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A PROXIMAL-GRADIENT HOMOTOPY METHOD FOR THE
SPARSE LEAST-SQUARES PROBLEM∗

LIN XIAO† AND TONG ZHANG‡

Abstract. We consider solving the �1-regularized least-squares (�1-LS) problem in the context of
sparse recovery for applications such as compressed sensing. The standard proximal gradient method,
also known as iterative soft-thresholding when applied to this problem, has low computational cost
per iteration but a rather slow convergence rate. Nevertheless, when the solution is sparse, it often
exhibits fast linear convergence in the final stage. We exploit the local linear convergence using a
homotopy continuation strategy, i.e., we solve the �1-LS problem for a sequence of decreasing values
of the regularization parameter, and use an approximate solution at the end of each stage to warm
start the next stage. Although similar strategies have been studied in the literature, there have been
no theoretical analysis of their global iteration complexity. This paper shows that under suitable
assumptions for sparse recovery, the proposed homotopy strategy ensures that all iterates along the
homotopy solution path are sparse. Therefore the objective function is effectively strongly convex
along the solution path, and geometric convergence at each stage can be established. As a result, the
overall iteration complexity of our method is O(log(1/ε)) for finding an ε-optimal solution, which can
be interpreted as global geometric rate of convergence. We also present empirical results to support
our theoretical analysis.
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1. Introduction. In this paper, we propose and analyze an efficient numerical
method for solving the �1-regularized least-squares (�1-LS) problem

(1.1) minimize
x

1

2
‖Ax− b‖22 + λ‖x‖1,

where x ∈ R
n is the vector of unknowns, A ∈ R

m×n and b ∈ R
m are the problem data,

and λ > 0 is a regularization parameter. Here ‖ · ‖2 denotes the standard Euclidean
norm, and ‖x‖1 =

∑
i |xi| is the �1 norm of x. This is a convex optimization problem,

and we use x�(λ) to denote its (global) optimal solution. Since the �1 term promotes
sparse solutions, we also refer to problem (1.1) as the sparse least-squares problem.

The �1-LS problem has important applications in machine learning, signal pro-
cessing, and statistics; see, e.g., [36, 13, 8]. It has received revived interests in recent
years due to the emergence of compressed sensing theory, which builds upon the
fundamental idea that a finite-dimensional signal having a sparse or compressible
representation can be recovered from a small set of linear, nonadaptive measurements
[9, 11, 17]. We are especially interested in solving the �1-LS problem in such a context
with the goal of recovering a sparse vector under measurement noise. More precisely,
we assume A and b in (1.1) are related by a linear model

b = Ax̄ + z,
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where x̄ is the sparse vector we would like to recover in statistical applications, and z
is a noise vector. We assume that the noise level, measured by ‖AT z‖∞, is relatively
small compared with λ. This scenario is of great modern interest, and various prop-
erties of the solution x�(λ) have been investigated [10, 16, 27, 38, 48, 12, 46, 47, 6,
24, 42, 43]. In particular, it is known that under suitable conditions on A such as
the restricted isometry property (RIP) [10], and as long as λ ≥ c‖AT z‖∞ (for some
universal constant c), one can obtain a recovery bound of the form

(1.2) ‖x�(λ) − x̄‖22 = O
(
λ2‖x̄‖0

)
,

where ‖x̄‖0 denotes the number of nonzero elements in x̄. The constant in O(·)
depends only on the RIP condition, and this bound achieves the optimal order of
recovery. Moreover, it is known that in this situation, the solution x�(λ) is sparse
[46], and the sparsity of the solution is closely related to the recovery performance.

In this paper, we develop an efficient numerical method for solving the �1-LS
problem in the context of sparse recovery described above. In particular, we focus
on the case when m < n (i.e., the linear system Ax = b is underdetermined) and
the solution x�(λ) is sparse (which requires the parameter λ to be sufficiently large).
Under such assumptions, our method has provable lower complexity than previous
algorithms.

1.1. Previous algorithms. There has been extensive research on numerical
methods for solving problem (1.1) and its constrained variations. A nice survey of
major practical algorithms for sparse approximation appeared in [37], and perfor-
mance comparisons of various algorithms can be found in, e.g., [45, 44, 2]. Here we
briefly summarize the computational complexities of several methods that are most
relevant for solving the �1-LS problem (1.1) in terms of finding an ε-optimal solution
(i.e., obtaining an objective value within ε of the global minimum).

Interior-point methods (IPMs) were among the first approaches used for solving
the �1-LS problem [13, 41, 23]. The theoretical bound on their iteration complexity
is O (

√
n log(1/ε)), although their practical performance demonstrates much weaker

dependence on n. The bottleneck of their performance is the computational cost per
iteration. For example, with an unstructured dense matrix A, the standard approach
of solving the normal equation in each iteration with a direct method (Cholesky fac-
torization) would cost O(m2n) flops, which is prohibitive for large-scale applications.
Therefore all customized solvers [13, 41, 23] use iterative methods (such as conjugate
gradients) for solving the linear equations.

Proximal gradient (PG) methods for solving the �1-LS problem take the following
basic form at each iteration k = 0, 1, . . .:
(1.3)

x(k+1) = argmin
y

{
f(x(k)) +∇f(x(k))T (y − x(k)) + Lk

2
‖y − x(k)‖22 + λ‖y‖1

}
,

where we used the shorthand f(x) = (1/2)‖Ax− b‖22, and Lk is a parameter chosen
by line search. The minimization problem in (1.3) has a closed-form solution

(1.4) x(k+1) = soft

(
x(k) − 1

Lk
∇f(x(k)) , λ

Lk

)
,

where soft : Rn × R
+ → R

n is the well-known soft-thresholding operator, defined as

(1.5) (soft(x, α))i = sgn(xi)max {|xi| − α, 0} , i = 1, . . . , n.

Iterative methods that use the update rule (1.4) include [15, 14, 32, 22, 45]. Their
major computational effort per iteration is to form the gradient ∇f(x) = AT (Ax− b),
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which costs O(mn) flops for a generic dense matrix A. With suitable choices of Lk,
the PG method (1.3) has an iteration complexity O(1/ε).

Indeed, the iteration complexity O(log(1/ε)) can be established for (1.3) if m ≥
n and A has full column rank, since in this case the objective function in (1.1) is
strongly convex [32]. Unfortunately this result is not applicable to the case m <
n. Nevertheless, when the solution x�(λ) is sparse and the active submatrix is well
conditioned (e.g., when A has RIP), local linear convergence can be established [26,
22], and fast convergence in the final stage of the algorithm has also been observed
[32, 22, 45]. There are also coordinate descent variants of PG methods that achieve
a local linear rate of convergence (e.g., [39]).

Variations and extensions of the PG method have been proposed to speed up the
convergence in practice; see, e.g., [7, 45, 44]. Nesterov’s optimal gradient methods for
minimizing smooth convex functions [28, 30, 31] have also been extended to minimize
composite objective functions such as in the �1-LS problem [32, 40, 4, 2]. These accel-
erated methods have the iteration complexity O(1/

√
ε). They typically generate two

or three concurrent sequences of iterates, but their computational cost per iteration
is still O(mn), which is the same as simple gradient methods.

Exact homotopy path-following methods were developed in the statistics literature
to compute the complete regularization path when varying the parameter λ from large
to small [33, 34, 18]. These methods exploit the piecewise linearity of the solution as
a function of λ and identify the next breakpoint along the solution path by examining
the optimality conditions (also called active set or pivoting method in optimization).
With efficient numerical implementations (using updating or downdating of submatrix
factorizations), the computational cost at each breakpoint is O(mn+ms2), where s is
the number of nonzeros in the solution at the breakpoint. Such methods can be quite
efficient if s is small. However, in general, there is no convergence result for bounding
the number of breakpoints for this class of methods.

1.2. Proposed approach and contributions. We consider an approximate
homotopy continuation method, where the key idea is to solve (1.1) with a large
regularization parameter λ first and then gradually decrease λ until the target reg-
ularization is reached. For each fixed λ, we employ a PG method of the form (1.3)
to solve (1.1) up to an adequate precision (to be specified later) and then use this
approximate solution to serve as the initial point for the next value of λ. We call the
resulting method the proximal gradient homotopy (PGH) method.

This is not a new idea. Similar approximate homotopy methods has been studied
in, e.g., [22, 45, 44], and superior empirical performance has been reported when
the solution is sparse. However, there has been no effective theoretical analysis for
their overall iteration complexity. As a result, some important algorithmic choices
are mostly based on heuristics and ad hoc factors. More specifically, how do we
choose the sequence of decreasing values for λ? and how accurate should we solve the
problem (1.1) for each value in this sequence?

In this paper, we present a PGH method that has provable low iteration com-
plexity, along with the following specific algorithmic choices:

• We use a decreasing geometric sequence for the values of λ. That is, we
choose a λ0 and a parameter η ∈ (0, 1) and let λK = ηKλ0 for K = 1, 2, . . .
until the target value is reached.
• We choose a parameter δ ∈ (0, 1) and solve problem (1.1) for each λK with a
proportional precision δλK (in terms of violating the optimality condition),
except that for the final target value of λ, we reach the absolute precision ε.
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• We use Nesterov’s adaptive line search strategy in [32] to choose the param-
eters Lk in the PG method (1.3).

Under the assumptions that the target value of λ is sufficiently large and the matrix A
satisfies a RIP-like condition, our PGH method exhibits geometric convergence at
each stage, and the overall iteration complexity is O(log(1/ε)). The constant in O(·)
depends on the RIP-like condition. Moreover, the solution satisfies a recovery bound
of the optimal form (1.2). Since each iteration of the PG method costs O(mn) flops,
the overall computational cost is O(mn log(1/ε)).

The advantage of our method over the exact homotopy path-following approach
[33, 34, 18] is that there is no need to keep track of all breakpoints. In fact, for
large-scale problems, the total number of proximal gradient steps in our method can
be much smaller than the number of nonzeros in the target solution, which is the
minimum number of breakpoints the exact homotopy methods have to compute.

Compared with IPMs, our method has a similar iteration complexity (actually
better in terms of theoretical bounds) and computationally can be much more effi-
cient for each iteration. The approximate homotopy strategy used in this paper is
also analogous to the long-step path-following IPMs (e.g., [29]), in the sense that
the least-squares problem becomes better conditioned near the regularization path
(cf. central path in IPMs). However, our results hold only for problems with provable
sparse solutions, and the parameters η and δ depend on the problem data A and the
regularization parameter λ. In contrast, the performance of IPMs is insensitive to the
sparsity of the solution or the regularization parameter.

As an important special case, our results can be immediately applied to noise-free
compressed-sensing applications. Consider the basis pursuit (BP) problem

(1.6) minimize ‖x‖1 subject to Ax = b.

Its solution can be obtained by running our PGH method on the �1-LS problem (1.1)
with λ→ 0. In terms of satisfying the condition λ > c ‖Az‖∞, any λ > 0 is sufficiently
large in the noise-free case because z = 0. Therefore, the global geometric convergence
of the PGH method for BP is just a special case of the more general result for (1.1)
developed in this paper.

1.3. Outline of the paper. In section 2, we review some preliminaries that
are necessary for developing our method and its convergence analysis. In section 3,
we present our PGH method and state the assumptions and the main convergence
results. Section 4 is devoted to the proofs of our convergence results. We present nu-
merical experiments in section 5 to support our theoretical analysis, and we conclude
in section 6 with some further discussions.

2. Preliminaries and notations. In this section, we first review composite
gradient mapping and some of its key properties developed in [32]. Then we describe
Nesterov’s PG method with adaptive line search, which we will use at each stage of
our PGH method. Finally we discuss the restricted eigenvalue conditions that allow
us to show the local linear convergence of the PG method.

2.1. Composite gradient mapping. Consider the following optimization prob-
lem with composite objective function:

(2.1) minimize
x

{
φ(x) � f(x) + Ψ(x)

}
,

where the function f is convex and differentiable and Ψ is closed and convex on R
n.

The optimality condition of (2.1) states that x� is a solution if and only if there exists
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ξ ∈ ∂Ψ(x�) such that ∇f(x�) + ξ = 0 (see, e.g., [35, section 27]). Therefore, a good
measure of accuracy for any x as an approximate solution is the quantity

(2.2) ω(x) � min
ξ∈∂Ψ(x)

‖∇f(x) + ξ‖∞.

We call ω(x) the optimality residue of x. We will use it in the stopping criterion of
the PG method.

Composite gradient mapping was introduced by Nesterov in [32]. For any fixed
point y and a given constant L > 0, we define a local model of φ(x) around y using a
simple quadratic approximation of f but keeping Ψ intact:

ψL(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 +Ψ(x).

Let TL(y) denote the unique minimizer of ψL(y;x), i.e.,

(2.3) TL(y) = argmin
x

ψL(y;x).

Then the composite gradient mapping of f at y is defined as

gL(y) = L(y − TL(y)).

In the case Ψ(x) = 0, it is easy to verify that gL(y) = ∇f(y) for any L > 0, and 1/L
can be considered as the step-size from y to TL(y) along the direction −gL(y). The
following property of composite gradient mapping was shown in [32, Theorem 2].

Lemma 2.1. For any L > 0, we have

ψL(y;TL(y)) ≤ φ(y)− 1

2L
‖gL(y)‖22.

The function f has a Lipschitz continuous gradient if there is a constant Lf such
that

‖∇f(x) −∇f(y)‖2 ≤ Lf‖x− y‖2 ∀x, y ∈ R
n.

A direct consequence of having a Lipschitz continuous gradient is the following in-
equality (see, e.g., [30, Theorem 2.1.5]):

(2.4) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ Lf

2
‖y − x‖22 ∀x, y ∈ R

n.

For such functions, we can measure how close TL(y) is from satisfying the optimality
condition by using the norm of the composite gradient mapping at y.

Lemma 2.2. If f has Lipschitz continuous gradients with a constant Lf , then

ω(TL(y)) ≤
(
1 +

SL(y)

L

)
‖gL(y)‖2 ≤

(
1 +

Lf

L

)
‖gL(y)‖2,

where SL(y) is a local Lipschitz constant defined as

SL(y) =
‖∇f(TL(y))−∇f(y)‖2

‖TL(y)− y‖2 .
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Algorithm 1. {x+,M} ← LineSearch(λ, x, L).

input: λ > 0, x ∈ R
n, L > 0.

parameter: γinc > 1
repeat

x+ ← Tλ,L(x)

if φλ(x
+) > ψλ,L(x;x

+) then L← Lγinc

until φλ(x
+) <= ψλ,L(x;x

+)
M ← L
return {x+,M}

Algorithm 2. {x̂, M̂} ← ProxGrad(λ, ε̂, x(0), L0).

input: λ > 0, ε̂ > 0, x(0) ∈ R
n, L0 ≥ Lmin.

parameters: Lmin > 0, γdec ≥ 1
repeat for k = 0, 1, 2, . . .
{x(k+1),Mk} ← LineSearch(λ, x(k), Lk)
Lk+1 ← max{Lmin,Mk/γdec}

until ωλ(x
(k+1)) ≤ ε̂

x̂← x(k+1)

M̂ ←Mk

return {x̂, M̂}

The proof of this lemma follows from [32, Corollary 1] and the relationship be-
tween ω(x) and the directional derivatives of φ [32, section 2]. The details are omitted
here.

In this paper, we use the following notation to simplify presentation:

f(x) =
1

2
‖Ax− b‖22, φλ(x) = f(x) + λ‖x‖1.

Accordingly, we add a subscript λ in the above definitions related to gradient mapping:

ωλ(x) = min
ξ∈∂‖x‖1

‖∇f(x) + λξ‖∞,

ψλ,L(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 + λ‖x‖1,

Tλ,L(y) = argmin
x

ψλ,L(y;x),

gλ,L(y) = L
(
y − Tλ,L(y)

)
.

For the �1-LS problem, Tλ,L(x) has the closed-form solution given in (1.4). Given the
gradient ∇f(x), the optimality residue ωλ(x) can be easily computed with O(n) flops.

2.2. Nesterov’s gradient method with adaptive line search. With the
machinery of composite gradient mapping, Nesterov developed several variants of
PG methods in [32]. We use the nonaccelerated primal-gradient version described
in Algorithms 1 and 2, which correspond to (3.1) and (3.2) in [32], respectively. To
use this algorithm, we need to first choose an initial optimistic estimate Lmin for the
Lipschitz constant Lf ,

0 < Lmin ≤ Lf ,
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and two adjustment parameters γdec ≥ 1 and γinc > 1. The adaptive line search
scheme always tries to use a smaller Lipschitz constant first at each iteration.

Each iteration of the PG method takes the form of

x(k+1) = Tλ,Mk
(x(k)),

where Mk is chosen by the line search procedure in Algorithm 1. The line search
procedure starts with an estimated Lipschitz constant Lk and increases its value by
the factor γinc until the stopping criteria is satisfied. The stopping criteria ensures

φλ(x
(k+1)) ≤ ψλ,Mk

(
x(k), x(k+1)

)
= ψλ,Mk

(
x(k), Tλ,Mk

(x(k))
)

≤ φλ(x(k))− 1

2Mk

∥∥gλ,Mk
(x(k))

∥∥2
2
,(2.5)

where the last inequality follows from Lemma 2.1. Therefore, we have the ob-
jective value φλ(x

(k)) decrease monotonically with k, unless the gradient mapping
gλ,Mk

(x(k)) = 0. In the latter case, according to Lemma 2.2, x(k+1) is an optimal
solution.

Since f has Lipschitz constant Lf , the inequality (2.4) implies that the line search
procedure is guaranteed to terminate if L ≥ Lf . Therefore, we have

(2.6) Lmin ≤ Lk ≤Mk < γincLf .

Although there is no explicit bound on the number of repetitions in the line search
procedure, Nesterov showed that the total number of line searches cannot be too big.
More specifically, let Nk be the number of operations x+ ← Tλ,L(x) after k iterations
in Algorithm 2. Lemma 3 in [32] showed that

Nk ≤
(
1 +

ln γdec
ln γinc

)
(k + 1) +

1

ln γinc
max

{
ln

γincLf

γdecLmin
, 0

}
.

For example, if we choose γinc = γdec = 2, then

(2.7) Nk ≤ 2(k + 1) + log2
Lf

Lmin
.

Nesterov established the following iteration complexities of Algorithm 2 for finding
an ε-optimal solution of the problem (2.1):

• If φλ is convex but not strongly convex, then the convergence is sublinear,
with an iteration complexity O(1/ε) [32, Theorem 4].
• If φλ is strongly convex, then the convergence is geometric, with an iteration
complexity O(log(1/ε)) [32, Theorem 5].

A nice property of this algorithm is that we do not need to know a priori if the
objective function is strongly convex or not. It will automatically exploit the strong
convexity whenever it holds. The algorithm is the same for both cases.

For our case m < n, the objective function in Problem (1.1) is not strongly
convex. Therefore, if we directly use Algorithm 2 to solve this problem, we can only
get the O(1/ε) iteration complexity (even though fast local linear convergence was
observed in [32] when the solution is sparse). Nevertheless, we can use a homotopy
continuation strategy (see section 1.2) to enforce that all iterates along the solution
path are sufficiently sparse. Under a RIP-like assumption on A, this implies that the
objective function is effectively strongly convex along the homotopy path, and hence
a global geometric rate can be established using Nesterov’s analysis. Next we explain
conditions that characterize restricted strong convexity for sparse vectors.
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2.3. Restricted eigenvalue conditions. We first define some standard nota-
tion for sparse recovery. For a vector x ∈ R

n, let

supp(x) = {j : xj = 0}, ‖x‖0 = | supp(x)|.

Throughout the paper, we denote supp(x̄) by S̄ and use S̄c for its complement. We
use the notation xS̄ and xS̄c to denote the restrictions of a vector x to the coordinates
indexed by S̄ and S̄c, respectively.

Various conditions for sparse recovery have appeared in the literature. The most
well-known of such conditions is the RIP introduced in [10]. In this paper, we analyze
the numerical solution of the �1-LS problem under a slight generalization, which we
refer to as restricted eigenvalue condition.

Definition 2.3. Given an integer s > 0, we say that A satisfies the restricted
eigenvalue condition at sparsity level s if there exist positive constants ρ−(A, s) and
ρ+(A, s) such that

ρ+(A, s) = sup

{
xTATAx

xTx
: x = 0, ‖x‖0 ≤ s

}
,

ρ−(A, s) = inf

{
xTATAx

xTx
: x = 0, ‖x‖0 ≤ s

}
.

Note that a matrix A satisfies the original definition of restricted isometry prop-
erty with RIP constant ν at sparsity level s if and only if ρ+(A, s) ≤ 1 + ν and
ρ−(A, s) ≥ 1 − ν. More generally, the strong convexity of the objective function
in (1.1), namely, φλ(x), is equivalent to ρ−(A, n) > 0. However, since we are inter-
ested in the situation of m < n, which implies that ρ−(A, n) = 0, we know that φλ
is not strongly convex. Nevertheless, for s < m, it is still possible that the condition
ρ−(A, s) > 0 holds. This means that if both x and y are sparse vectors, then φλ is
strongly convex along the line segment that connects x and y. Moreover, the inequal-
ity that characterize the smoothness of the function, namely, (2.4), could use a much
smaller restricted Lipschitz constant instead of the global constant Lf = ρ+(A, n).
The following lemma follows directly from the fact f(x) = (1/2)‖Ax − b‖22 and the
definition of restricted eigenvalues.

Lemma 2.4. Let f(x) = (1/2)‖Ax− b‖22. Suppose x and y are two sparse vectors
such that | supp(x) ∪ supp(y)| ≤ s for some integer s < m. Then the following two
inequalities hold:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ ρ+(A, s)

2
‖y − x‖22,(2.8)

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ ρ−(A, s)
2

‖y − x‖22.(2.9)

The inequality (2.8) represents restricted smoothness, and (2.9) represents re-
stricted strong convexity. We also define the restricted condition number as

(2.10) κ(A, s) =
ρ+(A, s)

ρ−(A, s)
.

In particular, if A has RIP constant ν at sparsity level s, then κ(A, s) ≤ (1+ν)/(1−ν).
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Algorithm 3. x̂(tgt) ← Homotopy(A, b, λtgt, ε, Lmin).

input: A ∈ R
m×n, b ∈ R

n, λtgt > 0, ε > 0, Lmin > 0.
parameters: η ∈ (0, 1), δ ∈ (0, 1)
initialize: λ0 ← ‖AT b‖∞, x̂(0) ← 0, M̂0 ← Lmin

N ← �ln(λ0/λtgt) / ln(1/η)�
for K = 0, 1, 2, . . . , N − 1 do

λK+1 ← ηλK
ε̂K+1 ← δλK+1

{x̂(K+1), M̂K+1} ← ProxGrad
(
λK+1, ε̂K+1, x̂

(K), M̂K

)
end

{x̂(tgt), M̂tgt} ← ProxGrad
(
λtgt, ε, x̂

(N), M̂N

)
return x̂(tgt)

3. A PGH method. The key idea of the PGH method is to solve (1.1) with
a large regularization parameter λ0 first and then gradually decrease λ until the
target regularization is reached. For each fixed λ, we employ Nesterov’s PG method
described in Algorithms 1 and 2 to solve problem (1.1) up to an adequate precision.
Then we use this approximate solution to warm start the PG method for the next
value of λ.

Our proposed PGH method is given as Algorithm 3. For convenience, we use λtgt
to denote the target regularization parameter. The method starts with

λ0 = ‖AT b‖∞,

since this is the smallest value for λ such that the �1-LS problem has the trivial
solution 0 (by examining the optimality condition). Our method has two parameters
η ∈ (0, 1) and δ ∈ (0, 1). They control the algorithm as follows:

• The sequence of values for the regularization parameter is determined as
λK = ηKλ0 for K = 1, 2, . . ., until the target value λtgt is reached.
• For each λK except λtgt, we solve problem (1.1) with a proportional preci-
sion δλK . For the last stage with λtgt, we solve the problem with the absolute
precision ε.

As discussed in the introduction, sparse recovery by solving the �1-LS problem
requires two types of conditions: the regularization parameter λ is relatively large
compared with the noise level, and the matrix A satisfies certain RIPs or restricted
eigenvalue conditions. It turns out that such conditions are also sufficient for fast
convergence of our PGH method. More precisely, we have the following assumption.

Assumption 3.1. Suppose b = Ax̄+ z. Let S̄ = supp(x̄) and s̄ = |S̄|. There exist
γ > 0 and δ′ ∈ (0, 0.2] such that γ > (1 + δ′)/(1− δ′) and

(3.1) λtgt ≥ 4max

{
2,

γ + 1

(1 − δ′)γ − (1 + δ′)

}
‖AT z‖∞.

Moreover, there exists an integer s̃ such that ρ−(A, s̄+ 2s̃) > 0 and

(3.2) s̃ >
8
(
γincρ+(A, s̄+ 2s̃) + ρ+(A, s̃)

)
ρ−(A, s̄+ s̃)

(1 + γ)s̄.

We also assume that Lmin ≤ γincρ+(A, s̄+ 2s̃).
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As we will see later, the quantity δ′ in the above assumption is related to the
parameter δ in Algorithm 3, and γ defines a conic condition on x− x̄, i.e.,

‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1,
which holds whenever ωλ(x) ≤ δ′λ. According to [46], the above assumption im-
plies that the solution x�(λ) of (1.1) is sparse whenever λ ≥ λtgt; more specifically,
‖x�(λ)S̄c‖0 ≤ s̃. (Here S̄c denotes the complement of the support set S̄.) In this
paper, we will show that by choosing the parameters η and δ in Algorithm 3 ap-
propriately, these conditions also imply that all iterates along the solution path are
sparse. Our proof employs an argument similar to that of [46]. Before stating the
main convergence results, we make some further remarks on Assumption 3.1.

• The condition (3.1) states that λ must be sufficiently large to dominate the
noise. Such a condition is adequate for sparse recovery applications be-
cause recovery performance given in (1.2) achieves optimal error bound under
stochastic noise model by picking λ of the order ‖AT z‖∞ [12, 46, 47, 6, 24,
42, 43]. Moreover, it is also necessary because when λ is smaller than the
noise level, the solution x�(λ) will not be sparse anymore, which defeats the
practical purpose of using �1 regularization.
• The existence of s̃ satisfying condition (3.2) is necessary and standard in
sparse recovery analysis. This is closely related to the RIP condition of [10]
which assumes that there exist some s > 0, and ν ∈ (0, 1) such that κ(A, s) <
(1 + ν)/(1 − ν). In fact, if RIP is satisfied with ν = 0.1 at s > �45(1 + γ)s̄�,
then we may take γinc = 1.2 and s̃ = �22(1 + γ)s̄� so that condition (3.2) is
satisfied. To see this, let s = s̄+ 2s̃ and note that

1 + ν

1− ν > κ(A, s̄+ 2s̃) ≥ ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ s̃)
≥ 1.2ρ+(A, s̄+ 2s̃) + ρ+(A, s̃)

)
2.2 ρ−(A, s̄+ s̃)

.

Therefore we have

s̃ = �22(1+γ)s̄� ≥ 17.6
1 + ν

1− ν (1+γ)s̄ > 8
1.2ρ+(A, s̄+ 2s̃) + ρ+(A, s̃)

ρ−(A, s̄+ s̃)
(1+γ)s̄.

• The RIP condition in the above example looks rather strong, especially when
compared with those established in the sparse recovery literature (e.g., [25]
and references therein). We note that these results are only concerned about
the recovery property of the optimal solution x�(λ), and it can be expected
that stronger conditions (larger constants) are required for maintaining re-
stricted convexity for all intermediate iterates before converging to x�(λ). In
fact, in addition to the matrix A, our RIP-like condition (3.2) also depends
on algorithmic parameters γinc and δ (Theorem 3.2 assumes δ < δ′). For
example, if we choose γinc = 2 (instead of 1.2 in the above calculation), then
we need RIP with ν = 0.1 at s > �61(1 + γ)s̄� as a sufficient condition.
We could also relax the range of δ′. For example, if we allow δ′ ∈ (0, 1) in
Assumption 3.1, then the constant in (3.2) needs to be increased from 8 to 16.
• If Lmin > γincρ+(A, s̄+2s̃), then we may simply replace γincρ+(A, s̄+2s̃) by
Lmin in the assumption, and all theorem statements hold with γincρ+(A, s̄+
2s̃) replaced by Lmin. Nevertheless, in practice it is natural to simply pick

Lmin = ρ+(A, 1) = max
i∈{1,...,n}

‖Ai‖22,

where Ai is the ith column of A. It automatically satisfies the assumption.
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Our first result below concerns the local geometric convergence of Algorithm 2.
Basically, if the starting point x(0) is sparse and the optimality condition is satisfied
with adequate precision, then all iterates x(k) are sparse, and Algorithm 2 has geomet-
ric convergence. (Similar local liner convergence has been established in, e.g., [26, 39],
but without specification of the local convergence zone.) To simplify notation, we use
a single symbol κ to denote the restricted condition number

(3.3) κ = κ(A, s̄+ 2s̃) =
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ 2s̃)
.

Theorem 3.1. Suppose Assumption 3.1 holds for some δ′, γ, and s̃. If the initial
point x(0) in Algorithm 2 satisfies

(3.4)
∥∥x(0)

S̄c

∥∥
0
≤ s̃, ωλ(x

(0)) ≤ δ′λ,
then for all k ≥ 0, we have

∥∥x(k)
S̄c

∥∥
0
≤ s̃, φλ(x

(k))− φ�λ ≤
(
1− 1

4γincκ

)k (
φλ(x

(0))− φ�λ
)
,

where φ�λ = φλ(x
�(λ)) = minx φλ(x).

Our next result gives the overall iteration complexity of the PGHmethod. Roughly
speaking, if the parameters δ and η are chosen appropriately, then the total number
of proximal gradient steps for finding an ε-optimal solution is O(ln(1/ε)).

Theorem 3.2. Suppose that Assumption 3.1 holds for some δ′, γ, and s̃, and
the parameters δ and η in Algorithm 3 are chosen such that

(3.5)
1 + δ

1 + δ′
≤ η < 1.

Let N =
⌊
ln (λ0/λtgt) / ln η

−1
⌋
as in the algorithm. Then:

1. Condition (3.4) holds for each call of Algorithm 2. For K = 0, . . . , N − 1,
the number of iterations in each call of Algorithm 2 is no more than

ln

(
C

δ2

)/
ln

(
1− 1

4γincκ

)−1

,

where C = 8γinc(1+κ)
2(1+γ)κs̄. Note that this bound is independent of λK .

2. For K = 0, . . . , N − 1, the outer-loop iterates x̂(K) satisfy

(3.6) φλtgt (x̂
(K))− φ�λtgt

≤ η2(K+1) 4.5 (1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
,

and the following bound on sparse recovery performance holds:

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0
√
s̄

ρ−(A, s̄+ s̃)
.

3. When Algorithm 3 terminates, the total number of iterations is no more than(
ln(λ0/λtgt)

ln η−1
ln

(
C

δ2

)
+ lnmax

(
1,
λ2tgtC

ε2

))/
ln

(
1− 1

4γincκ

)−1

,

and the output x̂(tgt) satisfies

φλtgt(x̂
(tgt))− φ�λtgt

≤ 4(1 + γ)λtgts̄

ρ−(A, s̄+ s̃)
ε.
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We have the following remarks regarding these results:
• The precision ε in Algorithm 3 is measured against the optimality residue
ωλ(x). In terms of the objective gap, suppose ε0 > 0 is the target precision
to be reached. Let

K0 =

⌈
1

2
ln

(
4.5 (1 + γ)λ20s̄

ρ−(A, s̄+ s̃)ε0

)/
ln η−1

⌉
− 1.

From the inequality (3.6), we see that if 0 ≤ K0 ≤ N−1, then for allK ≥ K0,

φλtgt(x̂
(K))− φ�λtgt

≤ ε0.
If we let ε0 → 0 and run the PGH method forever, then the number of
iterations is no more than O(ln(λ0/ε0)) to achieve an ε0 accuracy in terms
of both the objective gap and the optimality residue ωλ(·) ≤ ε0. This means
that the PGH method achieves a global geometric rate of convergence.
• When the restricted condition number κ is large, we have the approximation

ln

(
1− 1

4γincκ

)−1

≈ 1

4γincκ
.

Then the overall iteration complexity can be estimated by O (κ ln (λ0/ε)),
which is proportional to the restricted condition number κ.
• Even if we solve each stage to high precision with ε̂K+1 = min(ε, δλK+1),
the global convergence rate is still near geometric, and the total number of
proximal gradient steps is no more than O((ln(λ0/ε))

2).
Finally we remark on the relationship between the choice of δ and Assumption 3.1.

In Theorem 3.2, we need δ < δ′ to satisfy condition (3.5). In order to accommodate
a larger δ, i.e., to allow less accurate solutions at each stage of Algorithm 3, we
can relax the interval for δ′ in Assumption 3.1. As discussed in the remarks after
Assumption 3.1, this would require a stronger RIP-like condition. On the other hand,
using a larger δ leaves the choice for the parameter η to be very close to 1, i.e., we have
to reduce the regularization weight λ slowly, which means more homotopy stages.

As we will see from the numerical experiments in section 5, the PGH method
often demonstrates best performance (measured by the total number of iterations
to obtain a given accuracy) when using relatively large δ and small η, which are
unlikely to satisfy our assumptions for geometric convergence at each stage. In fact,
with a good warm-start point and a very loose stopping criterion (i.e., ωλ(x) ≤ δλ),
each intermediate stage requires only a very small number of iterations, even with a
sublinear convergence rate. The overall performance of the method hinges on rapidly
getting to the linear convergence zone in the final stage, where a significant number
of iterations are performed to reach the final high precision. From a practical point
of view, while linear convergence in the final stage is critical, it may be too restrictive
for the intermediate stages. In particular, using a large η (close to 1) often leads to
an unnecessarily large number of iterations before reaching the final stage.

4. Proofs of the convergence results. Our proofs are divided into the fol-
lowing subsections. In section 4.1, we show that under Assumption 3.1, if x(0) is
sparse and ωλ(x

(0)) is small, then all iterates generated by Algorithm 2 are sparse. In
section 4.2, we use the sparsity along the solution path and the restricted eigenvalue
condition to show the local geometric convergence of Algorithm 2, thus proving Theo-
rem 3.1. In section 4.3, we show that by setting the parameters δ and η in Algorithm 3
appropriately, we have geometric convergence at each stage of the homotopy method,
which leads to the global iteration complexity O(log(1/ε)).
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4.1. Sparsity along the solution path. First, we list some useful inequalities
that are direct consequences of (3.1) and δ′ ∈ (0, 0.2]:

(1− δ′)λ− 4‖AT z‖∞ > 0,(4.1)

(1 + δ′)λ+ ‖AT z‖∞ ≤ 1.4λ,(4.2)

λ+ ‖AT z‖∞ ≤ (1.4− δ′)λ,(4.3)

(1 + δ′)λ+ ‖AT z‖∞
(1− δ′)λ− ‖AT z‖∞ ≤ γ.(4.4)

The following result means that if x is sparse and it satisfies an approximate
optimality condition for minimizing φλ, then φλ(x) is not much larger than φλ(x̄).

Lemma 4.1. Suppose that Assumption 3.1 holds for some δ′, γ, and s̃, and
λ ≥ λtgt. If x is sparse, i.e., ‖xS̄c‖0 ≤ s̃, and it satisfies the approximate optimality
condition

(4.5) min
ξ∈∂‖x‖1

∥∥AT (Ax − b) + λξ
∥∥
∞ ≤ δ′λ,

then we have the following inequalities:

‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1,(4.6)

‖x− x̄‖2 ≤ 1.4λ
√
s̄

ρ−(A, s̄+ s̃)
,(4.7)

φλ(x) ≤ φλ(x̄) + 1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.(4.8)

Proof. Let ξ ∈ ∂‖x‖1 be a subgradient that achieves the minimum on the left-hand
side of (4.5). Then the approximate optimality condition leads to

(x− x̄)T (AT (Ax − b) + λξ
) ≤ ‖x− x̄‖1 ∥∥AT (Ax− b) + λξ

∥∥
∞ ≤ δ′λ‖x− x̄‖1.

On the other hand, we can use b = Ax̄+ z to obtain

(x− x̄)T (AT (Ax − b) + λξ
)
= (x − x̄)TAT

(
A(x − x̄)− z)+ λ(x− x̄)T ξ

≥ ‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT z‖∞ + λ ξT (x − x̄).

Next, we break the inner product ξT (x− x̄) into two parts as

ξT (x− x̄) = ξTS̄ (x− x̄)S̄ + ξTS̄c(x− x̄)S̄c .

For the first part, we have (by noticing ‖ξ‖∞ ≤ 1)

ξTS̄ (x− x̄)S̄ ≥ − ‖ξS̄‖∞‖(x− x̄)S̄‖1 ≥ − ‖(x− x̄)S̄‖1.

For the second part, we use the facts x̄S̄c = 0 and ξ ∈ ∂‖x‖1 to obtain

ξTS̄c(x− x̄)S̄c = xTS̄cξS̄c = ‖xS̄c‖1 = ‖(x− x̄)S̄c‖1.

Combining the inequalities above gives

‖A(x− x̄)‖22 − ‖AT z‖∞‖x− x̄‖1 − λ‖(x− x̄)S̄‖1 + λ‖(x− x̄)S̄c‖1 ≤ δ′λ‖x− x̄‖1.
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Using ‖x− x̄‖1 = ‖(x− x̄)S̄‖1 + ‖(x− x̄)S̄c‖1 and rearranging terms, we arrive at

‖A(x− x̄)‖22 +
(
(1−δ′)λ− ‖AT z‖∞

) ‖(x− x̄)S̄c‖1(4.9)

≤ ((1+δ′)λ+ ‖AT z‖∞
) ‖(x− x̄)S̄‖1.

Next using the inequalities (4.1) and (4.4), we obtain ‖(x − x̄)S̄c‖1 ≤ γ‖(x − x̄)S̄‖1,
which is the first desired result in (4.6).

With assumption ‖xS̄c‖0 ≤ s̃, the restricted eigenvalue condition implies

ρ−(A, s̄+ s̃)‖x− x̄‖22 ≤ ‖A(x− x̄)‖22
≤ ((1 + δ′)λ+ ‖AT z‖∞

) ‖(x− x̄)S̄‖1
≤ 1.4λ‖(x− x̄)S̄‖1
≤ 1.4λ

√
s̄ ‖(x− x̄)S̄‖2

≤ 1.4λ
√
s̄ ‖x− x̄‖2,

where the second inequality is a result of (4.9), the third inequality follows from (4.2),
and the fourth inequality holds because |S̄| = s̄. This proves the second result (4.7).

Finally, since φλ is convex and AT (Ax− b)+ ξ is a subgradient of φ at x, we have

φλ(x)− φλ(x̄) ≤ − (AT (Ax− b) + ξ
)T

(x̄− x) ≤ δ′λ‖x̄− x‖1.
From the inequality in (4.6), we have

‖x̄− x‖1 = ‖(x̄− x)S̄‖1 + ‖(x̄− x)S̄c‖1 ≤ (1 + γ)‖(x̄− x)S̄‖1.
Therefore,

φλ(x)− φλ(x̄) ≤ δ′λ(1 + γ)‖(x̄− x)S̄‖1 ≤ δ′λ(1 + γ)
√
s̄ ‖(x̄− x)S̄‖2,

which, together with (4.7), leads to the third desired result.
The next lemma means that if x is sparse, and φλ(x) is not much larger than

φλ(x̄), then both ‖x− x̄‖2 and ‖x− x̄‖1 are small. In fact, similar results hold under
the condition ωλ(x) ≤ δ′λ and are proved in Lemma 4.1. However, in the PG method,
the optimality residue ωλ(x

(k)) may not be monotonic decreasing, but the objective
function φλ(x

(k)) is. So in order to establish the desired results for all x(k), we need
to show them when the objective gap is sufficiently small.

Lemma 4.2. Suppose that Assumption 3.1 holds for some δ′, γ, and s̃, and
λ ≥ λtgt. Consider x such that

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) + 1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
;

then

max

{
1

2.8λ
‖A(x− x̄)‖22, ‖x− x̄‖1

}
≤ 1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
.

Proof. For notational convenience, let

Δ =
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

We write the assumption φλ(x) ≤ φλ(x̄) + Δ explicitly as

(4.10)
1

2
‖Ax− b‖22 + λ‖x‖1 ≤ 1

2
‖Ax̄− b‖22 + λ‖x̄‖1 +Δ.
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We can expand the least-squares part in φλ(x) as

1

2
‖Ax− b‖22 =

1

2
‖(Ax̄− b) +A(x− x̄)‖22

≥ 1

2
‖(Ax̄− b)‖22 +

1

2
‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT (Ax̄− b)‖∞.

Plugging the above inequality into (4.10), and noticing Ax̄ − b = z, we obtain

1

2
‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT z‖∞ + λ‖x‖1 ≤ λ‖x̄‖1 +Δ.

Using the fact x̄S̄c = 0, we have

‖x‖1 = ‖xS̄c‖1 + ‖xS̄‖1 = ‖xS̄c − x̄S̄c‖1 + ‖xS̄‖1.
Therefore

1

2
‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT z‖∞ + λ‖xS̄c − x̄S̄c‖1 ≤ λ (‖x̄S̄‖1 − ‖xS̄‖1) + Δ

≤ λ ‖x̄S̄ − xS̄‖1 +Δ.

Further splitting ‖x− x̄‖1 on the left-hand side as ‖(x− x̄)S̄‖1 + ‖(x− x̄)S̄c‖1, we get
(4.11)

1

2
‖A(x− x̄)‖22+

(
λ−‖AT z‖∞

) ‖(x− x̄)S̄c‖1 ≤
(
λ+‖AT z‖∞

) ‖(x− x̄)S̄‖1+Δ.

Now there are two possible cases. In the first case, we assume

(4.12) ‖x− x̄‖1 ≤ Δ

δ′λ
=

1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
.

From (4.1), we know that
(
λ− ‖AT z‖∞

) ‖(x− x̄)S̄c‖1 is nonnegative, so we can drop
it from the left-hand side of (4.11) to obtain

1

2
‖A(x− x̄)‖22 ≤

(
λ+ ‖AT z‖∞

) ‖(x− x̄)S̄‖1 +Δ

≤ (1.4λ− δ′λ)‖(x − x̄)S̄‖1 +Δ

≤ (1.4λ− δ′λ)1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
+

1.4δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)

=
1.42λ(1 + γ)λs̄

ρ−(A, s̄+ s̃)
,

where in the second inequality we used (4.3) and in the third inequality we used (4.12).
This means that the claim of the lemma holds.

In the second case, the assumption in (4.12) does not hold. Then Δ < δ′λ‖x− x̄‖1
and (4.11) implies

1

2
‖A(x−x̄)‖22+

(
λ− ‖AT z‖∞

) ‖(x−x̄)S̄c‖1 ≤
(
λ+ ‖AT z‖∞

) ‖(x−x̄)S̄‖1+δ′λ‖x−x̄‖1.
Again we split ‖x− x̄‖1 as ‖(x− x̄)S̄‖1 + ‖(x− x̄)S̄c‖1 to obtain

1

2
‖A(x− x̄)‖22 +

(
(1− δ′)λ− ‖AT z‖∞

) ‖(x− x̄)S̄c‖1(4.13)

≤ ((1 + δ′)λ+ ‖AT z‖∞
) ‖(x− x̄)S̄‖1.
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By further using the inequalities (4.1) and (4.4), we get

(4.14) ‖(x− x̄)S̄c‖1 ≤ (1 + δ′)λ+ ‖AT z‖∞
(1− δ′)λ− ‖AT z‖∞ ‖(x− x̄)S̄‖1 ≤ γ‖(x− x̄)S̄‖1.

This means that if we define

γ′ =
‖(x− x̄)S̄c‖1√
s̄‖(x− x̄)S̄‖2

,

then γ′ ≤ γ (note that |S̄| = s̄). Moreover, we can use the restricted eigenvalue
condition and the assumption ‖xS̄C‖0 ≤ s̃ to obtain

1

2
ρ−(A, s̄+ s̃)‖x− x̄‖22 ≤

1

2
‖A(x− x̄)‖22

≤ ((1 + δ′)λ+ ‖AT z‖∞
) (‖(x− x̄)S̄‖1 − γ−1‖(x− x̄)S̄c‖1

)
≤ ((1 + δ′)λ+ ‖AT z‖∞

)√
s̄(1− γ′/γ)‖(x− x̄)S̄‖2

≤ 1.4λ
√
s̄(1− γ′/γ) ‖(x− x̄)S̄‖2

≤ 1.4λ
√
s̄(1− γ′/γ) ‖x− x̄‖2,

where the second inequality follows from (4.13) and (4.4), the third inequality holds
because of the definition of γ′, and the forth inequality follows from (4.2). Hence

‖x− x̄‖2 ≤ 2 · 1.4λ√s̄(1− γ′/γ)
ρ−(A, s̄+ s̃)

.

The above arguments also imply

1

2
‖A(x− x̄)‖22 ≤ 1.4λ

√
s̄ ‖x− x̄‖2 ≤ 2 · 1.42λ2s̄

ρ−(A, s̄+ s̃)
≤ 1.42(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

where the last inequality is due to γ > 1. Finally, using the definition of γ′, we get

‖x− x̄‖1 ≤ (1 + γ′)
√
s̄ ‖(x− x̄)S̄‖2 ≤

2 · 1.4(1 + γ′)(1− γ′/γ)λs̄
ρ−(A, s̄+ s̃)

≤ 1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
,

where the last inequality follows by maximizing over γ′ achieved at γ′ = (γ − 1)/2.
These prove the desired bound.

The following lemma means that if x is sparse and φλ(x) is not much larger than
φλ(x̄), then Tλ,L(x) is sparse.

Lemma 4.3. Suppose that Assumption 3.1 holds for some δ′, γ, and s̃, and
λ ≥ λtgt. If x satisfies

(4.15) ‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) + 1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)

and L < γincρ+(A, s̄+ 2s̃), then ∥∥(Tλ,L(x))S̄c

∥∥
0
< s̃.

Proof. Recall that Tλ,L can be computed by the soft-thresholding operator, i.e.,

(TL(x))i = sgn(x̃i)max

{
|x̃i| − λ

L
, 0

}
, i = 1, . . . , n,
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where

x̃ = x− 1

L
AT (Ax− b) = x− 1

L
ATA(x− x̄) + 1

L
AT z.

In order to upper bound the number of nonzero elements in (TL(x))S̄c , we split the
truncation threshold λ/L on elements of x̃S̄c into three parts:

• 0.175λ/L on elements of xS̄c ,
• 0.125λ/L on elements of (1/L)AT z, and
• 0.7λ/L on elements of (1/L)ATA(x − x̄).

By assumption (3.1), we have ‖AT z‖∞ ≤ λ/8; hence
∣∣{j : ((1/L)AT z)j > 0.125λ/L}∣∣ = 0.

Therefore,

∥∥(TL(x))S̄c

∥∥
0
≤ ∣∣{j ∈ S̄c : |xj | > 0.175λ/L

}∣∣+ ∣∣{j : ∣∣(ATA(x− x̄))
j

∣∣ ≥ 0.7λ
}∣∣.

Note that

∣∣{j ∈ S̄c : |xj | ≥ 0.175λ/L}∣∣ = ∣∣{j ∈ S̄c : |(x − x̄)j | ≥ 0.175λ/L}∣∣
≤ ∣∣{j : |(x − x̄)j | ≥ 0.175λ/L}∣∣
≤ L(0.175λ)−1‖x− x̄‖1
≤ L

0.175λ

1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
=

8L(1 + γ)s̄

ρ−(A, s̄+ s̃)
,(4.16)

where the last inequality follows from Lemma 4.2.

For the last part, consider S′ with maximum size s′ = |S′| ≤ s̃ such that

S′ ⊂ {j : |(ATA(x − x̄))j | ≥ 0.7λ}.

Then there exists u such that ‖u‖∞ = 1 and ‖u‖0 = s′, and 0.7s′λ ≤ uTATA(x− x̄).
Moreover,

0.7s′λ ≤ uTATA(x−x̄) ≤ ‖Au‖2‖A(x−x̄)‖2 ≤
√
ρ+(A, s′)

√
s′
√

2 · 1.42(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

where the last inequality again follows from Lemma 4.2. Taking squares of both sides
of the above inequality gives

s′ ≤ 8 ρ+(A, s
′)(1 + γ)s̄

ρ−(A, s̄+ s̃)
≤ 8 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)
< s̃,

where the last inequality is due to (3.2). Since s′ = |S′| achieves the maximum
possible value such that s′ ≤ s̃ for any subset S′ of {j : |(ATA(x− x̄))j | ≥ 0.7λ}, and
the above inequality shows that s′ < s̃, we must have
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S′ = {j : |(ATA(x − x̄))j | ≥ 0.7λ},

and thus

∣∣{j : |(ATA(x − x̄))j | ≥ 0.7λ}∣∣ = s′ ≤
⌊
8 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)

⌋
.

Finally, combining the above bound with the bound in (4.16) gives

∥∥(Tλ,L(x))S̄c

∥∥
0
≤ 8 (L+ ρ+(A, s̃))

ρ−(A, s̄+ s̃)
(1 + γ)s̄.

Under the assumption L < γincρ+(A, s̄ + 2s̃) and (3.2), the right-hand side of the
above inequality is less than s̃. This proves the desired result.

Recall that each iteration of Algorithm 2 takes the form x(k+1) = Tλ,Mk
(x(k)).

According to (2.5), the objective value φλ(x
(k)) is monotone decreasing. So if x(0)

satisfies the condition (4.15), so does every iterate x(k). In order to show

‖(x(k))S̄c‖0 < s̃ ∀ k > 0,

we only need to note that the line search in Algorithm 1 always terminates with

(4.17) Mk ≤ γincρ+(A, s̄+ 2s̃).

Indeed, as long as

Mk ∈ [ρ+(A, s̄+ 2s̃), γincρ+(A, s̄+ 2s̃)],

Lemma 4.3 implies that
∥∥(Tλ,L(x))S̄c

∥∥
0
< s̃ and the restricted smoothness prop-

erty (2.8) implies the termination of line search.

4.2. Proof of Theorem 3.1. In this subsection, we show that for any fixed λ,
the sequence

{
x(k)

}∞
k=0

generated by Algorithm 2 (without invoking the stopping
criteria) has a limit and the local rate of convergence is geometric.

First, since the sublevel set {x : φλ(x) ≤ φλ(x
(0))} is bounded and φλ(x

(k)) is
monotone decreasing, the sequence

{
x(k)

}∞
k=0

is bounded. By the Bolzano–Weierstrass
theorem, it has a convergent subsequence and a corresponding accumulation point.
Moreover, from (2.5) and the fact that φλ(x) is bounded below, we conclude that

lim
k→∞

‖gλ,L(x(k))‖2 = 0.

By Lemma 2.2, this implies that any accumulation point of the sequence
{
x(k)

}∞
k=0

satisfies the optimality condition and therefore is a minimizer of φλ.
Let x�(λ) denote an accumulation point of the sequence

{
x(k)

}∞
k=0

. By Lemma 4.3,
any accumulation point is also sparse. In particular, we have ‖(x�(λ))S̄c‖0 ≤ s̃.

Now using the restricted strong convexity property (2.9), we have

(4.18) f(x) ≥ f(x�) + 〈∇f(x�(λ)), x − x�(λ)〉+ ρ−(A, s̄+ 2s̃)

2
‖x− x�(λ)‖22.

Since x�(λ) = argminx{f(x) + λ‖x‖1}, there must exist ξ ∈ ∂‖x�(λ)‖1 such that

(4.19) ∇f(x�(λ)) + λξ = 0.
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Since ξ ∈ ∂‖x�(λ)‖1, we also have (by convexity of λ‖ · ‖1)
(4.20) λ‖x‖1 ≥ λ‖x�(λ)‖1 + 〈λξ, x − x�(λ)〉.
Adding the two inequalities (4.18) and (4.20) and using (4.19), we get

(4.21) φλ(x) − φλ(x�(λ)) ≥ ρ−(A, s̄+ 2s̃)

2
‖x− x�(λ)‖22 ∀x : ‖xS̄c‖0 ≤ s̃.

Since any accumulation point satisfies ‖xS̄c‖0 ≤ s̃, we conclude that x�(λ) is a
unique accumulation point, in other words, the limit, of the sequence

{
x(k)

}∞
k=0

.

Next we show that under the assumptions in Lemma 4.3, especially with x(0)

satisfying (4.15), Algorithm 2 has a geometric convergence rate. We start with the
stopping criteria in the line search procedure:

φλ(x
(k+1)) ≤ ψλ,Mk

(x(k), x(k+1))

≤ min
x

{
f(x) +

Mk

2
‖x− x(k)‖22 + λ‖x‖1

}

= min
x

{
φλ(x) +

Mk

2
‖x− x(k)‖22

}
,

where the second inequality follows from the convexity of f . We can further relax the
right-hand side of the above inequality by restricting the minimization over the line
segment x = αx�(λ) + (1− α)x(k), where α ∈ [0, 1]. This leads to

φλ(x
(k+1)) ≤ min

α

{
φλ
(
αx�(λ) + (1− α)x(k))+ Mk

2
‖α(x(k) − x�(λ))‖22

}

= min
α

{
φλ(x

(k))− α(φλ(x(k))− φλ(x�(λ))) + α2Mk

2
‖x(k) − x�(λ)‖22

}
.

Since the conclusion of Lemma 4.3 implies that ‖x(k)
S̄c ‖0 ≤ s̃ for all k ≥ 0, we can use

the “restricted” strong convexity property (4.21) to obtain

φλ(x
(k+1)) ≤ min

α

{
φλ(x

(k))− α
(
1− αMk

ρ−(A, s̄+ 2s̃)

)(
φλ(x

(k))− φλ(x�(λ))
)}

.

The minimizing value is α = ρ−(A, s̄+ 2s̃)/(2Mk), which gives

φλ(x
(k+1)) ≤ φλ(x

(k))− ρ−(A, s̄+ 2s̃)

4Mk

(
φλ(x

(k))− φλ(x�(λ))
)
.

Let φ�λ = φλ(x
�(λ)). Subtracting φ�λ from both side of the above inequality gives

φλ(x
(k+1))− φ�λ ≤

(
1− ρ−(A, s̄+ 2s̃)

4Mk

)(
φλ(x

(k))− φ�λ
)

≤
(
1− ρ−(A, s̄+ 2s̃)

4γincρ+(A, s̄+ 2s̃)

)(
φλ(x

(k))− φ�λ
)
,

where the second inequality follows from (4.17). Therefore, we have

φλ(x
(k))− φ�λ ≤

(
1− 1

4γincκ

)k (
φλ(x

(0))− φ�λ
)
,

where κ is the restricted condition number defined in (3.3). Note that the above
convergence rate does not depend on λ. This completes the proof of Theorem 3.1.



A PROXIMAL-GRADIENT HOMOTOPY METHOD 1081

4.3. Proof of Theorem 3.2. In Algorithm 3, x̂(K) denotes an approximate
solution for minimizing the function φλK . A key idea of the homotopy method is to use
x̂(K) as the starting point in the PG method for minimizing the next function φλK+1 .
The following lemma shows that if we choose the parameters δ and η appropriately,
then x̂(K) satisfies the approximate optimality condition for λK+1 that guarantees
local geometric convergence.

Lemma 4.4. Suppose x̂(K) satisfies the approximate optimality condition

ωλK (x̂(K)) ≤ δλK
for some δ < δ′. Let λK+1 = ηλK for some η that satisfies

(4.22)
1 + δ

1 + δ′
≤ η < 1.

Then we have

ωλK+1(x̂
(K)) ≤ δ′λK+1.

Proof. If ωλK (x̂(K)) ≤ δλK , then there exists ξ ∈ ∂‖x̂(K)‖1 such that

‖∇f(x̂(K)) + λKξ‖∞ ≤ δλK .
Then we have

ωλK+1(x̂
(K)) ≤ ‖∇f(x̂(K)) + λK+1ξ‖∞

= ‖∇f(x̂(K)) + λKξ + (λK+1 − λK)ξ‖∞
≤ ‖∇f(x̂(K)) + λKξ‖∞ + |λK+1 − λK | · ‖ξ‖∞
≤ δλK + (1− η)λK .

Since (4.22) implies δλK + (1 − η)λK ≤ δ′λK+1, we have the desired result.
Lemma 4.5. Suppose that Assumption 3.1 holds for some δ′, γ, and s̃. Let

λ ≥ λtgt, and assume that x satisfies

ωλ(x) ≤ δ′λ.

Then for all λ′ ∈ [λtgt, λ], we have

φλ′(x) − φλ′(x�(λ′)) ≤ 2(1 + γ)(λ+ λ′)(ωλ(x) + λ− λ′)s̄
ρ−(A, s̄+ s̃)

.

Proof. Let ξ(λ) = argminξ∈∂‖x‖1
‖∇f(x) + λξ‖∞. Thus ωλ(x) = ‖∇f(x) + λξ(λ)‖∞.

By the convexity of φλ′ , we have

φλ′(x) − φλ′(x�(λ′)) ≤ 〈∇f(x) + λ′ξ(λ), x − x�(λ′)〉
≤ (‖∇f(x) + λξ(λ)‖∞ + λ− λ′)‖x− x�(λ′)‖1
= (ωλ(x) + λ− λ′) ‖x− x�(λ′)‖1.(4.23)

Since ωλ′(x�(λ′)) = 0 < δ′λ′, by Lemma 4.1, we have

‖x�(λ′)− x̄‖1 ≤ (1 + γ)
√
s̄ ‖x�(λ′)− x̄‖2 ≤ 2(1 + γ)λ′s̄

ρ−(A, s̄+ s̃)
.
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Similarly, because of the assumption ωλ(x) ≤ δ′λ, we have

‖x− x̄‖1 ≤ (1 + γ)
√
s̄ ‖x− x̄‖2 ≤ 2(1 + γ)λs̄

ρ−(A, s̄+ s̃)
.

Therefore, we have

‖x− x�(λ′)‖1 ≤ ‖x− x̄‖1 + ‖x̄− x�(λ′)‖1 ≤ 2(1 + γ)(λ+ λ′)s̄
ρ−(A, s̄+ s̃)

.

Now we obtain from (4.23) that

φλ′ (x)− φλ′ (x�(λ′)) ≤ 2(1 + γ)(λ+ λ′)(ωλ(x) + λ− λ′)s̄
ρ−(A, s̄+ s̃)

.

This proves the desired result.
Now we are ready to estimate the overall complexity of the PGH method. First,

we need to bound the number of iterations within each call of Algorithm 2.
Using Lemma 2.2, we can upper bound the optimality residue as

ωλ(x
(k+1)) ≤

(
1 +

SMk
(x(k))

Mk

)∥∥gλ,Mk
(x(k))

∥∥
2

≤
(
1 +

ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ 2s̃)

)∥∥gλ,Mk
(x(k))

∥∥
2

= (1 + κ)
∥∥gλ,Mk

(x(k))
∥∥
2
,

where the second inequality follows from

SMk
(x(k)) ≤ ρ+(A, s̄+ 2s̃), Mk ≥ ρ−(A, s̄+ 2s̃),

which are direct consequences of the line search termination criterion, the restricted
smoothness property (2.8), and the restricted strong convexity property (2.9).

To bound the norm of gλ,Mk
(x(k)), we use (2.5) and Theorem 3.1 to obtain∥∥gλ,Mk

(x(k))
∥∥2
2
≤ 2Mk

(
φλ(x

(k))− φλ(x(k+1))
)

≤ 2Mk

(
φλ(x

(k))− φ�λ
)

≤ 2γinc ρ+(A, s̄+ 2s̃)

(
1− 1

4γincκ

)k (
φλ(x

(0))− φ�λ
)
,

where φ�λ = φλ(x
�(λ)) = minx φλ(x), and the last inequality is due to (4.17). There-

fore, in order to satisfy the stopping criteria

ωλ(x
(k+1)) ≤ δλ,

it suffices to ensure

(1 + κ)

√
2γincρ+(A, s̄+ 2s̃)

(
1− 1

4γincκ

)k (
φλ(x(0))− φ�λ

) ≤ δλ,

which requires

k ≥ ln

(
2γinc(1 + κ)2ρ+(A, s̄+ 2s̃)

δ2λ2

(
φλ(x

(0))− φ�λ
))/

ln

(
1− 1

4γincκ

)−1

.
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We still need to bound the gap φλ(x
(0)) − φ�λ. Since Lemma 4.4 implies that

ωλ(x
(0)) ≤ δ′λ, we can obtain the following inequality directly from Lemma 4.5 by

setting λ′ = λ and x = x(0):

φλ(x
(0))− φ�λ ≤

4(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Therefore, the number of iterations in each call of Algorithm 2 is no more than

ln

(
8γinc(1 + κ)2(1 + γ)s̄

δ2
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ s̃)

)/
ln

(
1− 1

4γincκ

)−1

.

To simplify presentation, we note that

C = 8γinc(1 + κ)2(1 + γ)s̄κ ≥ 8γinc(1 + κ)2(1 + γ)s̄
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ s̃)
.

Thus the previous iteration bound is no more than

ln

(
C

δ2

)/
ln

(
1− 1

4γincκ

)−1

.

This proves part 1 of Theorem 3.2. We note that this bound is independent of λ.
In the PGH method (Algorithm 3), after K outer iterations for K ≤ N − 1, we

have from Lemma 4.4 that ωλK+1(x̂
(K)) ≤ δ′λK+1. The sparse recovery performance

bound

‖x̂(K) − x̄‖2 ≤ 2ηK+1λ0
√
s̄/ρ−(A, s̄+ s̃)

follows directly from Lemma 4.1 and λK+1 = ηK+1λ0. Moreover, from Lemma 4.5
with λ′ = λtgt, λ = λK+1, and x = x̂(K), we obtain

φλtgt(x̂
(K))− φ�λtgt

≤ 2(1 + γ)(λK+1 + λtgt)(δ
′λK+1 + λK+1 − λtgt)s̄

ρ−(A, s̄+ s̃)
.

Next, we use δ′ < 1 and maximize (λK+1 + λtgt)(2λK+1 − λtgt) over λtgt to obtain

φλtgt (x̂
(K))− φ�λtgt

≤ 4.5(1 + γ)λ2K+1s̄

ρ−(A, s̄+ s̃)
= η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
.

This proves part 2 of Theorem 3.2.
In Algorithm 3, the number of outer iterations, excluding the last one for λtgt, is

N =

⌊
ln(λ0/λtgt)

ln(1/η)

⌋
.

The last iteration for λtgt uses an absolute precision ε instead of the relative precision
δλtgt. Therefore, the overall complexity is bounded by(

ln(λ0/λtgt)

ln(1/η)
ln

(
C

δ2

)
+ lnmax

(
1,
λ2tgtC

ε2

))/
ln

(
1− 1

4γincκ

)−1

.

Finally, when the PGH method terminates, we have ωλtgt(x̂
(tgt)) ≤ ε. Therefore we

can apply Lemma 4.5 with λ = λ′ = λtgt and x = x̂(tgt) to obtain the last result in
part 3.
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5. Numerical experiments. In this section, we present numerical experiments
to support our theoretical analysis. For comparison purposes, we implemented the
following methods for solving the �1-LS problem:

• PG: the PG method with adaptive line search (Algorithm 2).
• PGH: our proposed PGH method described in Algorithm 3.
• ADG: Nesterov’s accelerated dual gradient method, i.e., [32, algorithm (4.9)].
• ADGH: the PGH method in Algorithm 3, but with PG replaced by ADG.

In section 5.1, we first demonstrate the numerical properties of PGH by comparing
it with other methods listed above and then investigate the effects of varying the
homotopy parameters δ and η. In section 5.2, we compare it with two very similar
implementations of approximate homotopy method: SpaRSA [45] and FPC [22].

5.1. Numerical properties of PGH. We generated a random instance of (1.1)
with dimensions m = 1000 and n = 5000. The entries of the matrix A ∈ R

m×n are
generated independently with the uniform distribution over the interval [−1,+1].
The vector x̄ ∈ R

n was generated with the same distribution at 100 randomly chosen
coordinates (i.e., s̄ = | supp(x̄)| = 100). The noise z ∈ R

m is a dense vector with
independent random entries with the uniform distribution over the interval [−σ, σ],
where σ is the noise magnitude. Finally the vector b was obtained as b = Ax̄ + z.
In our experiment, we set σ = 0.01 and choose λtgt = 1. For this instance we have
roughly ‖AT z‖∞ = 0.411. To start the PGH method, we have λ0 = ‖AT b‖∞ = 483.4.

Figure 5.1 illustrates various numerical properties of the four different methods
for solving this random instance. We used the parameters γinc = 2 and γdec = 2
in all four methods. For the two homotopy methods (whose acronyms end with the
letter H), we used the parameters η = 0.7 and δ = 0.2. In Figures 5.1(a) and 5.1(b),
the horizontal axes show the cumulative count of proximal gradient iterations. For the
two homotopy methods, the vertical line segments in Figures 5.1(a) and 5.1(b) indicate
switchings of homotopy stages (when the value of λ is reduced by the factor η)—they
reflect the jump of objective function for the same vector x(k).

Figure 5.1(a) shows the objective gap φλ(x
(k)) − φ�tgt versus the total number

of iterations k. The PG method solves the problem with the target regularization
parameter λtgt directly. For the first 350 or so iterations, it demonstrated a slow
sublinear convergence rate (theoretically O(1/k)) but converged rapidly for the last
30 iterations with a linear rate. Referring to Figure 5.1(c), we see that the slow phase
of PG is associated with relatively dense iterates (with ‖x(k)‖0 ranging from 5,000 to
several hundred), while the fast linear convergence in the end coincides with sparse
iterates with ‖x(k)‖0 around 100. In contrast, all iterates in the PGH method are
very sparse (always less than 300), and it converges much faster.

Also plotted in Figure 5.1 are numerical characteristics of the ADG and ADGH
methods. We see that the ADG method is much faster than the PG method in
the early phase, which can be explained by its better convergence rate, i.e., O(1/k2)
instead of O(1/k) for PG. However, it stays with the sublinear rate even when the
iterates x(k) becomes very sparse. The reason is that ADG cannot automatically
exploit the local strong convexity as PG does, so it eventually lagged behind when
the iterates became very sparse (see discussions in [32]). The ADGH method combines
the homotopy strategy with the ADG method. It is much faster than ADG but still
does not have linear convergence and thus is much slower than the PGH method.

Figure 5.1(d) shows the number of proximal gradient steps performed at each stage
(corresponding to each λK) of the two homotopy methods. We see that the final stage
of the PGH method took 19 inner iterations to reach the absolute precision ε = 10−5,
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Fig. 5.1. Solving a random instance of the �1-LS problem.

and all earlier stages took only 1 to 4 inner iterations to reach the relative precision
δλK . We note that the number of inner iterations at each intermediate stage stayed
relatively constant, even though the tolerance for the optimality residue decreases as
δλk = ηKδλ0. This is predicted by part 1 of Theorem 3.2. The ADGH method took
more inner iterations at each stage.

Figure 5.1(b) shows the objective gap versus the total number of matrix-vector
multiplications with either A or AT . Evaluating the objective function f(x(k)) costs
one matrix-vector multiplication, and evaluating the gradient ∇f(x(k)) costs an addi-
tional multiplication. The estimate in (2.7) states that each step in the PG method
needs on average two calls of the oracle. But one of them is done in the line search
procedure, and it requires only the function value. Therefore each inner iteration on
average costs roughly three matrix-vector multiplications. On the other hand, each
iteration of the ADG method on average costs eight matrix-vector multiplications
[32]. These factors are confirmed by comparing the horizontal scales of Figures 5.1(a)
and 5.1(b). We found that the number of matrix-vector multiplications is a very
precise indicator for the running time of each algorithm. From this perspective, the
advantage of the PGH method is more pronounced.

Next we conducted experiments to test the sensitivity of the PGH method with
respect to the choices of parameters δ and η. Figure 5.2 shows the objective gap and
sparsity of the iterates along the solution path for different δ while keeping η = 0.7.
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Fig. 5.2. Performance of the PGH method by varying δ while keeping η = 0.7.

Fig. 5.3. Performance of the PGH method by varying η while keeping δ = 0.2.

We see that when δ is reduced from 0.2 to 0.1, the iterates became slightly more
sparse, hence the convergence rate at each stage can be slightly faster due to better
conditioning. However, this was countered by more iterations at each stage required
by reaching more stringent precision, and the overall number of proximal gradient
steps increased. On the other hand, increasing δ to 0.8 made the intermediate stages
faster by requiring loose precision. However, this comes at the cost of less sparse
iterates, and the final stage suffers a slow sublinear convergence in the beginning.

Figure 5.3 shows the effects of varying η while keeping δ = 0.2. We see relatively
big variations of the sparsity of the iterates, but these did not affect much of the
overall iteration count. The intermediate stages may suffer from slow convergence
with less sparsity, but they only need to be solved to a very rough precision. It
is more important to start the last stage with a sparse vector and enjoy the fast
convergence to the final precision. (See the discussions at the end of section 3.)

5.2. Comparison with SpaRSA and FPC. As mentioned in the introduc-
tion, similar approximate homotopy/continuation methods have been studied for the
�1-LS problem. Here we compare the PGH method with the two most relevant ones:
sparse reconstruction by separable approximation (SpaRSA) [45] and fixed point
continuation (FPC) [22]. They are considered state of the art for solving sparse
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Fig. 5.4. Comparison with SpaRSA and FPC on a randomly generated instance.

optimization problems. (See the performance comparisons in [45].) Both of them use
the same proximal gradient step (1.3) in each iteration but with different methods
for choosing the step-size. In addition, their continuation strategies are also based on
reducing λ by a constant factor at each stage.

SpaRSA uses variants of the Barzilai–Borwein (spectral) method [1] for choos-
ing Lk at each step. More specifically, at each iteration the parameter Lk is initial-
ized as

Lk =

∥∥A (x(k) − x(k−1)
)∥∥2

2

‖x(k) − x(k−1)‖22
,

and then it is increased by a constant factor until an acceptance criterion is satisfied.
When both x(k) and x(k−1) are sparse, say, | supp(x(k)) ∪ supp(x(k−1))| ≤ s for some
integer s, then the above Lk satisfies

ρ−(A, s) ≤ Lk ≤ ρ+(A, s).
According to section 2.3, such a line search method is able to exploit the restricted
strong convexity, similar to the PGH method. However, the line search acceptance
criterion of SpaRSA is different from PGH, and they also have different stopping
criteria for each homotopy stage. Global geometric convergence of either SpaRSA or
FPC has not been established.

In our numerical experiments, we used the monotone version of SpaRSA with
continuation, which we call SpaRSA-MC. For FPC, we used a more recent implemen-
tation called FPC-BB, which also employs the Barzilai–Borwein line search. Default
options were used in both methods. SpaRSA-MC reduces the value of λ roughly with
a factor η = 0.2, and FPC-BB has an equivalent factor η = 0.25. For meaningful
comparison, we also present the results for PGH with η = 0.2, in addition to its
default value η = 0.7. The same parameter δ = 0.2 was used in both cases for PGH.

Figure 5.4 shows the numerical results of different algorithms on the same random
instance studied in section 5.1. They demonstrate similar numerical properties, and
SpaRSA-MC is especially similar to PGH with η = 0.2. The numbers of iterations
at each continuation stage depend on the specific stopping criteria used in different
algorithms. In Figure 5.4(b), the small number of iterations in the final stage of
FPC-BB is a result of the relatively loose precision specified in its default options.
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Fig. 5.5. Comparison with SpaRSA and FPC on two image processing problems.

Fig. 5.6. Comparison of different methods for solving a nonsparse random instance.

We also compare these algorithms on two image processing problems generated
by the software package Sparco [5], and the results are shown in Figure 5.5. More
specifically, problem 403 is a source separation problem, in which we need to recover
the well-known Cameraman (photographer) and Lena images from their mixtures
with randomly blurred spike arrays. Problem 701 is an image deconvolution problem
on the Cameraman image. Detailed descriptions of the images and problem setups
can be found in the Sparco package; see also [19, 20] and other papers. For both
problems, we used the regularization parameter λtgt = 0.1 for all three algorithms.

Figure 5.5 show that these three methods have quite similar or comparable per-
formance on the two image processing problems. As noted in [19], these problems
are ill-conditioned. In particular, Figure 5.5(a) still demonstrates liner convergence in
the final stage, but with a rather flat slope; in Figure 5.5(b), there is no longer linear
convergence. For such ill-conditioned problems, SpaRSA and FPC often demonstrate
faster local convergence because of their more sophisticated step-size rules based on
the Barzilai–Borwein spectral approach. Experiments on other problems in the Sparco
package reveal similar performance comparisons.

Finally, we conducted experiments on problems where the vector x̄ is not suffi-
ciently sparse. Figure 5.6 shows the objective gap of different methods when solving
a random instance generated similarly to the one in section 5.1, but here the vector
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x̄ has 500 nonzero elements. In this case, all methods demonstrate sublinear conver-
gence. SpaRSA-M is the monotone version of SpaRSA without continuation. FPC-BB
terminated prematurely because of the default low accuracy in its stopping criterion,
and FPC-BB-HA is the result after we set a much higher accuracy. We see that the
algorithms with homotopy continuation still perform better than their single-stage
counterparts, but the improvements are less impressive. Instead, the accelerated gra-
dient methods ADG and ADGH outperform other methods by a big margin.

6. Conclusion and discussions. This paper studied a PGH method for solv-
ing the �1-regularized least-squares problems, focusing on its important application in
sparse recovery. For such applications, the objective function is not strongly convex;
hence the standard single-stage PG methods can obtain only a relatively slow conver-
gence rate. However, we have shown that under suitable conditions for sparse recovery,
all iterates of the PGH method along the solution path are sparse. With this extra
sparsity structure, the objective function becomes effectively strongly convex along
the solution path, and thus a geometric rate of convergence can be achieved using
the homotopy approach. Our theoretical analysis is supported by several numerical
experiments.

In our convergence analysis, the conditions (Assumption 3.1) that guarantee ge-
ometric convergence are rather strong, especially compared with those established in
the compressed sensing literature. This is expected, since our analysis is based on
keeping all the intermediate iterates sparse, rather than only for the optimal solution.
Moreover, our conditions depend on not only the measurement matrix A but also the
algorithmic parameters (η and δ) that control how fast the homotopy parameter is
reduced and how accurately each intermediate stage needs to be solved. This again
reflects the “dynamic” nature of our conditions.

In practice, it is often very hard to choose the parameters η and δ that exactly
satisfy our conditions. (It is hard even for testing “static” sparse recovery conditions,
such as estimating the restricted eigenvalues.) Nevertheless, our theory provides sup-
port and insight for two very effective rules used in approximate homotopy methods:
reduce the regularization parameter geometrically and solve each intermediate stage
to a loose relative precision. On the other hand, our experiments show that the nu-
merical performance is not very sensitive to the choices of δ and η in a certain range,
and their best values may not satisfy our conditions for global geometric convergence.
In fact, with a good warm-start point and a very loose stopping criterion, each inter-
mediate stage requires only a very small number of iterations, even with a sublinear
convergence rate. The overall performance of the method hinges on rapidly getting to
the linear convergence zone in the final stage, where a significant number of iterations
are performed to reach a final high precision. From a theoretical perspective, this hints
at the possibility for developing less restrictive conditions (than requiring all interme-
diate stages to have sparse iterates) that guarantee a fast global convergence rate.

We commented in the numerical experiments that accelerated gradient methods
cannot automatically exploit restricted strong convexity. As discussed in [30, section
2.2] and [32], they need to explicitly use the strong convexity parameter, or a nontrivial
lower bound of it, to obtain geometric convergence. In order to exploit restricted
strong convexity in the �1-LS problem with m < n, accelerated gradient methods
need an extra facility to come up with an explicit estimate of the restricted convexity
parameter on the fly. Nesterov gave some suggestions along this direction in [32], and
strategies such as periodic restart have been studied recently [21, 3]. However, an
in-depth investigation on this matter is beyond the scope of this paper.
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