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A Pseudo-Bertrand Distribution 
for Time- S cale Analysis 

Paul0 Gonplvts, Member, IEEE, and Richard G. Baraniuk, Member, IEEE 

Abstract- Using the pseudo-Wigner time-frequency distribu- 
tion as a guide, we derive two new time-scale representations: 
the pseudo-Bertrand and the smoothed pseudo-Bertrand distri- 
butions. Unlike the Bertrand distribution, these representations 
support efficient online operation at the same computational 
cost as the continuous wavelet transform. Moreover, they take 
advantage of the affine smoothing inherent in the sliding sfiucture 
of their implementation to suppress cumbersome interference 
components. 

I. INTRODUCTION 

HE time-scale distributions of the affine class [l]-[3] T have proven to be a powerful alternative to the time- 
frequency distributions of Cohen's class [4] for the analysis 
of the time-varying spectral content of nonstationary signals. 
Just as time-frequency shift covariance is central to Cohen's 
class distributions, time-scale change covariance characterizes 
affine class distributions. That is, if fix@, f )  is a time-scale 
distribution of the signal ~ ( t ) ,  then the distribution of the 
shifted and scaled signal -& 2 (F) becomes Ox (5, af) . 
Affine covariance makes these new signal representations 
natural for a host of applications, including wideband radar 
and sonar and self-similar signal analysis. 

The continuous wavelet transform' 

= f - 3  X(u) tk*( f -1v)e22Tvtdv  (1) 

and the scalogram [2], its squared magnitude, are certainly 
the most popular time-scale distributions. However, due to 
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variables t and f correspond to time and frequency, respectively; all integrals 
run from --oo to fw, lower-case letters denote tune funchons, and upper- 
case letters denote Fourier transforms We will also consider only analytic 
signals, where X ( f )  E 0 V f  < 0 Usually, the wavelet transform is 
expressed as a function of a time vanable t and a scale vanahle a. Here, 
we will use the reparametmation of scale as inverse frequency a = fo / f 
suggested in [2] and assume, without loss of generahty, that the center 
frequency fo of the wavelet $ equals 1 Hz This interpretation of scale should 
not be confused with that of Cohen [4] 
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their linear structure, these tools are sensitive to the choice 
of the wavelet $ and lack certain desirable properties, such as 
sirnukaneously good time and frequency resolution and correct 
marginals. 

To overcome these limitations, a broad class of bilinear 
distributions covariant to time and scale changes has been 
developed [I], [2]. Among these representations, the unitary 
Bertrand distribution [ 11 

B,(t, f )  f/,u(u) X ( A ( u ) f )  X * ( A ( - u ) f )  ez2aE(u)tf du 
(2) 

with X(u) = a, [ ( U )  = A(u) - A(-U) = U, and p(u) = 

[X(u)X(-u)]3 (%) plays a central role. In addition to 
having time-scale covariance, it is unitary, marginalizes to 
frequency when integrated over t and to the Mellin transform 
when integrated over hyperbolic paths t f = c, and localizes 
on hyperbolic instantaneous frequencies and group delays. 

Unfomnately, these desirable properties of the Bertrand 
distribution are offset by two major practical limitations. First, 
the entire signal enters into the calculation of the kstribution 
at any point ( t , f )  in the time-frequency plane, precluding 
its ordine operation with long signals. Second, due to its 
nonlinearity, interference components arise between each pair 
of signal components, complicating its interpretation [5],  [6]. 
Ia this letter, we propose a solution to these problems: a 

pseudo-Bertrand distribution that not only offers asymptoti- 
cally the same properties as the Bertrand distribution but also 
supports efficient online operation and suppresses troublesome 
cross components. Our derivation relies on the strong analogy 
between time-frequency and time-scale analysis and is inspired 
by the pseudo-Wigner distribution. 

II. THE PSEUDO-WIGNER DISTRIBUTION 
While the short-time Fourier transform 

and the spectrogram, its squared magnitude, are natural time- 
frequency representations, heir dependence on the window 
function w and subsequent lack of simultaneous time and 
frequency resolution have prompted the development of more 
advanced bilinear distributions, including the Wigner distribu- 
tion [3] ,  [4] 
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This representation overcomes most of the drawbacks associ- 
ated with the spectrogram, but because it matches the window 
to the signal, it suffers from two major limitations of its 
own. First, it does not support online operation, since its 
calculation requires the entire signal. Second, its interpretation 
is complicated by nonlinear interference components. 

Inserting a window function h into (3) yields a sliding 
version of the Wigner distribution 

known as the pseudo- Wigner distribution. Loosely speaking, 
this representation is equivalent to the Wigner distribution 
of the time windowed signal x ( r ) J m ,  meaning that 
large amounts of data can be treated online. Alternatively, 
the pseudo-Wigner distribution can be written in terms of a 
convolution in frequency of two short-time Fourier transforms 
computed with window W ( T )  = d m  [71 

E ( t ,  f )  = 2 S,(t, f + v) S:(t, f - v) dv. ( 5 )  / 
Since time windowing acts as a smoothing in the frequency 

domain, the pseudo-Wigner distribution suppresses the Wigner 
distribution interference components that oscillate in the fre- 
quency direction. Moreover, time direction smoothing can be 
implemented by limiting the range of the integral in (5) with 
a second lowpass function G 

GZ(t, f )  = 2 / G(v)  S,(t, f + U) s:(t, f - v) dv. (6) 

The result is called the smoothed pseudo- Wigner distribution. 
Choosing G(v)  = 6(v) yields the spectrogram %,(t, f )  = 
ISZ(t,f)I2. 

111. A PSEUDO-BERTRAND DISTRIBUTION 

Using the results of the previous section as a guide, we now 
introduce a pseudo-Bertrand distribution. By rewriting (2) in 
the time domain 

B,(t, f )  = / [(X(u)f)* / x ( T )  e--i2nX(u)f(T-t) d r  1 
it is clear that the value of the Bertrand distribution at any point 
(t, f )  depends on the entire signal x. Since online operation 
requires that we consider the signal only in a sliding time 
interval, we introduce a window function h in (7), and define 

The dependence of h on the analysis frequency f guarantees 
E,  affine covariance to time shifts and scale changes2 By 
analogy to the pseudo-Wigner distribution, we call this new 
time-scale representation the pseudo-Bertrand distribution. 

The special structure of the pseudo-Bertrand distribution 
admits an efficient online implementation. Introducing the 
bandpass wavelet function $ ( T )  = h ( ~ )  we can reorder 
(8) to yield 

m t ,  f )  = W t ,  X ( U ) f )  DXt, X ( - U ) f )  d u  (9) J 
where D, is the wavelet transform from (1) computed with 
wavelet $. This generalized convolution of two wavelet trans- 
forms parallels (5) ,  which holds for the pseudo-Wigner distri- 
bution. An algorithm to compute the pseudo-Bertrand distri- 
bution runs as follows: 

Compute the wavelet transform D,(t, f )  with wavelet 
G(T) = h(r)ei2xT. Samples should be spaced uniformly 
in time and exponentially in frequency. 
At each time t ,  for a range of U, rescale D , ( t , f )  to 
Da:(t, X(&u)f) using the Mellin transform [8], which 
maps scale changes to simple phase shifts. Since the 
Mellin transform of a function .(U) equals the Fourier 
transform of ew/2.z(e"), a fast Fourier transform (FFT) 
applied to the exponentially spaced frequency samples 
of D,(t, f )  implements a fast Mellin transform. 
At each time t ,  compute the inner product (9) with 
respect to U. 

Using a fast algorithm for the wavelet transform [8], [9], the 
computational cost of this procedure is O ( M N  log M) for N 
time and M frequency  sample^,^ which is on the same order 
as the cost for the spectrogram, pseudo-Wigner distribution, 
and scalogram. 

In addition to being computationally efficient, the pseudo- 
Bertrand distribution suppresses interference components 
oscillating in the frequency direction, since the frequency- 
dependent windowing in (8) acts as a constant-Q frequency 
smoothing. 

To suppress interference components oscillating in the time 
direction, we introduce a proportional-bandwidth time smooth- 
ing through a second lowpass function G 

We call this new time-scale representation the smoothed 
pseudo-Bertrand distribution. Choosing G( U )  = S( U) yields 
the scalogram &(t,  f )  = IDZ@, f ) I 2 .  

In [lo], we consider the existence of the pseudo-Bertrand 
distribution and the smoothed pseudo-Bertrand distribution 
within the affine class of time-scale representations. In particu- 
lar, both distributions can be related to the important Bertrand 

2Suppressing the X(fu) in h in (8) yields an alternate pseudo-Bertrand 
distribution with identical covariance properties. However, this formulation 
does not appear to admit an efficient implementation. Rioul and Flandrin 
consider the same covariance requirements in their definition of the affine 
pseudo-Wigner distribution in [2]. 

We assume that the length of the wavelet at maximum dilation is of O( M )  . 
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Fig. 1. Time-scale representations of a synthetic test signal composed of a 
Lipschitz singularity It - t~l-’.’~ followed by three Gaussian windowed 
tones. The frequency axis runs from 0.05 to 0.5 cycles/sample: (a) Bertrand 
distribution; (b) pseudo-Bertrand distribution computed with a Morlet wavelet 
of Q = 6 ;  (c) smoothed pseudo-Bertrand distribution computed with the same 
wavelet as in (b) and a square window G of bandwidth 1.4 that time smooths 
with bandwidth b ( f )  = 1.4f; (d) scalogram computed with the same wavelet 
used in (b) and (c). 

1 

distribution by an affine smoothing of the form 

with kernel function 

IV. EXAMPLE 

Fig. 1 illustrates several time-scale distributions of a syn- 
thetic test signal composed of a Lipschitz singularity followed 
by three modulated Gaussians. While the Bertrand distribution 
of Fig. l(a) has excellent time-frequency resolution, it dso has 
copious interference components. The constant-Q frequency 
smoothing of the pseudo-Bertrand distribution of Fig. l(b) 
suppresses the interference components that oscillate in the 

frequency direction without affecting the time resolution of the 
representation. The proportional-bandwidth time smoothing 
of the smoothed pseudo-Bertrand distribution of Fig. 1(c) 
suppresses the interference components that oscillate in the 
time direction. For comparison purposes, in Fig. l(d), we plot 
the scalogram, which can also be obtained from the Bertrand 
distribution via an affine smoothing. 

V. CONCLUSIONS 
Although the Bertrand distribution has many attractive 

properties, lack of an efficient implementation has limited its 
impact on time-varying signal analysis. By overcoming some 
of its limirations, the pseudo-Bertrand and smoothed pseudo- 
Bertrand distributions should open up new application areas to 
this powerful tool. Moreover, since the Bertrand distribution 
belongs to a more general class of affine Wigner distributions 
of the form (2) with X k ( u )  = [k (e - l l -  l)/_(eCkv - l)]l/(k-l) 
[l], we can extend our methods and construct a class of 
pseudo-affine Wigner distributions. Members of this class, 
such as the pseudo-Unterberger and the pseudo-D distribu- 
tions, gain efficient implementations [lo]. Finally, to tune the 
pseudo-Bertrand distribution to the local characteristics of the 
signal, we can adapt the wavelet $ in the sliding algorithm 
using the techniques of [ 111. 
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