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ABSTRACT 

The idea of the Oblivious Transfer, developed by Rabin, has been shown to have impor- 

tant applications in cryptography. M. Fischer pointed out that Rabin's original implementation 

of the Oblivious Transfer was not shown to be secure. Since then it has been an open problem to 

find a provably secure implementation. We present an implementation which we believe will 

simplify the development of secure cryptographic protocols. Our protocol is provably secure 

under the assumptions that factoring is hard and that the message is chosen at random from a 

large message space. 

(1) Research uponsored in part by DARPA gnnt  N0003EC-023E!3-83 and GTE fellowship 
(2) Research sponsored in part by NSF grant MCS-82-04506 

T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT '84, LNCS 209, pp. 379-386, 1985. 
0 Springer-Verlag Berlin Heidelberg 1985 



380 

1. Introduction 

An Oblivious Transfer protocol (O.T.) is defined as a transfer of information from one party (Alice) to another 

(Bob) with the following properties: 

1 
2 

1. Bob has a chance of - of obtaining a message M. 

2. The probability that  Alice correctly guesses whether or not 
1 
2 

Bob obtained M is -. 

The following implementation of O.T., based on the aseumption that factoring is hard, waa proposed by Rabin.' 
The message M is composed of two large primes p and q. 

&bin's ObIivlous Transfer Protocol 

step 1: Alice sends Bob N = pq. 

step 2: Bob chooses a random number r E Z N  and sends z2 mod N to Alice. 

step 3 Alice sends u to Bob where u is a square root of I* mod N. 

A quadratic residue z2 mod N has exactly four square roots. Distinct roots x, y such that z # -y (mod N) are 

called fuin roots of 2'. Given twin roots of I*, it is possible to eficiently factor N (since GCD(r + y , N  # 1). If 
1 Bob and Alice follow the protocol, Bob has a chance of - of obtaining twin roots of t2, thus factoring N (obtain- 
2 

ing p and 9). 

The following problem with Rabin's protocol has not been mlved:* 

It is conceiuabLe that Bob has a routine P which 
chooaea a quadratic residue r mod N such 
that given any root of r Bob can factor N. 

If Bob has P then he will always be able to factor N. 

We present an O.T. protocol which is provably m u r e .  In addition, our protocol can be ueed to send many messages 

under the same modulus N without compromising N's factorization. In applications of the O.T. it is important for 

Alice and Bob to obtain receipts so that a third party (i.e. a judge) can tell from these receipts whether or not Bob 

obtained M. The following problem arises: 

Once Bob has obtained the message, how can we 

ge originally sent to A c e ?  For example, if Bob 
obtains the factpization or N, he can lie about 
which root of r modN he originally had. 

revent him from lyin about the mformatioa that 

The only solution we know of for this problem in Rabia's protocol is as follows: 

At step 2 Bob sends z2 = f (d)' mod N, where f is a one-way function and d is randomly chosen from the 

domain of f . Then, after the protocol, Bob can prove to a judge that he knew I = j ( d )  by displaying d = f-'(z). 

Using one-way functions is clearly undesirable since the protocol cannot then be proven secure. In our protocol, the 

factorization of the modulus is never revealed. This makes it possible to solve the problem above without using 
one-way functions. 
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2. Terminology and Axlonu. 

Definition: A number N = p q ,  where p = q = 3 mod 4 are distinct prima, and l l o g ( E ) [  < 2 is called a Brum 

int eger. 

Assumption 1 (about the model of computation) We assume Alice and Bob have computational power equivalent to a 

poly-time probabilistic Turing Machine (PTM). 

Assumption 2 (Factoring Blum integers w hard): Let  M be a poly-time PTM Let pI be the probability that M fac- 

tors a random n-bit Blum integer. Then p,+O as n-coo. 

Assumption 3 (about the message apace): Every positive integer < N is a valid message. However, Ebb knows that 

the message M is drawn with a uniform probability distribution from a space of possible messages, MS, of size 

2 aN for a fixed constant 0 < a < 1. MS is the set of integers in 2, which have a non-zero probability of being 

9 

chosen by Alice. 

Definition: The length of a protocol is the total number of bits transferred between the parties in the protocoi. 

Definition: Whenever the set of possible messages is finite, it is very hard to guarantee that Bob will obtain the 

message with probability exactly -. This is true even if we assume that both parties follow the pro tao l ,  since Bob 

has a positive probability of simply guessing the message. Instead, we achieve probabilities which deviate by an 

arbitrarily small c from -. We call this c the bias of the implementation. 

Definition: (In an 0.T implementation with bias c ) Alice cheote Bob if, when Bob follows the protocol, Alice, by 

deviating from the protocol, is able to: 

1 
2 

1 
2 

1 i) determine with probability > - + t whether or not Bob obtained M or 
2 

ii) diminish Bob’s chances of obtaining M to less than - - c. 1 
2 

Definition: (In an O.T. implementation with bias c )  Bob cheats Alice if, when Alice follows the protocol, Bob, by 

deviating from the protocol, is able to obtain M with probability > 
Definition: An implementation of O.T. in which it is not possible for either Bob or Alice to cheat is called secure. 

Given this terminology our goal is to describe an implementation of the O.T. with arbitrarily small bias. 

+ c. 
2 
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a. A Provably Secure Obl lv lour  Tranrfer Protocol. 

Step 1: Alice sends a random n-bit Blum inte er N, to Bob. 

Step 2: Alice convinces Bob that  N is a Blum integer except for the 

Alice knows the factorization of N, b u t h b  does not. 

fact that and q might be raised to odd powers. 
(See proof of theorem 4) 

sends E mod N to Alice. 
Step 3: Bob cJmoses a random integer ~ € 2 ,  and 

Step 4: Alice sends 3.f mod N, where M is her private message; 

; and a random root UI of P z z  mod N to Bob. 

(At this po'nt tbe message is defined to be the unique root of fl mod N 
less than - and with Jacobi symbol b.} h 

2 
W 2  

z2 
Step 5 :  To insure that  w is not junk, Bob verifies that - = bf (mod N). 

Then, if Jacobi symbol = b, Bob has the message. 

Using well known number theoretical algorithms all computations required by the protocol can be done in polyno- 

mial time in n. 

4. The protocol work8 when both parties follow the protocol. 

First we show that, after step 4, Bob cannot tactor N. For simplicity we ignore the Jacobi symbol - since i t  is 

clear that it does not help Bob factor N. 

Kl 
We think of Bob as a p ly- t ime PTM B with oracle A (Alice). Oracle A takes as input a pair (N,z2)  where N is an 
n-bit Blum integer and z2 is a quadratic residue in ZN and returns a random root of P z 2  where M is a random ele- 

ment in MS. The input to B is an n-bit Blum integer N. B contains a routine P(N) which returns a pair ( 2 , ~ ' )  

where z € Z N .  B is allowed to make one call A(N,z*) to A provided z2 was genented by P,  i.e. provided Bob knows 

a root of 2. 

T h e o r e m  1: 

Let $J. be the probability tba t  B factors N given that N is a random n-bit Blum integer. Then $"+O as n - a .  

Proof Construct a PTM B'""' = follows: 

INPUT: an n-bit Blum integer N. 

g l m o " :  simulate B on input N until B makes the call A(N,a?); 
generate a random element M in ZN; 
assume A(?,.*) returns h4x; 
continue sunulating B. 

By assumption 3, the probability that  M is in MS is a. Given that M is in MS the probability tba t  f Mx geki 

1 1 chosen as a root of @z2 is -. Thus the probability pn that B5"'"' factors N is 2 -Q$*. But B'""' is a p l y -  
2. 2 

time PTM and so, by assumption ?, p.+O.  This implies $"+O .~ 
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Theorem 2: 

Assume botb parties follow the protocol. Let p. be the probability that Bob obtains M. Then p"-+- as n+m. 

Proof: The roots of z2hf mod N are f xM. and f XL where L, M are twin mob of fl mod N. The probabiliw 

that Alice sends f xM is -. Thus pI 2 -. 

Let El be tbe event that Bob factors N. Let pro6(El) = $". Assume for simplicity that, given twin r w t s  of 

fl mod N, Bob can factor N in 0 steps. Let Ez be the event that Bob obtains M. Then 

1 
2 

1 1 
2 2 

Pn = p 4 E , )  
= prob(EZJ  El)*pro6(EI) + pro6(E21 --El)*pro6(-.El) 
- c prob(E,) f prob(E2 I --El) 
I qn + prob(EZ I -Ed 

N Now, given -El, Bob can obtain a t  most one root of MZ less tbsn - 
2 '  

sends f x M .  The probability of this event is - 
2 .  

p. = pr06(EZ) 5 2 + +" -+ 

Thus he will obtain M if and only if Alice 

Thus pro6(E2 I -El) = - which implies 1 
2 '  

1 1 by theorem 1 .v 

Theorem 3: 

Assume both parties follow the protocol. Let N be an n-bit Blum integer. Let p. be the probability that Alice 

correctly guesses whether or not Bob obtained M. Then p. - - as n --L 00. 

Proof Let $" be the probability that Bob factors N. If Alice guesses that Bob obtained M, then she is right if 
1 either Bob was able to factor N or Bob received f xM (probability = -). Thus she is right with probability p, 
2 

where - 5 p 5 - + $.. If Alice guesses tbat Bob did not obtain M, then she is right with probability 1 - p ,  

where - - $, 5 1 - p 5 -. Thus ~ ~ € 1 -  - $",- + $ * I .  By theorem 1, p. - -as n - 0 0 . ~  

1 
2 

1 1 
2 2 
1 1 1 1 1 
2 2 2 2 2 

Result 

Theorems 1,2 and 3 prove that our protoeol works for honest parties. Now we must show it is secure. 

5. The protocol 1s iecure 

W e  will first assume Bob knows a root of z2 mod N. Later we will drop this assumption. 

Theorem 4: 

Assume that a t  step 3 Bob knows a root of 2'. Then Alice can not cheat Bob, nor can Bob cheat Alice. 

Proof We look at  possible deviations from the protocol and show that they are not useful or cannot be hidden. 

Assume Alice follows the protocol. At step 2 Bob must send a quadratic residue because Alice has the factorization 

of N and can decide quadratic residuosity. Theorem 1 shows Bob obtains at most one root of M2 independently of 

how he chose f .  Thus not choosing x at random does not constitute cheating. This exhausts the possibilities of 
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Bob cheating. 

Now assume Bob follows the protocol. We do not know of an eBcient protocol by which Alice can prove to Bob 

that N is a Blum integer. However, the remainder or the proof relies only on the fact that N is the product of two 

distinct primes congruent to 3 mod 4, each raised to an odd power. 

N is the product of two distinct primes congruent to 3 mod 4,  each raised to an odd power if and only if the follow- 

ing 3 conditions are met: 

a) The Jacobi symbol [%I = 1. 

b N has exactly 2 distinct prime factors. 
c] quadratic residues have roots with dlstinct Jacobi symbols. 

The Erst condition is efficiently veriEable by Bob. Goldwasser and MiCali have shown that Alice can convince Bob 

(efriciently, securely and with exponentially small probability of error) that (b) holds. Blum' has shown Alice can 

convince Bob (eficieotly, securely and with exponentially small probability of error) that (c) holds. 

Now Bob knows that i@ mod N has exactly 2 roots less than - and that these roots have opposite Jacobi sym- 

bols. At step 4 Mice delines the message to be the (unique) square root of MZ mod N which has Jacobi symbol b 

and is less than -. She cannot avoid sending a root of fl mod N, and she har no way of knowing which root she 

is actually sending .* 

N 
2 

N 
2 

Theorem 4 assumes that Bob knows a root of I* mod N. The next theorem says Bob cannot cheat Alice at step 3 

by sending a quadratic residue without knowing one of its roots. 

Theorem 52 

Assume Alice follows the protocol. If, a t  step 3, Bob does not know a square root of I$, yet he has probability 

2 - of obtaining M, then there exists an eficient probabilistic procedure to compute a root of zz mod N with 1 
2 

exponentially small probability of failure. 

Proof: We think of Bob as a dishonest PTM B"kO"er' with oracle A. Recall that oracle A takes as input a pair 

(N,zZ) where N is an n-bit Blum integer and I' is a quadratic residue in 2, and returns a random mot of M'z' 

where M is a random element in MS. 

The input to Bd'sk'"erf IS ' an n-bit integer N. Since Bob is dishonest we must drop the requirement that the routine 

P(N) returns a root of the quadratic residue 1'. Thus P(N) will return only the quadratic residue z2. B"'rkpn'rt ia 

allowed to make one call A(N,P(N)) to A. 

Let p. be the probability that  B*r*4"r'' gets the message. We will use Bl'"'crf to construct a parallel PTM B""' 
which computes a root of r2 mod N. The sequential version of By"'"' runs in polynomial time and computes a root 

of I* mod N with probability of failure (1 - E)r lor an arbitrarily large constant r. The construction lollows: 
4 
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INPUT: an n-bit integer N. 
Brnart  . 
simulaje Ed'5h0"r*t until call A(N,P(N)) is made; 

k or each of r processors do 
Let I = P ( N ) }  

begin 

generate a random number g€Z.; { fi is called the "fake message" } 
Assume A(N,z~)  returns y ; 

continue simulating Bd'sk'arrf 

gets the fake message all processors stop; if B h r k o n r r !  

end. 

Lemma 1: If any of the r processors gets the fake message then B"-' knows a mot of 2'. 

Proof The processor that gets the fake message can compute = g ( p j - '  .v 

Lemma 2: The probability that a particular processor gets the fake message is 2 E. 

Prook The probability that z = 1 lies in MS is a. Given that t lies in MS, the probability that f y gets chosen as 

2- 

4 

1 
2 

a root of zZzz is -. Given this event the probability that obtains the fake mesage is (by assumption) 

1 
2 4 

2 -. Thus the total probability that a particular processor gets the fake message 2 

Thus the probability that  no processor gets the fake message 5 (1 - 5)'. Therefore, by Lemma 1, Bm"* obtains 

a root of zz mod N with probability 1 - ( I  - E)' .v 

Theorems 4 and 5 establish that our protocol is secure. 

4 

4 

6. Generallxations 

We state without proof that  the following generalizations do not compromise the security of the O.T. protocol: 

i) we may replace a by - for a b e d  polynomial p . 

ii) If the protocol is implemented "with receipts", i.e. Bob and Alice 
F(.) 

send a receipt for each message received, then Bob 
can prove to a third party whether or not be received M. 

iii) Goldreich has proposed a version of the Oblivious Transler 
in which Alice transfera to Bob exactly one out of two 
recognizable messages MI , Mz. Our protocol can be easily 
adapted to perlorn Goldreich's O T  as follows : 
Let XOR be the bitwise exelusive-or operator for bit vectors. 
Let L be the twin root o l  MI. Let Y = L XOR MZ 
(Notice that M 2  = L XOR V) 
At step 4 Alice sends Y along with b and m. 
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iv) if we wish to send many independently distributed messages, say 
q messages for a 6x4 integer q. we may replace steps 3, 4, 5 
01 the  protocol by the  loop: 

for i:= 1 to q d o  
begin 

Step 3: Bob chooses a random integer r ‘ , E Z ,  and 

Step 4: Alice sends M: mod N, where M, is her private message: 

sends 2: mod N to Alice. 

b = Jacobi symbol - ; and a random root IU of M,%,* mod N to Bob. 

{At this point t he  message is defined to be the unique root of M: mod N 
N less than - and with Jacobi symbol b.} 
2 

I? I 
w* Step 5: To insure tha t  UI is not  junk, Bob verifies that  = M:. 
=, 

Then,  if Jacobi symbol = b, Bob has tbe message. 

end 

7. Condualon. and Suggestions for Further Research 

Thus we have developed a provably secure implementation of the Oblivious Transfer protocol. In our implementa- 

tion i t  is essentially impossible for either Bob or Alice to successfully cheat. We have also shown tha t  our imple- 

mentation has certain properties which will make it an important building blcck lor designing secure protocols. 

Essential t o  this research is t he  creation of a formal model of a protocol. Once this has been accomplished, one 

could prove theorems about t h e  ways tha t  various protocols can be combined so that  the security of the  implemen- 

tation is not compromised. 
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