ij, ~~., ~~~~ ‘,11 (g);:; 1

if u(l) = ;, n = Ill , 1’ @ dorn(a)

index i 1’ [l’1-+[o,...,l ]]]] @;:; 1

if 1’ @ dom(u)

pack 1 1’ [1’ * [vi,,..., vin_l]] q:; 1

if a(l) = ~ n= 1~ , U(lj) = (Vj, CJ),

{iO,. . . ,inl-, } = {i/ct = true}, iO <... < in~-~, 1’ ~ dom(a)

<- 1 1’ [1’ * ?7[v’o/it), . . . ,v’nl-,/inf_,]] (8;:: 1)@ (8$S 1)

if a(l) = (11,12), a(n) = 0, n = Iq , u(h) =?, n’= Iv[ ,

~(1’j) = (ij, V’j), O ~ ‘io,...)i~l-l < la , 1’ @ ‘em(a)

Figure 5: The semantics (6) and work cost (JW ) of constant function atmlication. The semantics of the remaining primitives,

-,3, /, <, fst, snd, and ‘rnaxscan, are sim’il~ to those given. The s&titution in the definition of <- gives p~~ity to the

last occurrence of any duplicate indices.

The space s returned by the semantics represents the

maximum reachable space during the computation. This is

accounted for by tracking all the values that might be needed

in the continuation (these are kept as a set of labels into the

store). The R in the rules in Figure 2 keep these labels. For

example, in a function application el e2 when executing el

the semantics adds to the current set of labels the labels for

the free variables in e2. Given a set of root labels, the space

required by the data is measured by finding all the locations

reachable from the root locations R, and summing the space

for each object stored at these labels (see Figure 4). Space

is only measured at the leaves of the evaluation tree (in the

rules CONST, VAR, ABSTR, and APPC). The addition of

1 to the space for many of the other rules represents space

that is needed for control information and will be justified

in Section 6.

In the EACH rule (for {e’ : z in e}) the expression e is

evaluated to return a sequence, and the body is then evalu-

ated for each element of the sequence. The store is threaded

through the evaluations of body so as to specify a sequen-

tial order for which we will measure space (the space require-

ments can be different for different orders of execution). The

execution of the subcomputations, however, are independent

and therefore can be executed in parallel, at a cost of some

extra space. The challenge is to show that the parallel exe-

cution does not require much more space than the specified

sequential execution.

4 The Array Language

To simplify our abstract machine (Section 5) we translate

the array instructions of Core-NESL to a lower-level lan-

guage, which we refer to as the array language. We do this

to make the memory allocation explicit, and to break up

the array operations that take non-constant work into a set

of tasks that each do constant work. The array language

includes explicit side-effects since it needs to atomically up-

date elements of arrays. The syntax of this language is the

same as Core-NESL, except t hat we replace index, pack, <-,

addscan, maxscan, and the parallel map expression with

the constants store, new, fork, and scanadd, scanmax.

Applying store to an axray, an array of indices, and a value

writes the value into the indexed locations of the array. Ap-

plying new to an integer creates and returns a new array

of that length. And applying fork to an integer i and a

function applies the function to each of O,..., i – 1 and re-

turns a dummy value O. Since the fork function returns a

dummy value, it is only useful for any side-effects. The new

scan operations compute the same as their counterparts, but

allocate memory differently.

The semantics relation for the array language, written

E, U, R 1- e ~ v, u’; g,s, is defined like that of Core-NESL,

with the additions given in Figure 6.

The translation from Core-NEsL array operations to the

array language is given in Figure 7. The translation of the

parallel map ({e’ : x in e}), for example, evaluates e, allo-

cates a result array, and then forks n threads each of which

applies e’ to the appropriate element of e’s value and writes

its result in the appropriate element of the result array. The

motivation for executing a fork in the definition of allocat e

is for bounding memory use (see the proof of Theorem 3).

The following theorem states that the translation only af-

fects the work, depth, and space by a constant factor.

Theorem 1 Ij in Core-NESL, .,., {} ~ e =& v, u; g,s, then

in the array language, .,,{} 1- T[e] =% v’, a’; g’, s’ such that

1.

2.

3.

v’ is the same as v, and a’ is an extension of U, except

that each may point to environments larger than those

found in v and u,

g’ contains at most k more nodes and levels than g,

and

S’ < ks, for some constant k.
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c v C$(C,V,U) (ig (c, v, u)

store 1 v’ Ulll+’ii?li 1

if a(l) = (11, lz), u(ll) = ii, 0(12) = (i, v’)

new i 1 0[1 H array(i)] 1

if 1 @ dom(u)

E,u, RU E(FV(e2)) k el ~ fork, u’; gl, S1 E,u’, Rt-e2&l, oO; g2, s2

uo(t) = (i, 1’) :0(2’) = cl(E’, d,z, e)

E’[d tii’][T tij], oj, RU {l’} Fe=+vj,aj+l;gj,$j VjE{O,...,1}l}
(FORK)

Figure 6: The semantics rules for the constants of the array language. The function array creates and returns a new array of

the specified length containing dummy values.

Proof Outline: This is proved by structural induction on

the Core-NESL derivation, after generalizing the statement

to hold for all evaluation contexts. ❑

‘T[{e’ : z in e}] =

let x = Z’[e]

n=#x

r = allocate n

- = fork (n, Ai.r[i] := (Ar.Z’[e’]) z[i])

in r

Z’[index] = Ax.

let r = allocate z

- = fork (n, X.r[i] := i)

in r

Z’[pack] = Az.

let z = Z’[addscan {if snd (x’) 10: z’ in z}]

n=#.z

r = allocate z[n – 1]

- = fork (n, Ai.if snd (a[i]) r[z[i]] := fst (a[i]) O)

in r

q<-] = k.

let a = fst x

ia = snd x

n=#a

r = allocate n

- = fork (n, Ai.r[i] := a[i]) (copy dest. array)

- = fork (# ia[i], Ai.r[fst ia[i]] := snd ia[i])

in r

T[addscan] = kc.

let a = allocate (# z)

in scanadd (x, a)

where allocate n = let . = fork (n, Ai.0) in new n

el [e2] = elt (cl, e2)

el[e2] := e3 = store (cl, (e2, e3))

Figure 7: Translation from the Core-NESL array opera-

tions to the array language. We use a multiassignment let

statement that executes the assignments in sequential order,

which can also be translated into Core-NESL.

5 The P-CEK(q) Machine

Our implementation of Gore-NESL uses an intermediate ab-

stract machine we call the P-CEK(q) machine. The P-

CEK(q) machine executes a sequence of steps in which each

step takes a queue of states and a store and processes a sub-

set (of size at most q) of these states in parallel to generate

a new queue of states and a modified store. Each state is

processed by a transition similar to that of the CESK ma-

chine [13] (a variant of the SECD machine). The number of

states grows as threads fork and shrinks as threads finish.

In this section we define the machine and in the next sec-

tion we prove bounds on the time and space it requires as

a function of the work, depth and space of the Core-NEsL

semantics.

The P-CEK(q) machine is motivated by the P-ECD ma-

chine [3], which was used for proving bounds on the parallel

implementation of the call-by-value A-calculus (PAL model).

However, because of the need to be space efficient and han-

dle arrays, it has three important extensions. First, instead

of processing the full queue of states on each step it only

processes the first q states from the queue on each step. As

will be shown in the next section, this modification greatly

reduces the memory needs of the maxhine by reducing the

parallelism. Second, the P-CEK(q) machine uses an explicit

store. This is needed both to allow us to model the sharing

of data in the accounting of space and to allow the machine

to update array contents. Third, it allows for a state to fork

an arbitrary number of children states in a single step in-

stead of just a pair. This changes how threads synchronize

since they have to synchronize as a group rather than as a

pair. A fourth minor point is that in NESL function appli-

cation el ez is defined to execute sequentially (as opposed

to in parallel in the PAL model), and the machine reflects

this. Modifying the P-CEK(q) machine to execute function

application in parallel, however, would be a minor change.

The P-CEK(q) mmhine executes programs of the array

language. Each machine step i is a transition of the form

Qi, ui ‘~ Qi+I, UZ+I

where o, is a store, and Q, is a queue of substates. Each
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substate S is a (C, E, K) triple which, together with the

current store, corresponds roughly to state of the sequential

CESK machine (C is an expression, E is an environment,

and K is a continuation). The possible continuations are

defined by

K ::= nil I (arg e E) :: K I (fun v) :: K I (end 1) :: K

These represent the empty continuation, a function’s argu-

ment to be evaluated, a function to be applied, and a fin-

ishing thread, respectively.

To evaluate a program e, the machine starts with an

empty store and a queue with a single substate (e, ., nil).

On each step the P-CEK(q) machine takes min(q, [Ql) sub-

states from the front of Q and processes a substate transi-

tion on each in parallel. Each substate can transition into

a single new substate, fork off a group of new substates, or

terminate. The new substates are collected together, main-

taining their order relative to the original substates, and

added back to the front of the queue. Maintaining the order

is important for the space bounds. Substate transition can

also return modifications for the store. These modifications

are merged into the store for the next step. In addition to

data the store is used to keep synchronization counters for

detecting when a set of forked threads completes. The P-

CEK(q) machine terminates with the single result substate

(exit w,., nil), where v is the result value.

The transition rules for the P-CEK(q) are given in Fig-

ure 8. Each step is broken into two parts &-l and &-z.

The transition &-I is applied to each of the selected sub-

states in parallel. It returns a new set of states and any

modifications that need to be made to the store. The first

five rules are minor modifications of standard CESK rules.

They also restrict the domain of the environments to the

variables that occur in their associated expression. This is

needed to assure the space bounds. We leave out the rules

for pairs, conditionals, and recursive bindings since these

are minor modifications to the standard sequential seman-

tics. The fork rule creates a set of i new substates (threads)

and adds a synchronization counter 1’ to the store. When-

ever a thread terminates it decrements the synchronization

counter, and if the count goes to zero, then it applies the

continuation. We note that in the fork and scanadd rules all

but the last new substates created are marked with a prime.

We will use these markings in our space bounds in the next

section and otherwise they do not effect the semantics of the

machine. The function appK applies a cent inuat ion, either

creating a new state or an End object to be processed in the

following transition. Any new locations created axe guar-

anteed to be distinct from existing locations and from each

other. We will account for the cost of getting new labels in

the implementation.

The transition =% is used for the “sequential” process-

ing of the st ates—decrementing the synchronization coun-

ters and modifying the shared store. The store is therefore

threaded though the substate transitions. As shown in the

next section, however, these transitions can actually be im-

plemented in parallel using a fetch-and-add operation and a

priority write, and are therefore only threaded for the sake

of the semantics.

The P-CEK(l) machine will always return the same value

as the sequential semantics of the array language, but in gen-

eral the P-CEK (g) machine (g > 1) can return a different

value. This can happen if threads interact—for example, if

one thread writes a value into an array that another parallel

thread reads. The P-CEK(q) machine can possibly execute

these in a different order than the P-CEK(l) machine. We

claim, however, that this cannot happen with programs in

the array language that are generated from Core-NEsL. This

is because the translations are specified so that each forked

thread writes to a different array location and none of the

locations are read by other threads. The one exception is

in the rule for store. In this rule, however, the modifica-

tions will always occur in order (left to right) since in the

semantics there is no way for an assignment on the right to

execute before an assignment on the left.

6 Bounds on Time and Space

In this section we prove bounds on the space and time taken

by the P-CEK(q) machine aa a function of the work (size of

DAG), depth (levels in DAG), and space measures returned

by the array language profiling semantics. In particular we

show the following:

1.

2.

3.

Sequential Space. The space returned by the array

language semantics is the same within a constant fac-

tor as the space required by the P-CEK(l) machine

(the machine that only processes one state at a time).

To prove this we formally define the space reachable

by the P-CEK(q) machine. We note that in this paper

we only consider the reachable space and therefore do

not consider the cost of garbage collecting.

Parallel Space. There is a one-to-one correspon-

dence between substates processed by the P-CEK(q)

machine and nodes of the DAG returned by the ar-

ray language semantics. Furthermore, we show that

the P-CEK(q) machine executes a p depth-first traver-

sal (p-DFT) of the DAG. This allows us to use previ-

ously results on DAG scheduling to show that the P-

CEK(q) machine never schedules too many substates

prematurely relative to the P-CEK(l) machine. This,

in turn, allows us to bound the extra reachable space

required by the P-CEK(q) machine. It also allows us

to bound the number of steps taken by the P-CEK(q)

machine.

Parallel Time. We show that each steD of a P-

CEK(p log p) machine can be implemented& the ma-

chine models (butterfly, hypercube, and PRAM) in

O(log p) time, with high probability. Since we have

a bound on the number of steps required by the ma-

chine, this allows us to bound the total running time

for these machines.

By Theorem 1, all these bounds also hold for the Core-NESL

semantics.

For brevity, we assume that each stage of the implemen-

tation preserves extensional correctness, Z.e., that evaluating

an expression in each model results in the same value. Prov-

ing this would be straightforward using standard techniques.

Furthermore, the following theorems assume that the array

language evaluation derivation in question use expressions

derived by the translation T. This is needed to ensure mem-

ory is allocated appropriately for the space bounds and to

ensure the determinacy of the P- CEK(q) evaluations for the

extensional correctness of these theorems (not shown here).
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vhere

(c, E, K), u &

(x, E, K), 0 &

(Axe, E, K), u &

(el ez, E, K), f7 Al

(C3 1 v, ., K), a 4’1

(Cl fork 1, ., K), a 41

(CJI scanadd 1, ., K), a =%1

(@ c v, ., K), a 41

(x 1, h 1’ i, ., K), a 41

appK c K,

appK E(x) K,

appK 1 K, [2 H c1(E’, -,x, e)]

if 1 $! dorn(o), E’ = restr(E, e)

[(cl, E, (arg e, restr(E, e,)):: K)], .

[(e, E[x’ H l][x 6 v], K)],

if o(1) = c1(E, x’, x, e)

[(@ v 0,., K’)’, (@ V I,., K’)’,...,

(K2 v (i - l),, K’)], [1’ 1+ i]

if U(Z) = (i, v), K’ = (end z’) :: K, Z’ # dom(a)

[(E 1, 121’0,.,K)’,(X 1,121’ l,, K)’,...,

(21, 121’ (n - l),,K )], [1’ 1+ o]

if a(l) = (11,12), n = lcr(ll)l , 1’ ~ dom(u)

appK v K, u’

if J(c, v,u) = v,a’

Z(ll,12,1’, i, K),

appK v nil = [(exit v,., nil)]

a~pK v (arg e E) :: K = [(e, E, (fun v~:: K)]

appK vz (fun V1) :: K = [(@ ~1 v2,, K)]

appK v (end 1) :: K = End(l, K)

restr (E, e) = the environment E restricted to the free variables in e.

Corlst ant

variable

abstraction

apply

func-call

fork

scanadd

prim-call

scanadd’

(End(l, K),

{

A++[(o, ., K)], c U a’
u’), A, o &

o(2) = 1 (last thread of parallel map)

A,u[l ++ a(l) – 1] U a’ @ # 1

{

A*[(j, ., K)], a’ i = 2 – 1 (last element to sum)
(E(ll,12,1’, i, K), ), A, u =% ~ ~,

i# 7 —1

whe~e u(ll) = ~, u(l’) = j, u’ = a[12 + a(12)~/i]][l’ + j + ij]

(x, d> 4 ~ &2 z+-FX,Ul_Jd

vhere o U u’ is the union of the stores such that if a location appears in both stores, the binding from the right store is kept.

[S,,. ... Sri], a = AqI*[Sq+l,... ,Sn], U,J

vhere q’ = min(q, n), AO = H,ao = a, and for 1 ~ j s q’,

Sj, u &l Xj, a; (Execute these independently in parallel)

(Xi, CT;), Aj-I, aj-I & Aj, Uj (Execute these “sequentially”)

vhere the new locations of u~, . . . . u; are renamed if necessary to ensure they are &tinct.

Figure 8: Definition of the P-CEK(g) machine, omitting the definition of the evaluation of scanmax, pairs, conditionals, and

re&rsive bindings. Arrays, pairs, closures, and synchr~nization counters are kept in the store. The ~xpressions @ v vi and

Z 11 121’ i are for internal use in evaluating applications and scans, respectively. In the latter, 11 and 12 point to the source

and destination arrays, respectively, 1’ is the running total, and i is the index.
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L(Q) = U (L@) U ~K(K))

(., E,K)6Q

LK(nil) = {}

LK((arg e E) :: K) = L~(E) ULK(K)

LK((fun v) :: K) = {v} U LK(K)

LK((end 1) :: K) = LK(K)

Figure 9: Definitions for the root values L(Q) of a step of

the P-CEK(q) machine. This is a set of values, where labels

act as roots into the store. The function LE (E) returns

the range of the environment, and LK (K) returns the root

values of a continuation.

Sequential Space. To capture the space that is required to

implement the P-CEK(q) machine we need to consider on

each step both the space that is required for the queue (Q)

w well as any space in the store u that can be reached via

some label in the queue. As mentioned in the previous sec-

tion, certain substates in the queue are marked with a prime

(see the fork rule in Figure 8). We assign no space for these

substates since in our implementation we will store a set of

forked states in a compacted form—as a record with a start

count, end count, and point ers to the common function to

apply, environment and continuation. We assign the space

for this structure to the last of the forked substates, which

the semantics does not put a prime on, and therefore do not

include any space for the other substates. This is necessary

for the parallel space bounds. For each of the non primed

CEK substates we include the following spaxe: for the com-

mand (C) we include constant space, for the environment

(E) we include space proportional to the size of the domain,

and for the stack of continuations (K) we include space pro-

portional to the number of entries in the stack (here we are

just accounting for space required by the queue itself and not

for any values that are in the store). To find the root labels

into the store we consider all labels accessible either though

an environment or continuation of any of the substates.

Definition 1 The reachable space S, (Q;, u~) oj a step i of

the P-CEK(q) machine is the sum of:

1. the queue space S,(Qi) is the sum of (1 + ]El + ]Kl)

for those non-primed states (e, E, K) E Qi, and

2. the store space Sc (Q;, u~) = space (L(Q~), u~)

where space (., .) and L(.) are defined in Figures 4 and 9,

respectively, IE[ is the size of dom(-l?), and IKI is the length

of the continuation stack K.

We note that the space for the synchronization counters is

included in S~ (Q~ ) and not S~ (Qi, ai ) even though the coun-

ters are kept in the store (the rule LK ((end 1) :: K) in Fig-

ure 9 does not add 1 to the labels). The motivation for this

is to allow an exact correspondence between the locations

in the array language semantics and the locations in the

P-CEK(l) machine.

Theorem 2 If .,., {} F e =%-v, u; g,s, and e is a transla-

tion of a Core-NESL expression, then during the i steps of

the P-CEK(l) ezecution

[(e,., nil)], 3*

the following bound holds on

constant k:

[(exit v,., nil)], a’

the reachable space for some

To prove this we first generalize the statement. The fol-

lowing lemma considers the steps of P-CEK(l) required to

evaluate an expression in some general context and bounds

the reachable space during those steps by the space speci-

fied by the Core-NESL semantics plus the queue space at the

beginning of the evaluation.

Lemma 1 If E, u, R E e & v, u’; g,s, where e is a subex-

pression of a translated Core-NESL expression, and for a step

i of the P-CEK(l) machine

1. Qi = [(e, E, K),. ..],

2. the semantics and machine can access the same loca-

tions: L(Q;) = R U I?(FV(e)), and

3. . . . and these locations have the same values:

‘d OCS(L(Qi),q)
u(l) = q(l),

then on some future step j > i, the machine will execute

appK v K, and for some constant k,

m&c Sr(Q., a.) < S~(Q;) + ks
n=i

Proof: We prove this by structural induction on the array

language evaluation derivation and show a representative set

of the cases. The remaining cases are similar.

case

case

VAR, e = m By VAR, s = space(R U {E(z)}, a), and

by the definition of the P-CEK(q) machine, j = i.

Thus,

md~=i S. (Q., CT.)

= Sq(Qi) + space(L(Q~), ~i) (Def. 1)

= S, (Q~) + space (L(Q;), u) (3rd assump.)

= Sq(Qi) + S (2nd assump.)

The other base cases, CONST, ABSTR, and LETREC,

are similar.

APP, e = el ez: By induction, we can assume that

the lemma holds for el, ez, and the appropriate func-

tion body e3. The steps of the P-CEK(l) machine

corresponding to these subderivations are numbered

il to jl, etc. By definition of the P-CEK (q) machine,

this implies that il = i+l, iz = jl +1, and is = jz+2,

and step jZ + 1 is the appropriate func-call transition.

Let’s look at the queues at these important iterations:

Q, =

Qi, =

Q,, =

Qjz+l =

Qi, =

[(cl ez, E, K)]*Q

[(e,, E, (arg ez restr(E, ez)) :: K)]I+Q

[(ez, E, (fun 1):: K)]*Q

[(C31 V2, , K)]*Q

[(es, E’[z’ N l][z H VZ], K)]*Q
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where 1 is the value of el, Ujl (1) = c1(E’, x, x’, ez), and

dom(E’ ) is restricted to the free variables of ez.

Examining the definition of the P-CEK(q) machine

and using Definition 1, we have

S,(Q,, at) = S,(Qil, uz,)
sr(Qj2+1, crj2+1) < S,(Qt, ut)

So the reachable space in those two steps is not greater

than in the others, and using induction we have

Relating the queue spaces S~ (Q~. ) to S~ (Q~) we see

For S~(Qi,), first observe that IE’I + 2 < S1 by the

definition of space (., ~) since the closure with E’ must

have been the result of a subderivation of el. Thus,

and the conclusion holds.

The PAIR, IF-TRUE, IF-FALSE, and APPC cases fol-

low in similar, but generally simpler, inductive man-

ners.

The FORK case is also similar except that a function

is applied to many values instead of just one. But

since the semantics threads the stores through these

applications, induction can be used as in the APP case.

•1

For the proof of Theorem 2 we specialize the above lemma

starting with an empty environment, store, and roots.

Parallel Space. Given the space taken by the P-CEK(l)

machine we are now concerned with the space taken by the

P-CEK(q) machine for a general q. The P-CEK(q) machine

can require more space both because it can create many

more simultaneous parallel threads (the queue can become

much larger), and because it can have simultaneous access

to many more locations in the store. Our aim is to place

bounds on how much extra space is needed.

As mentioned, the idea behind the proof is to show that

the P-CEK(q) executes a p-DFT traversal of the DAG g re-

turned by the semantics, then use previous results on the

number of nodes scheduled prematurely in a p-DFT [2], and

finally use these results to bound the space. By the machine

traversing the DAG we mean there is a one-to-one correspon-

dence between substate transitions and nodes in the DAG.

This implies that each parallel step of the P-CEK(q) pro-

cesses min(q, IQ I) nodes of the DAG, and the total number

of substates processed is equal to the size of the DAG (Z.e.,

the work). The appendix gives a more formal definition of

a traversal and a p-DFT. The following theorem shows the

correspondence.

Lemma 2 If., ., {} h e =% v,u; g,s, and e is a translation

of a Core-NEsL expression, then there is a one-to-one cor-

respondence between the nodes in g and the CEK substates

processed in the P-GEK(q) transitions

such that the single CEK substate in IQO [ corresponds to the

root of g and for every step i of the P-CEK(q) all the ready

chddren of the min(q, lQi 1) CEK substates processed on that

step will appear in order at the front of Qi+l.

Proof Outline: The proof of this is similar to the proof

of Theorem 2. In particular we generalize the statement to

consider an arbitraxy context and then prove by induction

on the rules of the semantics. ❑

This theorem together with Theorem 6 in the appendix

and the fact that g is series-parallel imply that the P-CEK(q)

executes a p-DFT of g with parameter q. Theorem 5 then

bounds the number of premature nodes on any given step

of the P-CEK(q). A premature node is a node that gets

executed out of order (prematurely) relative to a sequential

traversal (i. e., the traversal executed by the P-CEK(l) ma-

chine). Having a bound on the number of premature nodes,

we can bound the memory used by these nodes.

Theorem 3 Ij .,., {} E e =%- v,a; g,s, where e is a subez-

pression of a translated Core-NESL expression, and the num-

ber of levels in g is d, then for the i steps of the P-CEK(q)

execution

[(e,, nil)], ~ W* [(exit v,., nil)], a’

the following bound on the reachable space holds for some

constant k:

::ISr(Qn, GJ < k(S + dq)

Proof: Since the P-CEK(q) machine executes a p-DFT of

g with parameter q, on any step of the P-CEK(q) there can

be at most dq nodes executed prematurely relative to the

P-CEK(l) machine (see Theorem 5 in the appendix). If

each substate transition in a step i of a P- CEK(q) machine

added at most constant space to the next state of the ma-

chine, then the proof would be easy. In particuku since the

maximum space taken by any step of the P-CEK(l) machine

is ks, and on any step of the P-C!EK (q) machine there are

at most dq substate transitions that were executed prema-

turely relative to some step of the P-CEK(l) machine, each

of which allocated at most constant space, the total space

will be k (s + dq). The reason for using the compact repre-

sentation of forked threads discussed earlier is to guarantee

that the fork transition in Figure 8 only creates constant

space.

The one transition that creates more than constant space

is @ new i since it allocates an array of size i. However,

new is only used in the translation from Core-NESL in the

rule

allocate n = let - = fork (n, Ji.0) in new n

For the new transition to be premature, all the n forked

threads would also need to be premature. We can then

account for the n space required by the allocation of the

array against these n forked threads. Our bounds therefore

still hold even though this one transition creates more than

constant space. ❑

[(e,, nil)], ~ ~“ [(exit v,., nil)], a’
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Parallel Time. Our final goal is to prove bounds on the

time taken by each step of the P-CEK(q) machine on the

butterfly, hypercube, and PRAM machine models, each with

p processors. To account for memory latency in the butterfly

and hypercube, and for the latency in the fetch-and-add

operation for all three machines, we process p log p states on

each step instead of just p (z. e., we use a P-CEK(p logp)

machine).

Our simulation uses the ~etch-and-ado! operation [16] (or

mult iprefix [26] ). In this operation, each processor has an

address and an integer value i. In parallel all processors

can atomically fetch the value from the address while incre-

menting the value by i. In our case it is important that the

fetch and add is stable—if two processors make a request

simultaneously, the processor with the smaller ID will ac-

cess the count er first. The stable fetch-and-add operation

can be implemented in a butterfly or hypercube network

by combining requests as they go through the network [26],

and on a PRAM by various other techniques [24, 15]. For

all machines, if each processor makes up to m fetch-and-

add requests, all requests can be processed in O(m + log p)

time with high probability (the bounds can be slightly im-

proved on the CRCW PRAM [15]). These bounds assume

the butterfly has p logz p switches which can do the com-

bining, the hypercube can communicate and combine over

all wires simultaneously (multiport version), and that the

CRCW PRAM is the priority write version. The fetch-and-

add operation is used in four places in our implementation:

decrementing the synchronization variables, the scanadd

operation, allocating tasks to processors, and memory allo-

cation for creating new arrays and getting new labels.

The following theorem assumes that program expressions

are of constant size and therefore does not include the time

for looking up variables in the environment. It would be

easy to generalize to account for variable lookup [3].

Theorem 4 A step of a P-CEK(p log p) machine can be

simulated in O (log p) time on the butterfly, hypercube, or

CRCW PRAM machme models.

Proof: Each processor takes log p elements from the queue

and executes the transit ion ~ 1. Since we store the queue

in a compacted form (i. e., a set of forked threads are stored

in constant space) we use a fetch-and-add operation to as-

sign tasks to processors. We make sure that they are as-

signed to processors in order (lower numbered processors

get lower numbered states). Each of the substate transi-

tions can be executed with a constant number of memory

references and local operations. This assumes that envi-

ronment lookup takes constant time, as stated above, and

that when forking a set of threads the forked threads are

represented in compacted form (otherwise forking n threads

would take n time). We also note that any memory alloca-

tion that is required can be executed with a fetch-and-add

to a global queue. Given these conditions, each processor

makes a total of k log p memory and fetch-and-add requests,

taking O(log p) time using the above stated bounds.

The second substate transition &-z is more involved

since we have to update the synchronization counters and

merge the stores as if they were done sequentially. To update

the synchronization counters we use the fetch-and-add oper-

ation. Since each processor can have at most log p requests,

this takes O(log p) time. The fetch-and-add can also be used

for the transition on E (~, 17,t“, i, K). For merging the stores

the only operation that could conflict is a store instruction

as part of implementing the <- operation. However since the

substates have the same order aa the processors, a priority

concurrent write (with higher numbered processors given the

higher priority) will guarantee that rightmost value will be

written.

To finish the step of the P-CEK(q) we need to merge the

states and put them back on the front of the queue. This

can be implemented with a fetch-and-add. ❑

To determine the total running time we use the result

that a P-DFT with parameter q on a DAG with w nodes

and d levels takes O(w/q + d) steps [2].

Corollary 1 If.,.,{} 1-e A v, a; g, .s, and e 2s a transla-

tion of a Core-NESL expression, then the P-CEK(plogp)

steps

[(e,., nil)],. ‘(4P)* [(exit v,., nil)], a’

can be simulated using p processors of a CRCW PRAM in

O(w/p + d logp) time, where w and d are the numbers of

nodes and levels of g, respect wely.

Proof: Lemma 2 relates the DAG g to the P-CEK(q) com-

putation, where q = p log p. There are w/q + d steps, and

each step takes O(log p) time. ❑

7 Related Work and Discussion

Several researchers have used cost-augmented semantics for

automatic time analysis or definitional purposes [29, 30, 31,

27, 33, 14]. Hudak and Anderson [21] used partially ordered

multisets (pomsets) to model the dependence in various im-

plementations of the A-calculus. Because of the relationship

between partially ordered sets and DAGs, these are quite

similar in concept to our DAGS. For our bounds, however,

we also need to keep an order among the children of each

node, which cannot be represented within the single pomset.

None of the above work includes costs that model space or

relates the costs of the modeled language to those in ma-

chine models. There have been a handful of studies that use

semantics to model the reachable space of sequential compu-

tations, in the context of both garbage collection (e.g., [25])

and copy avoidance (e. g., [20]). None of this work, how-

ever, has considered the extra reachable space required by a

parallel evaluation. There have been a sequence of studies

that place space bounds on implementations of parallel lan-

guages [11, 10, 12, 2]. For a shared memory model, which

is required to efficiently simulate the A-calculus because of

shared pointers, the best results are those by Blelloch, Gib-

bons, and Matias [2], which are the results we use in this

~ar)er.

‘ ‘Provable time bounds for mapping nested data-parallel

languages onto the PRAM were considered by Blelloch [5]

and in the definition of NESL [6], but the time bounds are

restricted to a class of program that are called contained.

Similar results were shown by Suciu and Tannen for a par-

allel language baaed on while loops and map recursion [32].

Practical issues. The design of the intermediate language

and machine were optimized to simplify the proofs rather

than for practical considerations. Here we briefly discuss
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some modifications to make the implementation more prac-

tical without affecting the asymptotic bounds (although they

would complicate the analysis). The first modification is to

cluster the computations into larger blocks, and then have

the substate transitions of the P-CEK(q) machine each exe-

cute one of these blocks. This would have three advantages:

(1) it would allow the use of standard sequential compiler

to compile and optimize each block; (2) it would reduce the

scheduling overhead and need for synchronization; and (3)

it would improve cache performance since a given block is

likely to have repeated accesses to the same memory loca-

tion. A second modification to the P-CEK(q) is to schedule

the sequence of state transitions that correspond to a given

thread on the same processor (assuming it gets scheduled on

consecutive transitions). This would further improve cache

performance.

In terms of the practicality of our target machine mod-

els, some readers might complain that they do not prop-

erly account for communication costs. First we note that

our model does account for communication latency. We

already use multithreading for hiding the log p latency in

the butterfly and hypercube networks. The effect of hav-

ing a larger latency L would simply require a higher degree

of multithreading and would appear in our time bounds as

O(w/p + Ld), and similarly would replace the logp in the

space bounds. Of course this requires a machine that can

properly hide latency. In terms of throughput we note that

on the most recent parallel machines, such as the T3E, with

proper latency hiding, global bandwidth is no more of an is-

sue than local memory bandwidth on a sequential machine.

In both cases performance relies heavily on effective use of

the cache. Finally, our implementation uses a fetch-and-add

operation. Although this is not very practical on many ma-

chines, it is likely that the need could be removed using the

techniques discussed in [2].
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DAG Definitions and Theorems

The following definitions and theorems are from Blelloch,

Gibbons, and Matias [2].

A p-traversal of a DAG g, for p > 1, is a sequence of

k > 1 steps, where each step i, for z = 1, . . . . k, defines

a set of nodes, V, (that are visited, or scheduled, at this

step), such that the following three properties hold. First,

each node appears exactly once in the schedule, i.e., the

sets VI, . . . . vk partition the nodes of g. Second, a node

is scheduled only after all its ancestors have been, i.e., if

n’ E V, and n is an ancestor of n’, then n c Vj for some

j < i. Third, each step consists of at most D nodes, i.e., for

allie {l,.. .,k}, Iul <p.

Consider a traversal T = VI,. . . . Vk of g. A node n E g is

scheduled prior to a step i in T if n appears in VI U. UV, – 1.

An unscheduled node n is ready at step i in T if all its

ancestors (equivalently, all its parents) are scheduled prior

to step i. The greedy p-traversal, TP of a DAG g, based on

a l-traversal of g, T1, is the traversal that on each step i,

schedules the p earliest nodes in T1 that are ready. In other

words, for all ready nodes n and n’, if n precedes n’ in T1,

then either both are scheduled, neither are scheduled, or

only n is scheduled.

Let Tp be the greedy p-traversal based on a l-traversal

T1. For each prefix, UP, of TP, consider the longest prefix,

cm, of T1 that includes only nodes in UP. We say a node is

premature with respect to UP if it is in UP but not in al.

Theorem 5 For any DA G of depth d and any 1-traversal

T, the maximum number of premature nodes an the greedy

p-traversal based on T is at most (p – l)(d – 1).

Consider a series-parallel DAG g. Let A be an array

initially containing the root node of g. Repeat the following

two steps until all nodes in g have been scheduled:

1. Schedule the first min(p, 1A]) nodes from A.

2. Replace each newly scheduled node by its ready chil-

dren, in left-to-right order, in place in the array A.

Theorem 6 The algorithm above makes the greedy p-DFT

based on the l-DFT of a series-parallel DA G g.
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