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Abstract. Shannon’s pessimistic theorem, which states that a cipher can be perfect 

only when the entropy of the secret key is at least, as great as that of the plaintext, 

is relativized by the demonstration of a randomized cipher in which the secret key 

is short but the plaintext can be very long. This cipher is shown to be “perfect 

with high probability”. Nore precisely, the enemy is unable to obtain any informa- 

tion about the plaintext when a certain security event occurs, and the probability 

of this event is shown to be arbit.rarily close to one unless the enemy performs an 

infeasible computation. This cipher exploits the existence of a publicly-accessible 

string of random bits whose length is much greater than that of all the plaintext 

to be encrypted before the secret key and the randomizer itself are changed. TWO 

modifications of this cipher are discussed that may lead to practical provably-secure 

ciphers based on either of two assumptions that appear to be novel in cryptogra- 

phy, viz., the (sole) assumption that the enemy’s memory capacity (but not his 

computing power) is restricted and the assumption that an explicit function is, in 

a specified sense, controllably-difficult to compute, but not necessarily one-way. 
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1. Introduction 

One of the most important prar t ical  and theoretical open problems in cryptogra- 
phy is to devise a cipher that is both provably-secure and practical. The significance 
of a result on provable security crucially depends on the definition of security used, 
on the assumptions about the enemy’s knowledge and resources, and on the practi- 
cality of the cipher. Excluding approaches that are based on an unproven hypothesis 
such as the intractability of a certain probleni (e.g., factoring), one observes that 
every approach to provable security that has previously been proposed is either 
impractical or is based on a generally unrealistic assumption about the enemy’s a 

prior;  and/or obtainable knowledge. To list a few examples: the one-time pad (71 

is, because of its large key size, impractical in most applications; perfect local ran- 
domizers [4] are based on the generally unrealistic assumption that an enemy can 
only obtain a small number of ciphertext bits; Wyner’s wire-tap channel [S] is based 
on the geiierally unrealistic assumption that the enemy’s channel is noisier than the 
main channel; and the Rip van Winkle cipher proposed by Massey and Ingemarsson 
[I ,2] is completely impractical since the legitimate receiver’s deciphering delay is on 
the order of the square of the time the enemy must spend in order to break the 
cipher. Finally, the result that a cascade of additive stream ciphers is at least as 
secure as any of its component ciphers (51 yields provably-secure ciphers only when 
a set of additive stream ciphers can be constructed that provably contains at least 
one computationally secure cipher. 

In this paper, we present a new approach to  provable security that was motivated 
by [2] and is based on the availability of a very large publicly-accessible string of 
random bits. The need for this public randomizer is the only (but serious) detriment 
to the practicality of the proposed cipher. The randomizer could, for instance, be 
stored on a high-density storage medium, copies of which are publicly available, or 
it could be broadcast by a satellite. 

The enemy’s computational effort needed to break the cipher is measured in 
terms of the number of randonlizer bits that he must exanline. A very general 
way of modeling algorithms is by execution trees, where each branch corresponds 
to one or more operations and where the branching points correspond to decisions 
to be made during the execution of the algorithm. Because every examination of a 

randomizer bit corresponds to a branching point, the average depth of the execution 
tree, which is a lower bound on the average number of operations performed, is lower 
bounded by the average number of exanlined bits. 

The basic idea of our approach is to prove that, even if he uses an optimal strat- 
egy for examining randomizer bits. an enemy obtains no information in Shannon’s 
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sense about the plaintext with probability very close to one unless he accesses a sub- 
stantial fraction of all the randoniizer bits. More precisely, we prove that if a certain 
event occurs, then the enemy’s entire observation, consisting of the cryptogram and 

the examined randonlizer bits, is statisticdly independent of the plaintext. The 
probability of this event is lower bounded by a quantity that depends on the num- 
ber of bits exanlined by the enemy, and it is very close to one uiiless the enemy 
examines a substantial fraction (e.g., 2/3) of the entire randomizer. It is obviously 
impossible to prove that. the number of bits that the eneniy must examine is greater 
than the total number of randonizer bits, and thus our result is close to optimum 
within our framework of provable security. Note that we prove that the size of the 
necessary iriput of every algorithm breaking the  cipher is infeasibly large rather than 
that. the enemy niust perform any operation on the input in addition to exainining 
it. 

Since the effort t o  examine a randoin bit is in current technology roughly equal 
to that required to generate one, our lower bound on the eneiny’s computational 
effort appears to be on the same order as the effort needed to generate the ran- 
domizer. Therefore, our strongly-randomized cipher is truly practical only when 
either an existing source of randomness can be used (for example, a deep-space 
radio source or the surface of the moon) or should a much easier way of generating 
large amounts of random data  be discovered (e.g., by generating identical copies 
of a very complicated quasi-crystal). It is not the purpose of this paper to  discuss 
further the technical problem of generating a huge amount of publicly available 
random data. Rather, our interest is in exploring the question whether provable 
security is possible in such a model. Note, however, that when the randomizer is 
broadcast before the transmission of the actual cryptogram, an enemy niust store 
essentially t.he whole randoinizer if his chances of receiving any information about 
the plaintext. from the succeeding ciphertext are to be non-negligible. Therefore, 
the amount of random data needed to achieve an acceptable level of security, even 
when the enemy has infinite computing power, is only somewhat larger than the 
enemy’s inenlory capacity. This “broadcast” version of our cipher may be more 
practical than the original one. 

The results of this paper appear to be somewhat surprising for two reasons. First, 
they demonstrate that ,  although perfect secrecy can be achieved only when the 
entropy of the secret key is at least equal to  that of the plaintext (see [S]), relaxing 
the notion of perfectness only slightly allows one to build a provably-secure cipher 
whose secret key is very short compared to the length of the plaintext. Second, 
although information-theoretic security usually implies that the enemy has infinite 
computing power, our proposed cipher is secure for an information-theorctic notion 
of security only when the enemy is computationally restricted. 



364 

In Section 2, our iiiodel of a cipher with public randonlizer is introduced, and 
a particular randomized cipher is presented. After describing a general iiiodel of 
attacks against randomized ciphers, a proof of security of our cipher against dl 
feasible attacks is given in Section 3. 1n Section 4, tcchniques are suggested for 
basing the (provable) security of ciphers on either one of two assumptions, viz., 

that the enemy's inemory capacity is restricted or that a certain function is difficult 
t o  compute in a specified sense, but not necessarily one-way. 

2. Description of the Randomized Cipher 

Throughout this paper, randoin variables are denoted by capital letters, whereas 
the corresponding small letters denote specific values taken on by these random 
variables. Underlined capital letters or superscripted capital letters denote random 
vectors. Our model of a strongly-randomized cipher is as follows. As in a conven- 
tional symmetric cryptosystem, the coniniuiricating parties share a short randoidy- 
selected secret key. The randonlizer B is a binary random string of length L ,  whose 
bits can be read in a random-access manner by the legitimate parties as well as by 
all potential opponents, i.e., B is assumed t o  be publicly accessible. The cryptogram 
is a function of the plaintext, the secret key and the randomizer such that, given the 
cryptogram, the key and the randomizer, the plaintext is uniquely determined. The 

goal of the design of a randomized cipher is to devise an encryption transformation 
such that the cryptogram depends on only a few randomizer bits whose positions 
in turn depend on the secret key in such a manner that without the secret key it is 
impossible to  determine any of the plaintext without examining a very large number 
of randomizer bits. 

We now describe our specific strongly-randohzed cipher. It is a binary ad- 
ditive stream cipher in which the plaintext Y = [X1,.,.,X,], the cryptogram 

= [Yl,. . . , YN] and the keystream 1/1/ = [W1,. . . , W N ]  are binary sequences of 
length N .  The cryptogram is obtained by adding and bitwise modulo 2: 

Y, = X,, @ W,, for 1 5 71. 5 N .  

The publicly-accessible binary randoni string & consists of I{ blocks of length T and 
thus has total length L = A'T bits. These blocks are denoted by R[k,  01,. . . , R[k,  T -  

11 for 1 1. k 5 K ,  i-e., the randomizer can be viewed as a two-dimensional array 
of binary random variables (see Figure I). The secret key z = [Z,, . . . , Z,], where 
21, E {O, .  . . ,T-l} for 1 5 k 5 h', specifies a position within each block of &, and 
is chosen to be uniformly djstributed over the key space Sz - = (0,. . . , T- l }K .  Thus 
the number of bits needed to  represent the key is K log, T .  
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R[l,O] R[1,1] .. . R[l ,T - 11 
R[2,0] R[2,1] . .. R[2,T - 11 

R[li,O] R[K’,1] ... R [ K ,  T - 11 

Figure 1. The randomizer &, viewed as a two-dimensional array 

The keystreani IV, which is a function of the secret key 2 and the raiidonlizer 
- R, is the bitwise niodulo 2 sum of the K subsequences of length N within the 

randonlizer starting at the positions specified by the key, where each block (row) of 

- R is considered to  be extended cyclically, i.e., the second index is reduced modulo 
T :  

X 

W, = R[b,  (n - 1 + 2,) mod T ]  (1) 
k = i  

for 1 5 n 5 N ,  where E denotes summation modulo 2. The sub-array of the 
randonuzer that determines W is denoted by RZ and is depicted in Figure 2. A 

diagram of the sending site of the cipher system is shown in Figure 3. Note that 

the legitimate receiver who knows the secret key needs to exaiiliiie only h” of the 
L random bits, i.e., a very small fraction NIT of all bit.s when T >> N as we shall 
assume. 

I R[1,21] R[l,Z1 + 11 ... Rjl, 21 4- N - 11 

Figure 2. The sub-array R z  of the randomizer & is selected by the secret key 
Z. All second indices are to be reduced niodulo T. The keystream 
K = [Wl , .  . . , WN] is formed by adding the K rows of RZ bitwise. 
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Figure 3. A block diagram of the specific strongly-randomized cipher investigated 
in Section 3. The public randomizer & is an array of independent 
and completely random binary random variables. The keystream W 

is formed by letting the key z select the sub-array RZ of bits of & con- 
sisting of K rows of length N, and adding these rows bitwise modulo 2. 

The enemy uses an arbitrary, possibly probabilistic, sequential strategy 
t o  determine the addresses E l ,  Ez,. . . of the randomizer bits 01,02,. . . 
that he exanlines. 
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3. Model of Attacks and Main Results 
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An enemy trying to break the cipher may have (possibly partial) knowledge of 

the plaintext statistics and may also have some other a priori information about 
the plaintext. Let PX - be the probability distribution of the plaintext and let V be 
a random variable, jointly distributed with X according to  Pxv, that summarizes 
the enemy’s other a priori information about 8. Since precise knowledge of Pxv 

arid thus also of Px can only help the eneiiiy and because we assume that he 
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precisely knows these distributions, our  proof of security reinains valid when the 
enemy actually has only partial knowledge about Pxv. - 

Our model of the  enemy's attack is described in the sequel. We allow the enemy to 
use an arbitrary, possibIy probabilistic, sequential strategy for selecting the positions 
of the randomizer bits that  he examines. At each step of the attack, the enemy 
can make use of the entire available information, i.e., the cryptogram x, t.he side- 
information V ,  and the  positionss and values of the bits observed so far. Let Ei = 

( A ; ,  B;] denote the address of the i-th randonlizer bit. examined by the enemy, where 
A; and B; satisfy 1 5 A; 5 A' and 0 5 Bi 5 T -1 for i = 1 , 2 , .  . .. Let further 
Oi = R(&) = R[A; ,  B;] denote the observed value of the randomizer bit a t  address 
E; that is examined by the enemy at  the i-th step of his attack. Note that the 
randomizer bit 0, is a binary raiidom variable whose address Ei is a random variable 
rather than a constant. However, we will make use several times of the fact that ,  
given Ei = e i ,  0; corresponds to  the randoinizer bit R(ci) at the specific address 
e i .  We use the notation Em = [ E l , .  . . ,Em] and Om = [O,, . . . Om] for all rn 2 1. 
For a particular sequence em = [el,. . . ,em] of m bit addresses, where e; = [ai,b;] 

with 1 5 ai 5 IC and 0 5 b; 5 T - 1 for I 5 i 5 m, R(e") = [R(el) ,  . . . , R(em)] 

denotes the corresponding sequence of randornizer bits. Correspondingly, we have 
0" = R(E") for m 2 1. 

For m 2 1, the bit position Em is determined by the enemy as a (possibly 
randomized) function of the entire inforination he possesses at, this time, i.e., the 
cryptogram Y, the values Om-' of all previously exanlined bits together with their 
addresses Em-1, and the a priori information V .  The enemy's strategy is hence 
completely specified by the sequence of conditional probability distributions p~~ ~ y v  , 
P E ~ ~ ~ v E ~ o ~ ,  P E ~ ~ ~ v E , E ~ ~ ~ ~ ~ ,  etc.. The following theorem is the inain result of this 
paper. 

Theorem: There exists an event & such that, for di joint probability distributions 
Psv and for di (possibly probabilistic) strategies for examining bits O1,. . . , OM of 

- R at addresses El , .  . . , En,, 

I(X;YE M 0 M 11/11) = 0 and P ( € )  2 l -NSh ' ,  

where = M / K T  is the fraction of random'zer bits examined by the enemy. 

Here I(& YE" 0" I V,  &) denotes the (mutual) information that x, EM and 
OM together give about x, given that V is known and given that the eveiit E 

occurs. The theorem states that  if the event C occurs, then the enemy's total 
observation (X, E", OM] gives no information about. the plaintext ,'xy beyond the 
information already provided by V .  Clearly, if the enemy knew the value of a 



random variable 1.’ that uniquely determines X, i.e., such that H ( X I V )  = 0, it 
would make little sense to use a cipher at all. But the point is that, no niatter 
what a priori information about the plaintext the enemy has, this does not help 
hiin to obtain any additional information. For instance, even if the enemy knew all 

but one bit of the plaintext, he would still get no information about thjs remaining 
bit if E occurs, and the probability of & could not be reduced by exploiting his 
virtually complete knowledge about the plaintext. Note that the theorem asserts 
the existence of a high-probability event &, but does not specify it. However, in the 
proof we will specify such an event. 

Examplc: Assume K = 50, T = 10’’ and let the plaintext be one gigabit, i.e., 
N = Z30 % 10’. The 
legitimate users need to  examine only 50 randomizer bits per plaiiitext bit. An 
enemy, however, even if lie used an optimal strategy for examining a fraction 6 = 1/4 
of dl bits, i.e., Ad = K T / 4  = 1.25 - 10” bits in total or 1.1G - 10’’ bits per plaintext 
bit, would have a chance of obtaining any new information about the plaintext not 
greater than 230 - (1/4)50 < 

The key size of this cipher is 50 - log, lozo % 3320 bits. 

The proof of the above theorem is divided into a sequence of four lemmas. The 
complete proofs of Lemnias 1 to  3 are given in [3]. 

Definition: The sequence ell’I = [el, ..., e M ]  of M 2 1 bit positions yields a 

consisiency check for the key I = [zl,. . . , ZK] if and only if there exists an interger 
n E [l, N ]  and a subset {[l , t l] ,  [ 2 , t 2 ] ,  . . . , [ K , t K ] }  of {el,.  . . , e m )  such that 

t k  - zk = n. - 1 (mod T )  

In other words, eM yields a consistency check for E if and only if R ( e M )  and 2 
together deterinine at least one (the n-th) bit of the keystream E = [W,, . . . , W N ]  

or, equivalently, if and only if R(eM) completely determines at least one colunm of 
RZ (cf. Figure 2). Furthermore, let 2 ( e M )  C Sz - denote the set oi keys €or which 
c”’ yields at. least one consistency check, i.e., 

for 1 5 A: 5 h-. 

2 ( e b f )  = (4 E Sz  : eM yields at least one consistency check for g } .  

The idea behind this definition is that if the enemy knew the plaintext (and hence 
also the keystream because he knows the ciphertext) and the set R( e m )  of random- 
izer bits, then, for every key z E Z(e” ) ,  he could perform one consistency check 
per keystream bit that he could compute from R(eM),  by comparing the computed 
keystream bit for the key with the actual keystream bit. If all computed (for key 
- z )  keystream bits agree with the actual keystream bits, the key g is still a possible 
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candidate, but if any of the computed keystream bits differs from the corresponding 
actual keystream bit, then g cannot be the actual key. Note that when c”’ consisls 
of one bit in each block of I?, then eM yields exactly one consistency check for N 

different keys. In general, if eM consists of nzk bits in the k-th block for 1 5 k 5 K ,  

then eM yields a total number N n,”=, mk of consistency checks, but in general sev- 
eral of these checks will be for the same key. The event E introduced in the main 

t.heorem will later be defined as the event that the actual key does not belong to 
the set of keys for which the enemy’s set E” of observed bits yields a consistency 
check. 

Lemma 1: For all joint probability distributions Pxv, - for every sequence eM = 

[el,. . . , e M ]  of hf 2 1 bit positions, and for all z ,u ,y ,  - rM E (0, l}M and L # Z(c”)  

such that the conditioning event has Ron-zero probability, 

Idea of proof: (A formal proof is given in [3].) Every bit of the keystream I.lr is the 
sum of K randornizer bits (see equation (1)). The crucial observation is that when 
Z $ Z ( e M ) ,  then, for every n satisfying 1 5 n 5 N ,  at least one of the K randoinizer 
bits contributing to W,, is not contained in the sequence R(e’) of randomizer bits. 

Therefore, given that the event z $ 2 ( E M )  occurs, the keystream W is completely 
random and statistically independent of X, V, OM = R(E”) and z. Thus, also the 
plaintext is statistically independent of x, E M ,  OM and z. 

Lemma 2: For dl probability distributions Pxir - and ior all (possibly probabilistic) 

strategies for exainining hf >_ 1 bits O1,. . . , Obf of B at addresses El , .  - . , E M ,  we 

have 

I (X;ILE”U”’Z /v,2 # 2 p ) )  = 0. 

This lemma establishes the first part of the main theorem when & is defined as the 
event that z@2(E’). It states that if the enemy does not succeed in choosing the 
bit positions EM such that Z E 2 ( E M ) ,  then he does not obtain any information 
whatsoever about the plaintext beyond the information already conveyed by V ,  even 
if an oracle would give him the key z for free after he has finished his observation. 
Note that it is crucial, however, that the enemy does not know the key while selecting 
bits. 

Proof: The conditional mutual information of Lemma 2 can be written as a differ- 
ence of conditional uncertainties: 



370 

1 (3';YE"UMZI v,z $! 2 ( P ) )  

= H (x- I v,z $z 2 ( E M ) )  - H (x I Vn?"O"&Z # 2 ( E M ) ) .  

It is an immediate consequence of Lemma 1 that both uncertainties are equal. 0 

It remains t o  prove the second part of the theorem, i.e., to lower bound the 
probability of the event & that  z#Z(EM).  Let IS1 denote the cardinality of the set 
S. 

Lemma 3: For all probabiliiy distributions P,p  - and for all (possibly probabilistic) 
strategies for examining M 2 1 bits O1,. . . , Ow o f B  at  addresses El , .. . E M ,  

Idea of proof: T h e  proof is based on the observation that no matter which bits the 
enemy exanLines, all keys g that  are not in the set 2 ( E M )  for which the enemy's 
sequence of observed bit positions yields a consistency check, are still equally likely 
candidates. More precisely, i t  is proved in [3] that 

P ( Z = d ~ r = ~ , ~ = v , ~ ~ = e ~ , ~ ~ = r ~ ]  = T-" (2) 

for all e M , y , v , r M  - and 2 $ Z(eM). This result appears to be somewhat counter- 
intuitive, since i t  states that  the a posteriori probabilities of the keys I 4' 2(e') 

are equal to the a prior;  probabilities even when there exists a key E 2(e') 

that satisfies many consistency checks and therefore appears to be the correct key. 
Equation (2) implies that  

P [ z = ~ ~ E " = ~ " I  = T-" 

for all eM and z $ 2 ( e A f ) .  Sununiiig these probabilities over all keys g $ 2 ( e A ' ) ,  i.e., 
over 'T" - J2(en ' ) l  terms, we obtain 

P [ z ~ z ( E ~ ~ ) I E ~ = ~ ~ ]  = c P [ z = ~ I E " ' = ~ M ]  

L B Z ( 4  

Since P [ Z  @ Z(E")]  is e q u d  to  the average of P[Z # z ( I P ) I E " =  e M ]  over dl 
values of e', we immediately have 
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Equation (3)  demonstrates that  the enemy's optimal strategy for making the 
event E that  z @ 2 ( E ' )  as unlikely to  occur as possible is simply to make the set 
Z(E")  as large as possible. Notice that,, surprisingly, this strategy is independent of 
- Y ,  On* and V .  In other words, letting the selected bit positions El, .  . . , EM depend 
on the observed bits O1,. . . , O M ,  the cryptograni 1 and on the a priori information 
V cannot. help the enemy in reducing the probability of the event. &. However, to  
base tlie strategy on Y , O M  and V can increase the amount of infomiation that 
the enemy gets about the plaintext in case that E does not occur, i.e., in case that 
- 2 E 2 ( E b f ) .  Note that although P [ z  6 2(E')IE"= e"] equals the number of 
keys that are not in 2 ( e M )  divided by the total number of keys, equation (3) is 

non-trivial because EM is a random variable that, because it depends on X, also 

depends on Z. 

Lemma 4: For every sequence eM = [ e l , .  . . , e M ]  of M 2 1 bit positions, 

Proof: Let m k ,  for 1 5 E 5 h', be the number of randomizer bits specified by eM 
that belong to the L-th block of B, i.e., whose first address component is equal t o  
k. Every subset of elements of eM of the form {[l, t l ] ,  [2 , t2 ] ,  . . . , [ h r , t K ] }  yields a 
consistency check for exactly N keys, namely for the keys 2 = [(it-.) mod T, ( t 2 -  

z) mod T ,  . . . , ( t ~  - z) mod T ]  for 0 5 z 5 N - 1. There are exactly nf=, mk 
different subsets of the described fonn and hence there are at most N nf='=, m k  keys 
for which eM yields a consistency check. nf='=, m k  is maximized for red 7 n k  under 
tlie restriction CfZl nik = hd by the choice m1 = - - .  = n i K  = M/A' for which 
l-If=, m k  = ( M / K ) K .  Clearly, this maximum is also an upper bound on & m k  

under the restriction that ml, . . . , m ~  must be integers satisfying If=, m k  = hf. 0 

Proof of the Theorem: Lemma 2 shows that if we define & as the event that Z$! 
2 ( E M ) ,  then I (X;yEn 'OMzlV,&)  = 0 and therefore also I(X;4LEMOMIV,E) = 0. 
This last step follows from the two basic facts that mutual information is always non- 

negative and that giving additional random variables (here z) to the information- 
giving set cannot reduce the information about X. Lemmas 3 and 4 finally give 
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4. Conclusions 

In this section, we suggest two modifications of the randomized cipher presented 
in Section 2 that are more practical in that the size of the public randonizer re- 
quired t o  achieve a sufficient level of security is much smaller. A rigorous proof of 
security €or the first suggested modification would lead to the first cipher that  is 
provably-secure under the sole assumption that the enemy’s memory capacity, but 
not necessarily his computing power, is restricted. The second suggested niodifi- 
cation has the potential of leading to an existence proof for secure cryptosystems 
without necessarily leading t o  a specific realization. 

We first discuss a version of our strongly-randomized cipher in which instead of 

having the randonizer stored in a publicly-accessible way, it is broadcast by a sender 
(e.g., a satellite), i.e., the randonlizer evolves in time rather than in space. There 
may exist natural sources of randomness, such as a deep-space radio source, that  
could be used. Alternatively, the randomizer could be transmitted as a burst of 
random data over the  (insecure) cominunication channel prior to  the transmission 
of the actual cryptogram. Because in this version of our cipher, the randomizer 
is not available a t  the time that the ciphertext is transmitted, an enemy must not 
only examine but also store a substantial fraction of the randomizer in order to be 
able to  obtain any information about the plaintext from the ciphertext. Thus, if the 
enemy’s memory capacity is not more than 6 times the number of randomizer bits, 
then there exists no  strategy €or storing randonizer bits such that these will later 
be of any use to  the enemy with probability more than N6”, where N is the length 
of the plaintext. Note, however, that  in general an enemy is not restricted to storing 

randonizer bits. Rather, he can store the values of boolean functions applied to  the 
rnndonizer. We conjecture that a result similar to the above theorem holds even 
€or such an extended model of the enemy’s attack. 

A second niodification of our cipher is based on the observation that the size of 
the randoiiiizer can be greatly reduced if the bit access operation can be made more 

difficult. In [3], a version of our cipher is discussed that is based on a function that 
is difficult to  compute in a specified sense, but not necessarily one-way. 

Finally, we would like to point out that randomization techniques similar t o  
those presented in this paper may be useful for the construction of practical ciphers, 
even when the randomizer is not sufficiently long to guarantee a reasonable lower 
bound on the enemy’s computational effort required t o  break the cipher or when 
the randomizer is replaced by a pseudo-random sequence. 
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