
A Provably Correct, Non-Deadlocking Parallel Event Simulation Algorithm

Meng-Lin Yu Sumit Ghosh

AT&T Bell Laboratories Brown University
Holmdel, NJ 07733 Providence, RI 02912

Abstract

This paper first summerizes and then
presents a formal proof to a new conservative
deadlock-free algorithm, YADDES [l], for
asynchronous discrete event simulation. The
proof not only makes the algorithm complete but
helps us better understand the seemingly
complicated algorithm. YADDES constructs a
special acyclic data-flow network from the
network of simulation models to keep track of the
run time data dependencies, which permits a
model to be correctly executed as far ahead in
time as possible. The data-flow network also uses
the asynchronous parallel discrete event driven
technique and runs concurrently with the network
of simulation models. This paper also reports a
preliminary implementation of the algorithm and
discusses the algorithm’s limitations.

1. Introduction

Discrete event simulation has been widely
accepted as a more efficient simulation method
than time-baaed simulation for simulating many
physical systems with sparse activities such as
digital circuit, queueing networks, telephone
networks, and simulated warfare. In this paper,
we will concentrate on discussions and examples of
digital circuits as our physical processes. In
discrete event simulation, a simulation model
representing an entity of the circuit remains idle
except when excited by an external stimulus. In
addition, only changes in a model’s response are
propagated to other models that are connected to
its output. The changes are usually stored in an
event queue according to their assertion times.
However, this global data structure, event queue,
as well as the concept of the monotonically
increasing global time make it difficult to run
discrete event simulation on a multiprocessor,
where processors have limited resources and

mechanisms to communicate with each other.
Since it is generally accepted that a
straightforward synchronous approach, which
requires centralized control and resynchronization
of all processors at the end of current activities to
make all processors agree to the global time, does
not scale well with large number of processors due
to excessive overhead, most research efforts were
made in the area of asynchronous distributed
discrete event simulation.

Erik DeBenedictis

nCUBE Corporation
Beaverton, OR 97006

Asynchronous distributed discrete event
simulation studies usually start with a time-order
preservation assumption. The assumption says
that two events A and B, with B happens later
than A, coming out of the same communication
channel have to preserve their timing order, i.e.,
event B can only be received after event A. Most
multiprocessor architectures support this
assumption. Based on this assumption, in order
to eliminate the need of a central event queue, a
basic asynchronous discrete event simulation
algorithm [2] q re uires that each model has its own
queue(s). Whenever there is a change of model X’s
output due to model execution, an event is sent to
input port queues of all models connected to the
model X’s output. To eliminate the need of global
time, a basic asynchronous discrete event
simulation algorithm requires that the assertion
time is sent along with an event. In this manner, a
component (simulation model) can be scheduled
for simulation up to time T if each of its input
ports has at least an event with time greater than
or equal to T. However, the basic asynchronous
discrete event algorithm is sometimes too
conservative. For example, a particular input to a
component may not have incoming events for an
extended period of time, yet the component
cannot simulate regardless how many events are
queued at the other input ports of the component.
This leads to the starvation problem which may
cause performance degradation. For cyclic circuits,
a more serious deadlock occurs when two or more

100
0272-4715/91/0000/0100$01.0001991 IEEE

components await events from each other in order
to continue the simulation. The conservative
nature and the inability to determine whether the
absence of information at an input port of a model
means unchanged signal values or the incoming
events yet to arrive cause the deadlock.

Various approaches proposed to resolve the
deadlock problem fall into two major categories
depending on how the absence of information at
an input port is interpreted. In the deadlock-free
optimistic rollback approach [3][11], the absence
of information is interpreted as an unchanged
signal value. If a subsequent message contradicts
this interpretation, the simulation system restores
(rolls back) to a previous state by sending anti-
messages. In the conservative Chandy-Misra
approach [2][8][12], th e absence of information is
interpreted as incoming events to arrive in the
future. Techniques were designed to avoid or
handle deadlocks associated with this
interpretation. Since YADDES is a conservative
approach, we will focus on the discussion of the
conservative approach variations. Readers
interested in the optimistic approach can read [4].

Two schools of thought are used to solve the
deadlock problem. In the deadlock detection and
recovery approach [2] [5] [6], the entire simulation
system is permitted to execute until it results in a
deadlock, i.e., when the entire simulation
prematurely halts. The deadlock state can be
detected by a distributed circular marker
algorithm or by a time out mechanism [2] [6]. The
recovery can then be done by distributed or
centralized time information collection and restart
control. However, the deadlock detection scheme
fails for certain systems. For example, a system
consisting of oscillatory components will never go
into a complete deadlock state yet the non-
oscillatory components of the system cannot
execute due to local deadlocks. Besides, the
potentially very high overhead for deadlock
detection and recovery limits its applications.

In the conservative deadlock-free null message
method [2] [7], null messages are used to carry
time information to avoid deadlock when a model
simulation results in no output changes. Null
messages are otherwise treated as normal events.
Its principal limitation is its inefficiency in
situations where an external signal to a cyclic
circuit remains unchanged for extended time. For
example, if the external inputs to an idle cyclic

circuit do not change, say, for a million units of
the total loop delay, a million useless null
messages are generated and transmitted with this
method.

The above mentioned problems lead to the
design of a new approach, YADDES[f], to avoid
deadlocks. The next section summerizes the
YADDES algorithm. Detailed examples and
descriptions of the algorithm can be found in [l].

2. The YADDES Approach

In this section, a new conservative approach
YADDES is summerized. Instead of blindly
generating null messages at a fixed interval,
YADDES constructs an acyclic data-flow network
from the original circuit for computing
incremental changes of lookahead or “defined-up-
to” information. Both the data-flow network
computation and the model simulation employ the
event driven technique and run concurrently. The
“defined-up-to” information can be considered as
optimal lookahead information, dynamic data
dependency information, or intelligent null
messages. This information guarantees that the
simulation will never deadlock and each model can
simulate as far ahead in time as permitted by the
true data dependency at run time. It also says
that any execution further in time may generate
incorrect simulation results. The way to construct
a data-flow network is described below.

2.1 Data Network Construction -
Preprocessing

A circuit to be simulated is first preprocessed
for constructing an acyclic data-flow network.
The preprocessing consists of the following steps.

Feedback Loops Removal
All subcircuits that constitute cyclic directed
graphs are first identified. Other entities of the
system that constitute acyclic graphs are
simulated as the basic asynchronous discrete
event simulation. A feedback arc set (91 S = {El,
E2, “‘7 E,} of a directed graph is then determined
such that the graph becomes acyclic following the
removal of all of the edges El through E,. While
the size of this cut set affects the overall data-flow
network complexity, this approach does not need
to find a minimal feedback arc set which is an
NP-complete problem. For each E; for all i E
~1,2,..., n} in the original directed graph, a new

101

acyclic directed graph (reduced acyclic graph) is
reconstructed by replacing E; with two edges l$’
and Eyt as illustrated in Figure 1.

out
ES

Figure 1: Reducing a Cyclic Directed Graph
to an Acyclic Directed Graph.

Primed and Unprimed Reduced Acyclic
Graphs
A data-flow network is constructed by
interconnecting two identical copies of the
reduced acyclic graph side-by-side through a
crossbar switch as shown in Figure 2. A
component X of the left-hand side reduced acyclic
graph is named pseudo primed component,
labeled x’. A component X of the right-hand side
reduced acyclic graph is named pseudo unprimed
component, also labeled X The term “pseudo” is
used to distinguish it from the real simulation
models of the original circuit. Every input port of
a pseudo primed component x’ that has a label of
the form G”, where Ei was the feedback arc
chosen to break the loop containing X, has a fixed
value of oo .

Crossbar Switch Construction
An output port of every component x’ that has a
label Ejout is linked to every input port of any
pseudo unprimed component Y that has a label of
the form E’;, for all k. These links form the
crossbar switch. Every link between Ef”’ of a
pseudo primed component x’ to an input port Ep
of a pseudo unprimed component Y has a weight

whose value is the minimum propagation delay
from components X to Y in the original cyclic
graph. If the component X may not affect Y at
all, the weight is infinity and the link is
considered non-existent. In addition, at the right
hand side of the link, all the links coming out of
the crossbar switch into a particular Ef’ is
reduced to 1 by taking the minimum of all those
incoming values. For the cyclic graph in Figure
la, the corresponding data-flow network is shown
in Figure 2.

2.2 Definitions of Lookahead Variables

Definition of U: Associated with every real
simulation model X is an event list that contains
the yet to be consumed events. Ux is defined to
the the smallest time value of the events currently
in the list. If the list is empty at an instant, the
value of Ux is set to be 00 . AI1 Ux for all X are,
therefore, initialized to 00 .

Definition of W: The quantity Wx is
associated with the output of a pseudo unprimed
component X in the data-flow network. Wx =
minimum(Ux+d, W,+d, W,+d,..., W,+d),
where WI, W,,W. refers to the W value at the
input ports l,...,n of X and “d” refers to
component X’s propagation delay. The value of
Wx for every X is initialized to 0 and simulation is
complete when each Ux and Wx for all X in the
system is at 00 .

W, can be interpreted as the earliest possible
time of the next message at the output of X. It
implies that the output of the model X is defined
up to t = WT;. Following the definition, we notice
that W is defined recursively and that W can also
be computed using discrete event technique.
Changes of W or w’ are thus computed
incrementally through the data-flow network and
concurrently with the model simulation whenever
there is a “defined-up-to” value change. Since the
data-flow network is acyclic, the computation is
straightforward, always goes from left to right,
and is free from deadlock.

Definition of W’: The quantity wx is
associated with the output of the pseudo primed
component x’ in the data-flow network. wx =
minimum(Ux+d, d,+d, l&$+d,.., d=+d), where
W@i, de,..., ti” refers to the w’ values at the input
ports l,...,n of x’ and “d” refers to X’s
propagation delay. It represents an intermediate
value in the computation of Ws and may be

Primed copy
crossbar
SW itch Unprimed copy

Figure 2: Data-Flow Network Constructed for Cyclic Circuit in Figure la.

understood as an optimistic estimate of next
message time at the output of simulation model X.

Definition of K: The quantity Kx is
associated with the real simulation model X. Kx
E minimum of (Wi}, for all input port i of X.

Given the data-flow network and above
definitions, the simulation system would consist of
two elements, real simulation models, and the
data-flow network along with its Ws and w’s.
The interactions of these two elements in the
simulation process go as follows. A real
simulation model X is excited by signal transition
messages received at its input ports. It then
queries the data-flow network by supplying
information of the smallest time (U) in its current
event queue. The data-flow network computes
and replies with the information of “defined-up-
to” (Ws) for each input port. An event in
component X’s event queue can then be executed
if its event time is smaller than the smallest
“defined-up-to” (K) among all the input ports,
regardless whether every input port has received
an event or not.

2.3 Algorithm - Simulation and
Lookahead Variables Computation

The YADDES algorithm is described in
Figure 3 and Figure 4. The dynamics of the
simulation system can be summerized as follows.

When a signal transition is asserted at an input
port of real simulation model X, it may alter the U
value of X or leave it unchanged. In case the U
value is altered as a consequence of the incoming
signal transition (which has a smaller event time),
the simulation model X initiates the pseudo
primed components x’ of the data-flow network
for W-computation and waits for
acknowledgement from k. x’ computes dx and if
its value is unchanged, an acknowledgement signal
is sent back to the real simulation model X. If the
new value of wx is different, x’ initiates a chain
reaction i.e., it propagates the new v,v value to
every pseudo component r’ connecting to its
output port and waits for acknowledgements from
each of those pseudo components. Every
subsequent pseudo component, f/, then repeats
this process. This chain process of computation
and propagation of new w’ or W continues until
the driving force i.e., a change in the value of w’
or W at the output of a pseudo component, dies
out or when the change may not propagate any
further at the rightmost primed pseudo
components. Since the data-flow network is
acyclic and bounded in size, the event driven W-
computation is guaranteed to terminate in finite
bounded time. Upon receiving all
acknowledgements later on, the pseudo
component r’ then sends an acknowledgement
back to x’ and 2 will send an acknowledgement

103

Real simulation model X:
loop forever {

if (K > U) { /* model execute */
execute simulation model and generate output signal;
if (output signal changed) {

send output event to all models in the fanout;
wait till acknowledgement signals received from event receivers;

1
update event queue and consequently new U value;
initiate pseudo component X’ to update Ws, w’s;
/* No acknowledgements are needed but acknowledgements */
/* may still be used for ease of implementation. */

>
read in events at input ports /* input events */
if (there is a new event) {

update event queue and order events according to time;
if (new event alters U value) {

initiate pseudo components X’ to update Ws, w’s;
wait till an acknowledgement received from X’;

>
send an acknowledgements back to the event sender;
compute K = minimum of all W values at input ports of model X;

1
I

Figure 3: Operations of a Simulation Model X.

back to the real simulation model X when all the
acknowledgements are received to indicate the
termination of W-computation. The real
simulation model X can now acknowledge the
event originator, which can now and only now
change its U value.

The real simulation model X accesses the W
values of each of its input ports and computes the
minimum value Kx. If Kx is larger than Ux, the
model X may be executed for the event
corresponding to the U value. In case no new
signals are generated at the output port of X, the
event corresponding to the current U is removed
from the event queue and the new value of U
reflects the currently known next event time in
the queue. If the queue is empty, U is set to
infinity. If a signal transition is generated at an
output port as a consequence of execution of the
simulation model X, an event is sent to every
simulation model connected to the output of X.
The real simulation model X waits for
acknowledgements coming back and then the
event corresponding to the current U value is
removed from the event queue and the value of U
is updated.

104

3. Proof of Correctness of the Algorithm

The proof of correctness of YADDES
algorithm requires proofs of the execution of
events in the correct order, the absence of
deadlock, and the termination of simulation.
Since the basic asynchronous discrete event
simulation, whose correctness was proved in [2], is
used as the backbone of YADDES, we will only
show the proof of critical parts unique to the
YADDES algorithm.

3.1 Execution of Events in the Correct
Order

Consider that two events El and E2 with
assertion times t = t, and t = ts(ts > tr)
respectively are sent by a simulation model X. The
time-order preservation assumption says that
where X sends El and E2 at real time t = ts and t
= t4 (t4 > ts) respectively to the same receiver,
the receiver is guaranteed to receive El prior to
Ez. Based on this assumption and definitions of
Us and KS, to prove the event executions in
correct order, we only need to show that all KS
increase monotonically such that no two events
can be executed in reverse order.

Pseudo Component X’ (or X):
/* An implementation uses acknowledgements for all W-computation */

loop forever {
read in command from real simulation model X (for x’ only),

new W’ (or W) value from left, and acknowledgements from right;

if (command from model X is update-w) {
compute W’ ;
if (W’ value remains unchanged) {

send an acknowledgement signal back to model X;

1
if (W’ computes to a new value) {

propagate new W’(W) value and wait for acknowledgements from the receivers;

if (new W’ (W) value at input is read) {
compute the output W’ (W) value;
if (output W’ (W) value is unchanged) then

send an acknowledgement back to sender;
else if (output W’ (W) value is changed) {

propagate new W’(W) 1 va ue and wait for acknowledgements from the receivers;

1
1
if (all acknowledgements are back from each receiver) {

if (acknowledgement is for itself) send done signal to simulation model X;
if (acknowledgement is not for itself) relay it towards the original requester;

1

Figure 4: Operations of a Pseudo Component x’ (Primed) or X (Unprimed).

We will first prove that IV, indeed represents
the define-up-to information, that is, no events
can come out of X with assertion time smaller
than Wx. Let’s consider a general circuit with
feedback whose data-flow network is shown in
Figure 5. For simplicity, assume all external input
events have already been inserted in the proper
event queues and all U values have already
accounted for them.

For any pseudo primed component p/, by
definition,
VY = min (VY + dy, d~r + dr, MiAz + dy,
was + dy, . . .), where each Ai, for all i, is a fanin
component of 1/.

Also by definition, wa, = min (WA, + dA,, M/B,
+ dAi, MjB2 + dA,, wgs + dA,, . . .), where each
Bj, for all j, is a fanin component of Ai’.

By substitution, we have
wy = min (V, + dy,

uA, + dAly, uA, + dAZy, VA, + dAsy, -..,
I# ~~ + dAlyI U~B~ + dAIY, ~~~ + dA1y, . ..t

~BI + d&y, ~~~ + dA2y, tin, + dA2y, -..,

~BI + dAay, WE* + bay, WB~ + dASy,
= min (Vy + dy,

VA, + dA1y, VA, + dA2y, VA, + dA3y,...,

VB~ + DB~Y, MjBg + DB~Y, M/Ba + DB~Y, ...),

where dAy means the minimum delay from input
of A’ to output of r’ or dy+dA and DBy means
the minimum delay from B’ output to I/ output
or DBY = min (diy) for all i connected to output
of B. Note that dgy E DBy+ dg.

By repeated substitution until we reach the
leftmost pseudo components {Fi} , we have,
WY= min (Uy+ dy,

uA, + dA,y, VA, + dApy, VA, + dAsy,--,

.
Primed copy

crossbar
switch

D-’ Li WLI

D- L;n

W
LIFJ

x

Unprlmed copy

D- Fn

Figure 5: A General Circuit to show that W value increases monotonically.

uB, + dBIY, UB, + d&y, UB, + dB8y,

UC, + dc,r> Ucp + dc,r, uc8 + dc,r,
.)

~FI + DF~Y, ujFz + DF~Y, wFa + DF~Y, . . .),
------- (0)

where {A;), {Bi’}, {C,‘} . . . {F/} are the
components reachable from f to the left and are
usually referred to as components in Y’s input
cone.

Since all inputs of the leftmost pseudo primed
components have the value of 00, WFi =

min(oo +dF,,UFi+dF,) = UFi+ dF,. We then
have
dr = min (Uy + dy,

uA, + dA1y, VA, + dA2y, VA, + dAsy,

uB, + dB, YP UB, + d&y, UB, + d&y,

UC, + dc,y, Ucn + dc,y, Ucr, + dc,y,

.)

uF, + dFly, UF, + dF2y, UF, + dFsy, . . .)-

NOW let Y be Li, a rightmost pseudo prime
component before crossbar switch, we have
w)Li = min (UL, + dL,,

‘A, + ‘AILi, ‘A, + dA2L,, ‘A, + ‘AsL,, ...)

uB, + dB,L,, UB, + d&L,, UB, + dBSL,,

UC, + dClLi, UC~ + dC*L,, ‘~3 + dc,L,, “*>
.)

uF, + dFIL,, UF, + dF2L,, UF, + dF3L,, . . .).
------- (1)

D Ll

D
L2

D
L3

D- Cm

Since the circuit is a connected graph, any pseudo
component y at least belongs to the input cone of
some Li, whose WL, will have a term Ux+dx-, in
the minimum expression (1) or itself is an Li),
whose ~~~ will have a term Ux+dx in the
minimum expression (1).

Now since between all primed L’s and unprimed
Fs there is a fully connected cross-bar switch with
minimum operators at the F side, the Wst
immediately after the switch for input k of Fi is
wSk = min(dL, + WLIF,, IyJL2 + WLeF,, tia +

WLaFi> ***P dL, + WL~F,), -------- (2)

where WL,F,, is the weight of the crossbar link or
precomputed minimum delay between real
simulation models Lj and Fi. Note that in
practice, many terms will be 00 and disappear in
the minimum expression (2) due to the lack of
static data dependency. Their corresponding links
also disappear in the crossbar switch.

Now for a pseudo unprimed component X, we
have an expression for X similar to expression (0).

W,y= min (Ux+ dx,
uA, + dA1x, uA, + dAZx, UAQ + dAsx, -..,

UB, + dB1x, uB2 + dBzx> uB, + dBsx> ...I

uq + dc,x, ucz + dc2x, uca + dc,x, .-.t

.)

wF1 + DF~x, WFa + DF~x, wF8 + DF~x, ...),
-------- (3)

106

where {Ai}, {Bi}, {Ci} . . . {Fi} are the
components in X’s input cone, and their events
will affect X without having to go through the
feedback arc set or without having to go through
the crossbar switch. For the components
indirectly affecting X through the crossbar switch,
they can be accounted for by substituting (1) (2)
and W,, ES min(UFi + dF,> ws, + dF,, ws, +

dF;t .-,) into (3). We then have
Wx=min(Ux+ dx,

uA, + dA,x, uA, + dAzx, VA, + dAsx, .--,

UB, + blxt UB, + dB2x, UB, + dBsx, --.,

ucl + dc,x, Uca + dcp.x, ucs + dc,x,
.)

uF1 + dF1x, uF2 + dFsx> UF, + dFsx> -.-I
,y,. + de"itchiX, for all components i not in

{Ak}u{B,}u{Ck}u...u{Fk} 1,

where d*wit”hix = min(di.tl + wLIF, + dFjX> diL*

+ WL2Fj + 'FIX, diL, + *LaFj + dFjx, d iL,

+ *&,,Fj + dF,x), for all i.

Note that all the terms in wz for component z’ in
the input cone of x’ do not appear in the above
expression (eliminated by the minimum operator),
since they are greater than the corresponding
terms in X’s input cone by the value of
min({ dXLi+ wL,Fj+ dF)Z}), for all i and all j.

The above can be rewritten as
Wx = min (Ux + dx, Uj + djx, for every
component j in X’s input cone, Ui + d*“i’chiX, for
each i not in X’s input cone.) -------- (4)

Expression (4) is a correct description of data
dependency of component X. In essence, it says
that model X’s output could have an event (value
change) at time no smaller than (a) the current
smallest unconsumed event time in its queue plus
delay of X, (b) the smallest of all of the current
unconsumed event time in queue Y of X’s input
cone component Y plus the delay from Y input to
X output, or (c) the smallest of all of the current
unconsumed event time in any other component Z
plus the delay from Z input to X output through
the feedback arc of the original circuit. That is,
any event in the event queue of any component
cannot reach (affect) component X with an
assertion time smaller than Wx. Therefore the it
is correct in stating that the output of X has been
defined up to WX time.

Lemma 1: Wx is the earliest time that X output
can change value.

We now show that the all Ws (not w’s)
increase monotonically. First we examine
expression (4) statically. Note that some Vi may
decrease due to receiving a new event. Let’s
examine only those cases since Vi going up will
not cause W value to decrease in expression (4).
Vi can decrease only because of another event
firing with a smaller assertion time, say Uj. Let
oij denotes the minimum delay between i and j,
that is, either dij or d*witchij. Consider the case
U;l* + ajx 1. Uf’* + CYiX* Since vew +CYiX = U!‘*
+ oji + oix 2 U;‘* + ojx (Inequality occurs when
J is in the input cones of both I and X but X is
not in I’s input cone,) expression (4) will not
decrease in value.
+ ff . > u@* +

Now considering the case Uf*

0 1 oix. Since Vi decreases in value,
,y?‘* > pm = jy’* + a . .

sides, we’ get U$
. By adding QiX at both

+ ol’h > U;‘* + (Y ji + O! ix
> U?‘* + ojx, which contradicts
assdmption for this case (impossible case).

to our

However, dynamically, if Uj is allowed to
change to a higher value right after finishing
simulating an event, we may have the traditional
“race” problem. A race problem can be explained
by the following case. Assuming Uf’* + ojx and
Qew + CyiX are the minimum terms of some Wx
expression before and after the event causing Uj
and Vi to change, and also assume yew + ojx >
vew + oix but qew + ojx < Uf’* + oix, which
implies Uj’* + ‘Yjx < Uf* + aixs Since the
information of Us are carried by Ws through W-
computation and W-propagation and since Ws are
computed concurrently in a distributed
environment, it is possible that component X
receives the effect of yew change before that of
U?“” if unrestricted W-propagation is allowed.
F& example, if component i is in component j’s
input cone, Wj computation may not use the
correct new Vi value if Uj is allowed to change
right away. This implies that Wx value will go
through a sequence of changes of Uj’* + (Yjx, yew

+ ajX, and wew + six. Since yew + “ix > veur

+ aiXf this represents a danger of decreasing W
value. However, because we restrict U update in
such a way that any changes of U value, after a
component finishes simulating an input event and
sending out possible output event, can only occur
after the corresponding W chain reaction dies
down by acknowledgement mechanism, the race
problem cannot happen. This insures that any Uj

107

in any W expression will be the old value until
uy is updated and propagated to all components
needing it for correct W (w’) computation.
Therefore we conclude that W values will not
decrease even though U values may decrease.

Lemma 2: All W values increase monotonically.

Since KS are defined as the minimum of some Ws,
K will increase monotonically if all Ws increase
monotonically.

Lemma 3: All K values increase monotonically.

This completes our proof of the following theorem.

Theorem 1: In YADDES, events are executed in
correct order.

3.2 Freedom from Deadlock

To prove YADDES is deadlock-free, we first
restate that W-computation in the data-flow
network can never deadlock as the network is
acyclic. We will now show that no deadlock can
happen in YADDES algorithm for circuits without
zero-delay cycles (loops). Loops with zero-delays
are uninteresting and unrealistic as any event may
traverse such a loop infinite times with no time
advances.

Lemma 4: For circuits without zero delay loops,
at any instant, at least one event with the
smallest assertion time in the entire simulation
system can be scheduled for simulation.

We prove this lemma by contractions. Assume
that deadlock occurs (no event can be scheduled)
during simulation and there are events El, E2, E3

“‘, E, sitting in the queues of models X1, Xz, Xs,

.-.7 X,, yet to be executed. Without loss of
generality, assume EC has the smallest assertion
time, which implies Ux, is smaller than Us, for all
j# i. By the definition of U and K a.nd model
operations in Figure 3, if Ei cannot be executed,
the K value of the model Xi must be smaller than
or equal to Ux; i.e.,

Kx, < u,, -------- (5).

By definition, Kx, value is the minimum of
all W values at the inputs of Xi, and,
consequently, the W values at the outputs of the

immediate fanin pseudo components { ri} are less
than Ux,. However, from expression (4), we know
that each WY, has a form of of the following,

WY] = min(Uxl+a~,,~,I ux2+~x2,Y),
Uxs+~x3,Yp “‘7 ux,+ax,,Y,’ ... ~x,+~x,,YJ

where CY~X-J, is either dXk, y, or dswitch
xk, Y, and is

a finite positive number.
Since each Vx, for all k# i > Ux,, and ox,, y, >0
(non-zero loop delay), we conclude that each WY

> ux, and therefore Kx, > Ux,, which
contradicts inequality (5).

For multiple events having the same smallest
assertion time, the above still hold true since at
least one WY, will have a term Uxm,, t,me +

ax nun-ttme. Yk 1 with the (Y term > 0 (otherwise we
have zero-delay loops.) Consequently, we have
shown that at any instant, at least one event with
the smallest assertion time in the entire system
will always be able to fire. This can be restated in
the following theorem.

Theorem 2: The YADDES algorithm is
deadlock-free.

3.3 Termination of Simulation

A simulation terminates for model X when
WX has a value of co, because Wx = oo means
no more events can come out of output of X. The
model X can then report end of-simulation.
When all Ws are equal to &, the entire
simulation process terminates. This condition is
good for non-oscillatory circuits, whose total
number of events is finite, as all Ws equal to 03
implies all Us are equal to 00, which in term
implies no events. For oscillatory circuits, we
modify the definition and say that a simulation
stops when all Ws are greater than a pre-
determined time - an observation period that a
user is interested in, as the circuit oscillates
forever. In either case, since Ws and Us increase
monotonically,. since a model simulation, a uni-
directional W-computation, and a message
transmission all take finite time, and since there
are only a finite number of models and a finite
number of events, the simulation will terminate in
finite time.

Theorem 3: Simulation using YADDES
algorithm terminates in finite time.

108

4. A Preliminary Implementation and
Discussions

4.1 An Implementation

The YADDES algorithm was implemented on
a message passing oriented hypercluster parallel
processor. The principal purpose of the
implementation was to verify the correctness of
the algorithm. In an experiment, a latch
constructed from two cross coupled NAND gates
was represented and simulated in the
implementation. The propagation delay for each
of the gates was chosen to be 500ns (nano-second)
with the consequence that the cumulative
propagation delay through the feedback loop was
1000ns. External transitions to be asserted at the
primary inputs of the latch were chosen such that
the latch would experience both stability and
oscillation. For the experiment, the number of
external transitions at both of the primary inputs
were varied from 1000 to 10000 and the CPU time
was measured for each case. In addition, three sets
of average time periods of the external signals
were selected -- 1000, 10000, and 100000, for the
experiment. The results of simulations are
expressed through the graphs in Figure 6a and
Figure 6b.

Figure 6a is a log-log graph where the Y-axis
represents the CPU time in seconds and the X-
axis the number of external transitions asserted at
the primary input ports. The three overlapping
graphs I, II, and III refer to the three scenarios
corresponding to the values 1, 10, and 100 of the
ratio -- average time period of external transitions
(T) to the cumulative propagation delay around
the loop (C di). Figure 6b expresses the same

results as ik Figure 6a except that the X-axis
represents different values of the ratio T/C di.

Figure 6c expresses the results of simulation 0; the
same circuit in the algorithm proposed in [7]. It
may be concluded from the graphs in Figures 6b
and 6c that the performance of the YADDES
algorithm is independent of the ratio T/C di and

t
is consequently free from the limitations of the
algorithm reported in [7].

4.2 Limitations of the Algorithm

We have shown that YADDES is a provably
correct, non-deadlocking conservative discrete
event algorithm and does not have the drawbacks

ti[pj/4if No. 0, ve;r,~l*ooo

1000 10000 1 10 100
No. of Vmetorm

rwio T/C di

1 2 10

Ratio T/xi 4

Figure 6: Performance Measurement of the Algorithm
for a Cross Coupled Nand Latch.

of null message methods or deadlock recovery
methods. A natural question to ask now is, “Is
this algorithm a solution for all asynchronous
discrete event simulation problems?“. Let’s first
examine the complexity involved with this
algorithm. The pseudo primed and unprimed
components consist of nothing more than a
variable w’ or W along with the W-computation
for each component. The data-flow network
structure, other than the crossbar switch, can in
practice share the network of the real simulation
models. Computation overhead involved in W-
computation is difficult to analyze without a good
implementation and thorough experiments.
However, we note that the W-computation can
overlap with model executions. If a model
execution is a non-trivial task, the simple W-
computation overhead is comparatively quite
small.

The major overhead is apparently the
crossbar switch. If a circuit has few loops
compared with the number of components, the
switch usually degenerates to a few

109

interconnections and is quite simple and efficient.
We expect low overhead and a good speedup for
this kind of applications. On the other hand, for
circuits with many more loops than components,
the switch approaches a full-fledged n2 crossbar
switch. In the extreme case, the data-flow
network becomes a fully connected crossbar
switch connecting two columns of all 12
components. The algorithm is then equivalent to
broadcasting any event changes to all other
components for computing the dynamic data
dependencies. This is clearly very inefficient as a
very large number of messages have to be
transmitted and processed. However, in these
cases, the problems themselves usually have very
complicated behavior and may not lend
themselves to parallel discrete event simulation.
In those cases, the above scenario may indeed be
the only way to obtain any lookahead information
for conservative simulation approaches. The
answer, therefore, really depends on the nature of
the problem domain. The amount of parallelism
available, the average percentage of components
changing values after model execution, and the
average degree of dependency are among the
factors that we have to consider before choosing
an appropriate asynchronous parallel algorithm.
Interested readers can refer to [lo] for more
information. However, we do believe that the
YADDES algorithm is an excellent choice for
problems suitable for conservative asynchronous
discrete event simulation.

5. Conclusion

This paper has presented an analytical proof
of correctness of YADDES algorithm. The proof
supports the claim that the algorithm is
deadlock-free. It also proves that the scheduling
is optimal in the sense that any model execution
further in time violates the data dependency. A
preliminary implementation of the algorithm
shows that the algorithm does not suffer the same
problem that a null message method has for cyclic
circuits with slowly changing external inputs.
Future researches include finding a class of
applications most suitable for the algorithm, the
average distance of W-computation and
propagation, and a hardware implementation of
W-computation network.

10

References

[l] M.-L. Yu, S. Ghosh, and E. DeBenedictis, “A
Non-Deadlocking Conservative Asynchronous
Distributed Discrete Event Simulation
Algorithm,” to appear in Proceedings of the 1991
Western Simulation Multiconference, Jan 23-25,
1991, Anaheim, CA.

[2] J. Misra, “Distributed Discrete-Event
Simulation,” Computing Surveys, Vol 18, No 1,
March 1986, pp.39-65.

PI D* Jefferson, “Virtual Time,” ACM
Transactions on Programming Languages, Wol 7,
No 3, July 1985, pp. 404-425.

[4] Y.-B. Lin, and E. D. Lazowska, “A Study of
Time Warp Rollback Mechanisms,” 1990
Distributed Simulation Conference.

[5] K.M. Chandy and J. Misra, “Asynchronous
Distributed Simulation via a Sequence of Parallel
Computations,” Communications of the ACM, Vol
24, No 4, April 1981, pp. 198-206.

[6] K.M. Chandy, L.M. Haas, and J. Misra,
“Distributed Deadlock Detection,” ACM
Transactions on Computer Systems, Vol 1, No. 2,
May 1983, pp. 144-156.

[7] S. Ghosh and M.-L. Yu, “An Asynchronous
Distributed Approach for the Simulation of
Behavior-Level Models on Parallel Processors,”
Proceedings of the 1988 International Conference
on Parallel Processing, August 15-19, 1988, St.
Charles, Illinois.

[8] D. A. Reed and A. Malony, “Parallel discrete
event simulation: The Chandy-Misra Approach”,
Proceedings of the SCS Multiconference on
Distributed Simulation, 3-5 February 1988, San
Diego, California, pp.8-13.

[9] N. Deo, “Graph Theory with Applications to
Engineering and Computer Science,” Prentice Hall
Inc. 1974.

[lo] Y.-B. Lin, and E. D. Lazowska, “Optimality
Considerations of “Time Warp” Parallel
Simulation,” 1990 Distributed Simulation

Conference.

[ll] P. L. Reiher, and D. Jefferson, “Limitation of
Optimism in the Time Warp Operating System,”
1989 Winter Simulation Conference, pp. 765-770.

[12] L. Soule, and A. Gupta, “Parallel
Distributed-Time Logic Simulation,” IEEE Design
& Test of Computers, December 1989, pp. 32-48.

111

