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Abstract 

This paper first summerizes and then 
presents a formal proof to a new conservative 
deadlock-free algorithm, YADDES [l], for 
asynchronous discrete event simulation. The 
proof not only makes the algorithm complete but 
helps us better understand the seemingly 
complicated algorithm. YADDES constructs a 
special acyclic data-flow network from the 
network of simulation models to keep track of the 
run time data dependencies, which permits a 
model to be correctly executed as far ahead in 
time as possible. The data-flow network also uses 
the asynchronous parallel discrete event driven 
technique and runs concurrently with the network 
of simulation models. This paper also reports a 
preliminary implementation of the algorithm and 
discusses the algorithm’s limitations. 

1. Introduction 

Discrete event simulation has been widely 
accepted as a more efficient simulation method 
than time-baaed simulation for simulating many 
physical systems with sparse activities such as 
digital circuit, queueing networks, telephone 
networks, and simulated warfare. In this paper, 
we will concentrate on discussions and examples of 
digital circuits as our physical processes. In 
discrete event simulation, a simulation model 
representing an entity of the circuit remains idle 
except when excited by an external stimulus. In 
addition, only changes in a model’s response are 
propagated to other models that are connected to 
its output. The changes are usually stored in an 
event queue according to their assertion times. 
However, this global data structure, event queue, 
as well as the concept of the monotonically 
increasing global time make it difficult to run 
discrete event simulation on a multiprocessor, 
where processors have limited resources and 

mechanisms to communicate with each other. 
Since it is generally accepted that a 
straightforward synchronous approach, which 
requires centralized control and resynchronization 
of all processors at the end of current activities to 
make all processors agree to the global time, does 
not scale well with large number of processors due 
to excessive overhead, most research efforts were 
made in the area of asynchronous distributed 
discrete event simulation. 
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Asynchronous distributed discrete event 
simulation studies usually start with a time-order 
preservation assumption. The assumption says 
that two events A and B, with B happens later 
than A, coming out of the same communication 
channel have to preserve their timing order, i.e., 
event B can only be received after event A. Most 
multiprocessor architectures support this 
assumption. Based on this assumption, in order 
to eliminate the need of a central event queue, a 
basic asynchronous discrete event simulation 
algorithm [2] q re uires that each model has its own 
queue(s). Whenever there is a change of model X’s 
output due to model execution, an event is sent to 
input port queues of all models connected to the 
model X’s output. To eliminate the need of global 
time, a basic asynchronous discrete event 
simulation algorithm requires that the assertion 
time is sent along with an event. In this manner, a 
component (simulation model) can be scheduled 
for simulation up to time T if each of its input 
ports has at least an event with time greater than 
or equal to T. However, the basic asynchronous 
discrete event algorithm is sometimes too 
conservative. For example, a particular input to a 
component may not have incoming events for an 
extended period of time, yet the component 
cannot simulate regardless how many events are 
queued at the other input ports of the component. 
This leads to the starvation problem which may 
cause performance degradation. For cyclic circuits, 
a more serious deadlock occurs when two or more 
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components await events from each other in order 
to continue the simulation. The conservative 
nature and the inability to determine whether the 
absence of information at an input port of a model 
means unchanged signal values or the incoming 
events yet to arrive cause the deadlock. 

Various approaches proposed to resolve the 
deadlock problem fall into two major categories 
depending on how the absence of information at 
an input port is interpreted. In the deadlock-free 
optimistic rollback approach [3][11], the absence 
of information is interpreted as an unchanged 
signal value. If a subsequent message contradicts 
this interpretation, the simulation system restores 
(rolls back) to a previous state by sending anti- 
messages. In the conservative Chandy-Misra 
approach [2][8][12], th e absence of information is 
interpreted as incoming events to arrive in the 
future. Techniques were designed to avoid or 
handle deadlocks associated with this 
interpretation. Since YADDES is a conservative 
approach, we will focus on the discussion of the 
conservative approach variations. Readers 
interested in the optimistic approach can read [4]. 

Two schools of thought are used to solve the 
deadlock problem. In the deadlock detection and 
recovery approach [2] [5] [6], the entire simulation 
system is permitted to execute until it results in a 
deadlock, i.e., when the entire simulation 
prematurely halts. The deadlock state can be 
detected by a distributed circular marker 
algorithm or by a time out mechanism [2] [6]. The 
recovery can then be done by distributed or 
centralized time information collection and restart 
control. However, the deadlock detection scheme 
fails for certain systems. For example, a system 
consisting of oscillatory components will never go 
into a complete deadlock state yet the non- 
oscillatory components of the system cannot 
execute due to local deadlocks. Besides, the 
potentially very high overhead for deadlock 
detection and recovery limits its applications. 

In the conservative deadlock-free null message 
method [2] [7], null messages are used to carry 
time information to avoid deadlock when a model 
simulation results in no output changes. Null 
messages are otherwise treated as normal events. 
Its principal limitation is its inefficiency in 
situations where an external signal to a cyclic 
circuit remains unchanged for extended time. For 
example, if the external inputs to an idle cyclic 

circuit do not change, say, for a million units of 
the total loop delay, a million useless null 
messages are generated and transmitted with this 
method. 

The above mentioned problems lead to the 
design of a new approach, YADDES[f], to avoid 
deadlocks. The next section summerizes the 
YADDES algorithm. Detailed examples and 
descriptions of the algorithm can be found in [l]. 

2. The YADDES Approach 

In this section, a new conservative approach 
YADDES is summerized. Instead of blindly 
generating null messages at a fixed interval, 
YADDES constructs an acyclic data-flow network 
from the original circuit for computing 
incremental changes of lookahead or “defined-up- 
to” information. Both the data-flow network 
computation and the model simulation employ the 
event driven technique and run concurrently. The 
“defined-up-to” information can be considered as 
optimal lookahead information, dynamic data 
dependency information, or intelligent null 
messages. This information guarantees that the 
simulation will never deadlock and each model can 
simulate as far ahead in time as permitted by the 
true data dependency at run time. It also says 
that any execution further in time may generate 
incorrect simulation results. The way to construct 
a data-flow network is described below. 

2.1 Data Network Construction - 
Preprocessing 

A circuit to be simulated is first preprocessed 
for constructing an acyclic data-flow network. 
The preprocessing consists of the following steps. 

Feedback Loops Removal 
All subcircuits that constitute cyclic directed 
graphs are first identified. Other entities of the 
system that constitute acyclic graphs are 
simulated as the basic asynchronous discrete 
event simulation. A feedback arc set (91 S = {El, 
E2, “‘7 E,} of a directed graph is then determined 
such that the graph becomes acyclic following the 
removal of all of the edges El through E,. While 
the size of this cut set affects the overall data-flow 
network complexity, this approach does not need 
to find a minimal feedback arc set which is an 
NP-complete problem. For each E; for all i E 
~1,2,..., n} in the original directed graph, a new 
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acyclic directed graph (reduced acyclic graph) is 
reconstructed by replacing E; with two edges l$’ 
and Eyt as illustrated in Figure 1. 

out 
ES 

Figure 1: Reducing a Cyclic Directed Graph 
to an Acyclic Directed Graph. 

Primed and Unprimed Reduced Acyclic 
Graphs 
A data-flow network is constructed by 
interconnecting two identical copies of the 
reduced acyclic graph side-by-side through a 
crossbar switch as shown in Figure 2. A 
component X of the left-hand side reduced acyclic 
graph is named pseudo primed component, 
labeled x’. A component X of the right-hand side 
reduced acyclic graph is named pseudo unprimed 
component, also labeled X The term “pseudo” is 
used to distinguish it from the real simulation 
models of the original circuit. Every input port of 
a pseudo primed component x’ that has a label of 
the form G”, where Ei was the feedback arc 
chosen to break the loop containing X, has a fixed 
value of oo . 

Crossbar Switch Construction 
An output port of every component x’ that has a 
label Ejout is linked to every input port of any 
pseudo unprimed component Y that has a label of 
the form E’;, for all k. These links form the 
crossbar switch. Every link between Ef”’ of a 
pseudo primed component x’ to an input port Ep 
of a pseudo unprimed component Y has a weight 

whose value is the minimum propagation delay 
from components X to Y in the original cyclic 
graph. If the component X may not affect Y at 
all, the weight is infinity and the link is 
considered non-existent. In addition, at the right 
hand side of the link, all the links coming out of 
the crossbar switch into a particular Ef’ is 
reduced to 1 by taking the minimum of all those 
incoming values. For the cyclic graph in Figure 
la, the corresponding data-flow network is shown 
in Figure 2. 

2.2 Definitions of Lookahead Variables 

Definition of U: Associated with every real 
simulation model X is an event list that contains 
the yet to be consumed events. Ux is defined to 
the the smallest time value of the events currently 
in the list. If the list is empty at an instant, the 
value of Ux is set to be 00 . AI1 Ux for all X are, 
therefore, initialized to 00 . 

Definition of W: The quantity Wx is 
associated with the output of a pseudo unprimed 
component X in the data-flow network. Wx = 
minimum( Ux+d, W,+d, W,+d,..., W,+d), 
where WI, W,, . . ..W. refers to the W value at the 
input ports l,...,n of X and “d” refers to 
component X’s propagation delay. The value of 
Wx for every X is initialized to 0 and simulation is 
complete when each Ux and Wx for all X in the 
system is at 00 . 

W, can be interpreted as the earliest possible 
time of the next message at the output of X. It 
implies that the output of the model X is defined 
up to t = WT;. Following the definition, we notice 
that W is defined recursively and that W can also 
be computed using discrete event technique. 
Changes of W or w’ are thus computed 
incrementally through the data-flow network and 
concurrently with the model simulation whenever 
there is a “defined-up-to” value change. Since the 
data-flow network is acyclic, the computation is 
straightforward, always goes from left to right, 
and is free from deadlock. 

Definition of W’: The quantity wx is 
associated with the output of the pseudo primed 
component x’ in the data-flow network. wx = 
minimum( Ux+d, d,+d, l&$+d,.., d=+d), where 
W@i, de,..., ti” refers to the w’ values at the input 
ports l,...,n of x’ and “d” refers to X’s 
propagation delay. It represents an intermediate 
value in the computation of Ws and may be 
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Figure 2: Data-Flow Network Constructed for Cyclic Circuit in Figure la. 

understood as an optimistic estimate of next 
message time at the output of simulation model X. 

Definition of K: The quantity Kx is 
associated with the real simulation model X. Kx 
E minimum of ( Wi}, for all input port i of X. 

Given the data-flow network and above 
definitions, the simulation system would consist of 
two elements, real simulation models, and the 
data-flow network along with its Ws and w’s. 
The interactions of these two elements in the 
simulation process go as follows. A real 
simulation model X is excited by signal transition 
messages received at its input ports. It then 
queries the data-flow network by supplying 
information of the smallest time (U) in its current 
event queue. The data-flow network computes 
and replies with the information of “defined-up- 
to” (Ws) for each input port. An event in 
component X’s event queue can then be executed 
if its event time is smaller than the smallest 
“defined-up-to” (K) among all the input ports, 
regardless whether every input port has received 
an event or not. 

2.3 Algorithm - Simulation and 
Lookahead Variables Computation 

The YADDES algorithm is described in 
Figure 3 and Figure 4. The dynamics of the 
simulation system can be summerized as follows. 

When a signal transition is asserted at an input 
port of real simulation model X, it may alter the U 
value of X or leave it unchanged. In case the U 
value is altered as a consequence of the incoming 
signal transition (which has a smaller event time), 
the simulation model X initiates the pseudo 
primed components x’ of the data-flow network 
for W-computation and waits for 
acknowledgement from k. x’ computes dx and if 
its value is unchanged, an acknowledgement signal 
is sent back to the real simulation model X. If the 
new value of wx is different, x’ initiates a chain 
reaction i.e., it propagates the new v,v value to 
every pseudo component r’ connecting to its 
output port and waits for acknowledgements from 
each of those pseudo components. Every 
subsequent pseudo component, f/, then repeats 
this process. This chain process of computation 
and propagation of new w’ or W continues until 
the driving force i.e., a change in the value of w’ 
or W at the output of a pseudo component, dies 
out or when the change may not propagate any 
further at the rightmost primed pseudo 
components. Since the data-flow network is 
acyclic and bounded in size, the event driven W- 
computation is guaranteed to terminate in finite 
bounded time. Upon receiving all 
acknowledgements later on, the pseudo 
component r’ then sends an acknowledgement 
back to x’ and 2 will send an acknowledgement 
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Real simulation model X: 
loop forever { 

if (K > U) { /* model execute */ 
execute simulation model and generate output signal; 
if (output signal changed) { 

send output event to all models in the fanout; 
wait till acknowledgement signals received from event receivers; 

1 
update event queue and consequently new U value; 
initiate pseudo component X’ to update Ws, w’s; 
/* No acknowledgements are needed but acknowledgements */ 
/* may still be used for ease of implementation. */ 

> 
read in events at input ports /* input events */ 
if (there is a new event) { 

update event queue and order events according to time; 
if (new event alters U value) { 

initiate pseudo components X’ to update Ws, w’s; 
wait till an acknowledgement received from X’; 

> 
send an acknowledgements back to the event sender; 
compute K = minimum of all W values at input ports of model X; 

1 
I 

Figure 3: Operations of a Simulation Model X. 

back to the real simulation model X when all the 
acknowledgements are received to indicate the 
termination of W-computation. The real 
simulation model X can now acknowledge the 
event originator, which can now and only now 
change its U value. 

The real simulation model X accesses the W 
values of each of its input ports and computes the 
minimum value Kx. If Kx is larger than Ux, the 
model X may be executed for the event 
corresponding to the U value. In case no new 
signals are generated at the output port of X, the 
event corresponding to the current U is removed 
from the event queue and the new value of U 
reflects the currently known next event time in 
the queue. If the queue is empty, U is set to 
infinity. If a signal transition is generated at an 
output port as a consequence of execution of the 
simulation model X, an event is sent to every 
simulation model connected to the output of X. 
The real simulation model X waits for 
acknowledgements coming back and then the 
event corresponding to the current U value is 
removed from the event queue and the value of U 
is updated. 
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3. Proof of Correctness of the Algorithm 

The proof of correctness of YADDES 
algorithm requires proofs of the execution of 
events in the correct order, the absence of 
deadlock, and the termination of simulation. 
Since the basic asynchronous discrete event 
simulation, whose correctness was proved in [2], is 
used as the backbone of YADDES, we will only 
show the proof of critical parts unique to the 
YADDES algorithm. 

3.1 Execution of Events in the Correct 
Order 

Consider that two events El and E2 with 
assertion times t = t, and t = ts(ts > tr) 
respectively are sent by a simulation model X. The 
time-order preservation assumption says that 
where X sends El and E2 at real time t = ts and t 
= t4 (t4 > ts) respectively to the same receiver, 
the receiver is guaranteed to receive El prior to 
Ez. Based on this assumption and definitions of 
Us and KS, to prove the event executions in 
correct order, we only need to show that all KS 
increase monotonically such that no two events 
can be executed in reverse order. 



Pseudo Component X’ (or X): 
/* An implementation uses acknowledgements for all W-computation */ 

loop forever { 
read in command from real simulation model X (for x’ only), 

new W’ (or W) value from left, and acknowledgements from right; 

if (command from model X is update-w) { 
compute W’ ; 
if (W’ value remains unchanged) { 

send an acknowledgement signal back to model X; 

1 
if (W’ computes to a new value) { 

propagate new W’(W) value and wait for acknowledgements from the receivers; 

if (new W’ (W) value at input is read) { 
compute the output W’ (W) value; 
if (output W’ (W) value is unchanged) then 

send an acknowledgement back to sender; 
else if (output W’ (W) value is changed) { 

propagate new W’(W) 1 va ue and wait for acknowledgements from the receivers; 

1 
1 
if (all acknowledgements are back from each receiver) { 

if (acknowledgement is for itself) send done signal to simulation model X; 
if (acknowledgement is not for itself) relay it towards the original requester; 

1 

Figure 4: Operations of a Pseudo Component x’ (Primed) or X (Unprimed). 

We will first prove that IV, indeed represents 
the define-up-to information, that is, no events 
can come out of X with assertion time smaller 
than Wx. Let’s consider a general circuit with 
feedback whose data-flow network is shown in 
Figure 5. For simplicity, assume all external input 
events have already been inserted in the proper 
event queues and all U values have already 
accounted for them. 

For any pseudo primed component p/, by 
definition, 
VY = min (VY + dy, d~r + dr, MiAz + dy, 
was + dy, . . . ), where each Ai, for all i, is a fanin 
component of 1/. 

Also by definition, wa, = min (WA, + dA,, M/B, 
+ dAi, MjB2 + dA,, wgs + dA,, . . . ), where each 
Bj, for all j, is a fanin component of Ai’. 

By substitution, we have 
wy = min (V, + dy, 

uA, + dAly, uA, + dAZy, VA, + dAsy, -.., 
I# ~~ + dAlyI U~B~ + dAIY, ~~~ + dA1y, . ..t 

~BI + d&y, ~~~ + dA2y, tin, + dA2y, -.., 

~BI + dAay, WE* + bay, WB~ + dASy, . . . . 
= min (Vy + dy, 

VA, + dA1y, VA, + dA2y, VA, + dA3y,..., 

VB~ + DB~Y, MjBg + DB~Y, M/Ba + DB~Y, ... ), 

where dAy means the minimum delay from input 
of A’ to output of r’ or dy+dA and DBy means 
the minimum delay from B’ output to I/ output 
or DBY = min (diy) for all i connected to output 
of B. Note that dgy E DBy+ dg. 

By repeated substitution until we reach the 
leftmost pseudo components {Fi} , we have, 
WY= min (Uy+ dy, 

uA, + dA,y, VA, + dApy, VA, + dAsy,--, 
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Figure 5: A General Circuit to show that W value increases monotonically. 

uB, + dBIY, UB, + d&y, UB, + dB8y, . . . . 

UC, + dc,r> Ucp + dc,r, uc8 + dc,r, . . . . 
. . . . . . ) 

~FI + DF~Y, ujFz + DF~Y, wFa + DF~Y, . . . ), 
------- (0) 

where {A;), {Bi’}, {C,‘} . . . {F/} are the 
components reachable from f to the left and are 
usually referred to as components in Y’s input 
cone. 

Since all inputs of the leftmost pseudo primed 
components have the value of 00, WFi = 

min(oo +dF,,UFi+dF,) = UFi+ dF,. We then 
have 
dr = min (Uy + dy, 

uA, + dA1y, VA, + dA2y, VA, + dAsy, . . . . 

uB, + dB, YP UB, + d&y, UB, + d&y, . . . . 

UC, + dc,y, Ucn + dc,y, Ucr, + dc,y, . . . . 

. . . . . . ) 

uF, + dFly, UF, + dF2y, UF, + dFsy, . . . )- 

NOW let Y be Li, a rightmost pseudo prime 
component before crossbar switch, we have 
w)Li = min (UL, + dL,, 

‘A, + ‘AILi, ‘A, + dA2L,, ‘A, + ‘AsL,, ...) 

uB, + dB,L,, UB, + d&L,, UB, + dBSL,, . . . . 

UC, + dClLi, UC~ + dC*L,, ‘~3 + dc,L,, “*> 
. . . . . . ) 

uF, + dFIL,, UF, + dF2L,, UF, + dF3L,, . . . ). 
------- (1) 

D Ll 

D 
L2 

D 
L3 

D- Cm 

Since the circuit is a connected graph, any pseudo 
component y at least belongs to the input cone of 
some Li, whose WL, will have a term Ux+dx-, in 
the minimum expression (1) or itself is an Li), 
whose ~~~ will have a term Ux+dx in the 
minimum expression (1). 

Now since between all primed L’s and unprimed 
Fs there is a fully connected cross-bar switch with 
minimum operators at the F side, the Wst 
immediately after the switch for input k of Fi is 
wSk = min(dL, + WLIF,, IyJL2 + WLeF,, tia + 

WLaFi> ***P dL, + WL~F,), -------- (2) 

where WL,F,, is the weight of the crossbar link or 
precomputed minimum delay between real 
simulation models Lj and Fi. Note that in 
practice, many terms will be 00 and disappear in 
the minimum expression (2) due to the lack of 
static data dependency. Their corresponding links 
also disappear in the crossbar switch. 

Now for a pseudo unprimed component X, we 
have an expression for X similar to expression (0). 

W,y= min (Ux+ dx, 
uA, + dA1x, uA, + dAZx, UAQ + dAsx, -.., 

UB, + dB1x, uB2 + dBzx> uB, + dBsx> ...I 

uq + dc,x, ucz + dc2x, uca + dc,x, .-.t 

. . . . . . ) 

wF1 + DF~x, WFa + DF~x, wF8 + DF~x, ... ), 
-------- (3) 
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where {Ai}, {Bi}, {Ci} . . . {Fi} are the 
components in X’s input cone, and their events 
will affect X without having to go through the 
feedback arc set or without having to go through 
the crossbar switch. For the components 
indirectly affecting X through the crossbar switch, 
they can be accounted for by substituting (1) (2) 
and W,, ES min( UFi + dF,> ws, + dF,, ws, + 

dF;t .-,) into (3). We then have 
Wx=min(Ux+ dx, 

uA, + dA,x, uA, + dAzx, VA, + dAsx, .--, 

UB, + blxt UB, + dB2x, UB, + dBsx, --., 

ucl + dc,x, Uca + dcp.x, ucs + dc,x, . . . . 
. . . . . . ) 

uF1 + dF1x, uF2 + dFsx> UF, + dFsx> -.-I 
,y,. + de"itchiX, for all components i not in 

{Ak}u{B,}u{Ck}u...u{Fk} 1, 

where d*wit”hix = min( di.tl + wLIF, + dFjX> diL* 

+ WL2Fj + 'FIX, diL, + *LaFj + dFjx, . . . . . . . d iL, 

+ *&,,Fj + dF,x), for all i. 

Note that all the terms in wz for component z’ in 
the input cone of x’ do not appear in the above 
expression (eliminated by the minimum operator), 
since they are greater than the corresponding 
terms in X’s input cone by the value of 
min({ dXLi+ wL,Fj+ dF)Z}), for all i and all j. 

The above can be rewritten as 
Wx = min (Ux + dx, Uj + djx, for every 
component j in X’s input cone, Ui + d*“i’chiX, for 
each i not in X’s input cone.) -------- (4) 

Expression (4) is a correct description of data 
dependency of component X. In essence, it says 
that model X’s output could have an event (value 
change) at time no smaller than (a) the current 
smallest unconsumed event time in its queue plus 
delay of X, (b) the smallest of all of the current 
unconsumed event time in queue Y of X’s input 
cone component Y plus the delay from Y input to 
X output, or (c) the smallest of all of the current 
unconsumed event time in any other component Z 
plus the delay from Z input to X output through 
the feedback arc of the original circuit. That is, 
any event in the event queue of any component 
cannot reach (affect) component X with an 
assertion time smaller than Wx. Therefore the it 
is correct in stating that the output of X has been 
defined up to WX time. 

Lemma 1: Wx is the earliest time that X output 
can change value. 

We now show that the all Ws (not w’s) 
increase monotonically. First we examine 
expression (4) statically. Note that some Vi may 
decrease due to receiving a new event. Let’s 
examine only those cases since Vi going up will 
not cause W value to decrease in expression (4). 
Vi can decrease only because of another event 
firing with a smaller assertion time, say Uj. Let 
oij denotes the minimum delay between i and j, 
that is, either dij or d*witchij. Consider the case 
U;l* + ajx 1. Uf’* + CYiX* Since vew +CYiX = U!‘* 
+ oji + oix 2 U;‘* + ojx (Inequality occurs when 
J is in the input cones of both I and X but X is 
not in I’s input cone,) expression (4) will not 
decrease in value. 
+ ff . > u@* + 

Now considering the case Uf* 

0 1 oix. Since Vi decreases in value, 
,y?‘* > pm = jy’* + a . . 

sides, we’ get U$ 
. By adding QiX at both 

+ ol’h > U;‘* + (Y ji + O! ix 
> U?‘* + ojx, which contradicts 
assdmption for this case (impossible case). 

to our 

However, dynamically, if Uj is allowed to 
change to a higher value right after finishing 
simulating an event, we may have the traditional 
“race” problem. A race problem can be explained 
by the following case. Assuming Uf’* + ojx and 
Qew + CyiX are the minimum terms of some Wx 
expression before and after the event causing Uj 
and Vi to change, and also assume yew + ojx > 
vew + oix but qew + ojx < Uf’* + oix, which 
implies Uj’* + ‘Yjx < Uf* + aixs Since the 
information of Us are carried by Ws through W- 
computation and W-propagation and since Ws are 
computed concurrently in a distributed 
environment, it is possible that component X 
receives the effect of yew change before that of 
U?“” if unrestricted W-propagation is allowed. 
F& example, if component i is in component j’s 
input cone, Wj computation may not use the 
correct new Vi value if Uj is allowed to change 
right away. This implies that Wx value will go 
through a sequence of changes of Uj’* + (Yjx, yew 

+ ajX, and wew + six. Since yew + “ix > veur 

+ aiXf this represents a danger of decreasing W 
value. However, because we restrict U update in 
such a way that any changes of U value, after a 
component finishes simulating an input event and 
sending out possible output event, can only occur 
after the corresponding W chain reaction dies 
down by acknowledgement mechanism, the race 
problem cannot happen. This insures that any Uj 
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in any W expression will be the old value until 
uy is updated and propagated to all components 
needing it for correct W (w’) computation. 
Therefore we conclude that W values will not 
decrease even though U values may decrease. 

Lemma 2: All W values increase monotonically. 

Since KS are defined as the minimum of some Ws, 
K will increase monotonically if all Ws increase 
monotonically. 

Lemma 3: All K values increase monotonically. 

This completes our proof of the following theorem. 

Theorem 1: In YADDES, events are executed in 
correct order. 

3.2 Freedom from Deadlock 

To prove YADDES is deadlock-free, we first 
restate that W-computation in the data-flow 
network can never deadlock as the network is 
acyclic. We will now show that no deadlock can 
happen in YADDES algorithm for circuits without 
zero-delay cycles (loops). Loops with zero-delays 
are uninteresting and unrealistic as any event may 
traverse such a loop infinite times with no time 
advances. 

Lemma 4: For circuits without zero delay loops, 
at any instant, at least one event with the 
smallest assertion time in the entire simulation 
system can be scheduled for simulation. 

We prove this lemma by contractions. Assume 
that deadlock occurs (no event can be scheduled) 
during simulation and there are events El, E2, E3 

“‘, E, sitting in the queues of models X1, Xz, Xs, 

.-.7 X,, yet to be executed. Without loss of 
generality, assume EC has the smallest assertion 
time, which implies Ux, is smaller than Us, for all 
j# i. By the definition of U and K a.nd model 
operations in Figure 3, if Ei cannot be executed, 
the K value of the model Xi must be smaller than 
or equal to Ux; i.e., 

Kx, < u,, -------- (5). 

By definition, Kx, value is the minimum of 
all W values at the inputs of Xi, and, 
consequently, the W values at the outputs of the 

immediate fanin pseudo components { ri} are less 
than Ux,. However, from expression (4), we know 
that each WY, has a form of of the following, 

WY] = min(Uxl+a~,,~,I ux2+~x2,Y), 
Uxs+~x3,Yp “‘7 ux,+ax,,Y,’ ... ~x,+~x,,YJ 

where CY~X-J, is either dXk, y, or dswitch 
xk, Y, and is 

a finite positive number. 
Since each Vx, for all k# i > Ux,, and ox,, y, >0 
(non-zero loop delay), we conclude that each WY 

> ux, and therefore Kx, > Ux,, which 
contradicts inequality (5). 

For multiple events having the same smallest 
assertion time, the above still hold true since at 
least one WY, will have a term Uxm,, t,me + 

ax nun-ttme. Yk 1 with the (Y term > 0 (otherwise we 
have zero-delay loops.) Consequently, we have 
shown that at any instant, at least one event with 
the smallest assertion time in the entire system 
will always be able to fire. This can be restated in 
the following theorem. 

Theorem 2: The YADDES algorithm is 
deadlock-free. 

3.3 Termination of Simulation 

A simulation terminates for model X when 
WX has a value of co, because Wx = oo means 
no more events can come out of output of X. The 
model X can then report end of-simulation. 
When all Ws are equal to &, the entire 
simulation process terminates. This condition is 
good for non-oscillatory circuits, whose total 
number of events is finite, as all Ws equal to 03 
implies all Us are equal to 00, which in term 
implies no events. For oscillatory circuits, we 
modify the definition and say that a simulation 
stops when all Ws are greater than a pre- 
determined time - an observation period that a 
user is interested in, as the circuit oscillates 
forever. In either case, since Ws and Us increase 
monotonically,. since a model simulation, a uni- 
directional W-computation, and a message 
transmission all take finite time, and since there 
are only a finite number of models and a finite 
number of events, the simulation will terminate in 
finite time. 

Theorem 3: Simulation using YADDES 
algorithm terminates in finite time. 
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4. A Preliminary Implementation and 
Discussions 

4.1 An Implementation 

The YADDES algorithm was implemented on 
a message passing oriented hypercluster parallel 
processor. The principal purpose of the 
implementation was to verify the correctness of 
the algorithm. In an experiment, a latch 
constructed from two cross coupled NAND gates 
was represented and simulated in the 
implementation. The propagation delay for each 
of the gates was chosen to be 500ns (nano-second) 
with the consequence that the cumulative 
propagation delay through the feedback loop was 
1000ns. External transitions to be asserted at the 
primary inputs of the latch were chosen such that 
the latch would experience both stability and 
oscillation. For the experiment, the number of 
external transitions at both of the primary inputs 
were varied from 1000 to 10000 and the CPU time 
was measured for each case. In addition, three sets 
of average time periods of the external signals 
were selected -- 1000, 10000, and 100000, for the 
experiment. The results of simulations are 
expressed through the graphs in Figure 6a and 
Figure 6b. 

Figure 6a is a log-log graph where the Y-axis 
represents the CPU time in seconds and the X- 
axis the number of external transitions asserted at 
the primary input ports. The three overlapping 
graphs I, II, and III refer to the three scenarios 
corresponding to the values 1, 10, and 100 of the 
ratio -- average time period of external transitions 
(T) to the cumulative propagation delay around 
the loop (C di). Figure 6b expresses the same 

results as ik Figure 6a except that the X-axis 
represents different values of the ratio T/C di. 

Figure 6c expresses the results of simulation 0; the 
same circuit in the algorithm proposed in [7]. It 
may be concluded from the graphs in Figures 6b 
and 6c that the performance of the YADDES 
algorithm is independent of the ratio T/C di and 

t 
is consequently free from the limitations of the 
algorithm reported in [7]. 

4.2 Limitations of the Algorithm 

We have shown that YADDES is a provably 
correct, non-deadlocking conservative discrete 
event algorithm and does not have the drawbacks 

ti[pj/4if No. 0, ve;r,~l*ooo 

1000 10000 1 10 100 
No. of Vmetorm 

rwio T/C di 

1 2 10 

Ratio T/xi 4 

Figure 6: Performance Measurement of the Algorithm 
for a Cross Coupled Nand Latch. 

of null message methods or deadlock recovery 
methods. A natural question to ask now is, “Is 
this algorithm a solution for all asynchronous 
discrete event simulation problems?“. Let’s first 
examine the complexity involved with this 
algorithm. The pseudo primed and unprimed 
components consist of nothing more than a 
variable w’ or W along with the W-computation 
for each component. The data-flow network 
structure, other than the crossbar switch, can in 
practice share the network of the real simulation 
models. Computation overhead involved in W- 
computation is difficult to analyze without a good 
implementation and thorough experiments. 
However, we note that the W-computation can 
overlap with model executions. If a model 
execution is a non-trivial task, the simple W- 
computation overhead is comparatively quite 
small. 

The major overhead is apparently the 
crossbar switch. If a circuit has few loops 
compared with the number of components, the 
switch usually degenerates to a few 
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interconnections and is quite simple and efficient. 
We expect low overhead and a good speedup for 
this kind of applications. On the other hand, for 
circuits with many more loops than components, 
the switch approaches a full-fledged n2 crossbar 
switch. In the extreme case, the data-flow 
network becomes a fully connected crossbar 
switch connecting two columns of all 12 
components. The algorithm is then equivalent to 
broadcasting any event changes to all other 
components for computing the dynamic data 
dependencies. This is clearly very inefficient as a 
very large number of messages have to be 
transmitted and processed. However, in these 
cases, the problems themselves usually have very 
complicated behavior and may not lend 
themselves to parallel discrete event simulation. 
In those cases, the above scenario may indeed be 
the only way to obtain any lookahead information 
for conservative simulation approaches. The 
answer, therefore, really depends on the nature of 
the problem domain. The amount of parallelism 
available, the average percentage of components 
changing values after model execution, and the 
average degree of dependency are among the 
factors that we have to consider before choosing 
an appropriate asynchronous parallel algorithm. 
Interested readers can refer to [lo] for more 
information. However, we do believe that the 
YADDES algorithm is an excellent choice for 
problems suitable for conservative asynchronous 
discrete event simulation. 

5. Conclusion 

This paper has presented an analytical proof 
of correctness of YADDES algorithm. The proof 
supports the claim that the algorithm is 
deadlock-free. It also proves that the scheduling 
is optimal in the sense that any model execution 
further in time violates the data dependency. A 
preliminary implementation of the algorithm 
shows that the algorithm does not suffer the same 
problem that a null message method has for cyclic 
circuits with slowly changing external inputs. 
Future researches include finding a class of 
applications most suitable for the algorithm, the 
average distance of W-computation and 
propagation, and a hardware implementation of 
W-computation network. 
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