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Abstract: Inhomogeneous elliptical inclusions with partial differential equations have aroused appre-
ciable concern in many disciplines. In this paper, a pseudo-spectral collocation method, based on
Fourier basis functions, is proposed for the numerical solutions of two- (2D) and three-dimensional
(3D) inhomogeneous elliptic boundary value problems. We describe how one can improve the
numerical accuracy by making some extra “reconstruction techniques” before applying the tradi-
tional Fourier series approximation. After the particular solutions have been obtained, the resulting
homogeneous equation can then be calculated using various boundary-type methods, such as the
method of fundamental solutions (MFS). Using Fourier basis functions, one does not need to use
large matrices, making accrual computations relatively fast. Three benchmark numerical examples
involving Poisson, Helmholtz, and modified-Helmholtz equations are presented to illustrate the
applicability and accuracy of the proposed method.

Keywords: inhomogeneous elliptical inclusions; meshless method; collocation method; Fourier
collocation method; Fourier basis functions; method of fundamental solutions

1. Introduction

After the pioneering work of stress analyses considering elliptical region, inhomo-
geneous elliptical inclusions with partial differential equations have aroused appreciable
concern, such as two-dimensional problems [1–3] and three-dimensional problems [4–6].
It is worth noting that the term ‘inclusions’ here refers to a medium whose properties are
different from surrounding media (subdomain of the homogeneous region) inside which
the eigenstrain occurs [7–9]. For general inhomogeneous problems, the applicability of the
classical boundary element method (BEM) [10–14] and method of fundamental solutions
(MFS) [13,15–24] depends heavily on how we evaluate the particular solution of the given
problem [25–38]. One popular idea is to assume that the particular unknown solution up(x)
can be approximated by a set of “basis functions” ϕi(x):

up(x) =
N

∑
i=0

ai ϕi(x). (1)

Substituting the series (1) into the governing equation (L is the operator of the differ-
ential equation),

Lup(x) = f (x), (2)

the remaining challenge is to choose the series coefficients ai so that the residual of
Equation (2) can be minimized. Although many types of “basis functions” are available,
a good choice for most of all applications is the Fourier series [39–43]. Another popular
used “basis function” is the well-known Chebyshev series, which is just a Fourier cosine
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expansion with a change of variable [25,40,42,44,45]. Once the particular solutions have
been obtained, the solution of the original problem can then be converted to a homogeneous
one which can be solved by using the BEM/MFS-based methods [11,13,14,19,46–64].

We start in Section 2 by describing some basic mathematical theories of Fourier series,
Fourier basis functions, and Fourier interpolation. We also describe how to improve
numerical accuracy by making some extra “reconstruction techniques” before applying the
Fourier series approximation. Section 3 is the main section, in which we describe the FCM
in detail, along with how one implements it to solve the particular solutions of the given 2D
and 3D boundary value problems. Next, in Section 4, a hybrid Fourier collocation method,
which couples the MFS, will be presented. In Section 5, several numerical examples are
presented to demonstrate the effectiveness of the present method. Finally, in Section 6,
some conclusions and remarks are provided.

2. Basic Theory of Fourier Basis Functions

Let’s consider the following inhomogeneous problem:

Lu(x) = f (x), x ∈ Ω, (3)

subject to the following Dirichlet and Neumann conditions:

u(x) = u(x) for x ∈ ΓD, (4)

∂u(x)
∂n

= ∇u(x) · n(x) = q(x) for x ∈ ΓN , (5)

where x = (x1, x2) and x = (x1, x2, x3) for 2D and 3D problems, respectively, u(x) and q(x)
stand for the boundary conditions specified along the boundary, n(x) denotes the outward
unit normal vector at a boundary point x, f (x), is the inhomogeneous term. In the BEM
and MFS communities, a popular way for solving a problem (3) is to split the final solution
u(x) into a sum of up(x) (particular solution) and uh(x) (homogeneous solution). The
inhomogeneous solutions satisfy Equation (3) but do not necessarily the given boundary
conditions. After up(x) has been calculated, the solution uh(x) can then be obtained by
solving the following problem:

Luh(x) = 0, x ∈ Ω, (6)

uh(x) = u(x)− up(x) for x ∈ ΓD, (7)

∂uh(x)
∂n

= q(x)−
∂up(x)

∂n
for x ∈ ΓN . (8)

In our computations, the homogeneous boundary value problem (6)–(8) will be solved
using the standard MFS approach, introduced in the following Section 4.

For a general one-dimensional (1D) function f (x) defined on a symmetric interval
x ∈[−L, L], the standard Fourier series is given explicitly as follows:

f (x) = a0 +
∞

∑
n=1

an cos
(πnx

L

)
+

∞

∑
n=1

bn sin
(πnx

L

)
, (9)

where {an}∞
n=0 and {bn}∞

n=1 are coefficients. Equation (9) can be expressed in the following
complex form:

f (x) =
∞

∑
n=−∞

(
cnei πnx

L

)
, (10)

where {c−n} and {cn} are a pair of conjugate complex numbers. The relations:

cos(x) =
1
2

(
eix + e−ix

)
, sin(x) =

1
2i

(
eix − e−ix

)
. (11)
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indicate that (9) and (10) are completely equivalent, and we shall use whichever is con-
venient. In this study, the complex form Equation (10) is employed for the convenience
of computer programming. For computational purposes, the function f (x) is usually
approximated by the following truncated Fourier series:

f (x) =
N

∑
n=−N

(
cnei πnx

L

)
, (12)

where N presents the degree of Fourier polynomials. If f (x) is a known function, the
Fourier coefficients {cn}N

n=−N can be obtained by collocating Equation (12) on M ≥ 2N + 1
interpolation (collocation) points. This is called the “collocation” or “pseudo-spectral”
method [65].

It should be noted that the Fourier series approximation (12) works best for periodic
functions. It will, however, also converge for a quite arbitrary function f (x) defined only on
a finite interval [−L, L]. In such a case, we should extend f (x) to x ∈ (−∞, +∞). For actual
computations, we only care about the Fourier series expansion defined on x ∈ [−L, L].
However, such periodic extension will cause discontinuities at two extreme points x = ±L,
which will pollute the approximation accuracy of the Fourier series expansion. We will
prove this by the following example. Suppose we take f (x) = ex + x3, x ∈ [−3, 3], evaluate
the Fourier coefficients and sum the series (12). What do we get? We first extend the
definition of f (x) = ex + x3 to (−∞, +∞). The new function is discontinuous at points
x = ±L (L = 3 in this example), as shown in Figure 1. We then write the truncated Fourier
approximation as:

f (x) = ex + x3 ≈
10

∑
n=−10

(
cnei πnx

3

)
, (13)

where the degree of Fourier polynomials here is chosen as N = 10. We arbitrarily choose
M = 30 interpolation points inside the interval [−3, 3], which gives M = 30 equations, and
then the Fourier coefficients {cn}10

n=−10 can be determined. After that, the function values
at any points inside [−3, 3] can then be calculated by using Equation (13) again.
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Figure 1. Periodic extensions of the function f (x) = ex + x3, x ∈ [−3, 3].

Figure 2a compares the exact and numerical Fourier solutions. We can observe that
the discontinuity of the function at points x = ±3 has polluted the approximation with
small, spurious oscillations everywhere. Near the discontinuity, there is a region where the
error reaches its maximum. This fact is known as the “Gibbs Phenomenon.” Fortunately,
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through certain “modification” or “reconstruction,” it is possible to ameliorate some of
these problems. One of the widely used techniques is to extend, smoothly, the original
function f (x) over [−L, L] to [−kL, kL] (k > 1) so that the new function is smooth at points
x = ±L. From the view of mathematics, any kind of extension of f (x) is fine. In actual
computations, the detailed knowledge of such extension is not required since we only care
about the Fourier series expansion defined on [−L, L].
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Figure 2. Comparison of the exact and Fourier-series solutions before (a) and after (b) smoothly
extending the original function f (x).

According to the above analysis, the original Fourier series approximation (13) can be
modified as:

f (x) = ex + x3 ≈
10

∑
n=−10

(
cnei πnx

3k

)
, (14)

where k > 1 is the so-called “period expansion coefficient,” which can be determined by the
user. The source codes written in MATLAB®2018a for this example can be found in Table 1.

Table 1. MATLAB®2018a program for modified Fourier series approximation (14).

clc; clear;
u_exact = @(x) exp(x) + x.ˆ3;
= 10; N_N = -N: N;
arf_arf = 2;
N_collocation = 30; L = 3;
L_extend = arf_arf *L;
x_collocation = linspace(-L, L, N_collocation)’;
= exp(i*N_N.*x_collocation*pi/L_extend);
= u_exact(x_collocation);
arf = A\B;
x_num = linspace(-L, L, 60)’;
Num = real(exp(i.*N_N.*x_num*pi/L_extend)*arf);
plot(x_num, u_exact(x_num),’r-’, x_num, Num,’bo’);
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3. Fourier Collocation Method (FCM) for Particular Solutions
3.1. Two-Dimensional Problems

Suppose F(x1, x2), (x1, x2) ∈ [−L1, L1]× [−L2, L2], is a bounded function, it can be
approximated as:

F(x1, x2) =
N1

∑
m=−N1

N2

∑
n=−N2

am,nei πm
kL1

x1 ei πn
kL2

x2 , (x1, x2) ∈ [−L1, L1]× [−L2, L2], (15)

where N1 and N2 stand for degrees of Fourier polynomials in the x1- and x2-directions,
respectively, {am,n} are Fourier coefficients, and k is the so-called “period expansion coeffi-
cient” as defined in Equation (14). According to the above analysis, the Fourier coefficients
{am,n} can be solved by collocating Equation (15) on M ≥ (2N1 + 1)(2N2 + 1) collocation
points defined over the square [−L1, L1]×[−L2, L2]. To guarantee the spectral convergence,
it is recommended to use the Gauss–Lobatto points (the roots of Chebyshev polynomials)
as the collocation points:

ξi = cos
(

iπ
n

)
, 0 ≤ i ≤ n, (16)

where {ξi}n
i=0 are the n + 1 roots of the following Chebyshev polynomial [42]:

Tn+1(x) = cos[(n + 1)arccos(x)], x ∈ [−1, 1]. (17)

As an example, Figure 3 gives the distribution of the Gauss–Lobatto points.
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Figure 3. Distribution of Gauss–Lobatto nodes in [−1,1] × [−1,1].

For function F(x1, x2) defined on an arbitrary domain [a, b] × [c, d], the following
change of variables should be used:

F(x1, x2) =
N1

∑
m=−N1

N2

∑
n=−N2

am,nei πm
kα1

(x1−β1)ei πn
kα2

(x2−β2), (x1, x2) ∈ [a, b]× [c, d], (18)

where
α1 =

b− a
2

, β1 =
a + b

2
, α2 =

d− c
2

, β2 =
c + d

2
. (19)
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Equation (18) is named as the shifted Fourier series expansion. Similarly, the stan-
dard Gauss–Lobatto points (collocation points) defined in [−1, 1]× [−1, 1], as shown in
Equation (16), should be mapped into [a, b]× [c, d] as follows:

x1 = α1ξ + β1, x2 = α2η + β2, (20)

where ξ and η are Gauss–Lobatto points along the x1- and x2-directions, respectively.
We now suppose that F(x1, x2) be the particular solution up(x1, x2) of the given inho-

mogeneous problem (3) defined in Ω. It should be noted that, in real-world engineering
applications, Ω is, in general, an arbitrary/irregular domain. Since the particular solution
does not necessarily satisfy the boundary conditions, one can extend smoothly up(x1, x2)
from Ω to [a, b]× [c, d] containing the original domain Ω, so that the shifted Fourier series
expansion (18) can be used. Substituting Equation (18) into the governing Equation (3),
one has:

Lup(x1, x2) =
N1

∑
m=−N1

N2

∑
n=−N2

am,nL
[
ei πm

kα1
(x1−β1)ei πn

kα2
(x2−β2)

]
= f (x1, x2), (x1, x2) ∈ [a, b]× [c, d]. (21)

In Equation (21), by collocating on the M ≥ (2N1 + 1)(2N2 + 1) collocation points,
the unknown coefficients {am,n} can be calculated using various minimization strategies.
Finally, the particular solutions up(x1, x2) can be calculated by substituting {am,n} to the
Fourier series expansion (18).

3.2. Three-Dimensional Problems

Similarly, if F(x1, x2, x3) is a bounded function defined in a cubic [a, b]×[c, d]×[e, f ],
then it can be approximated as:

F(x1, x2, x3) =
N1

∑
m=−N1

N2

∑
n=−N2

N3

∑
l=−N3

am,n,le
i πm

kα1
(x1−β1)ei πn

kα2
(x2−β2)ei πl

kα3
(x3−β3), (22)

where N1, N2 and N3 stand for degrees of Fourier polynomials in the x1-, x2- and x3-directions,
respectively,

{
am,n,l

}
are Fourier coefficients, k is the “period expansion coefficient,” {αi}3

i=1
and {βi}3

i=1, which used to image [a, b]×[c, d]×[e, f ] to [−L1, L1]×[−L2, L2]×[−L3, L3], are
given as follows:

α1 =
b− a

2
, β1 =

a + b
2

, α2 =
d− c

2
, β2 =

c + d
2

, α3 =
f − e

2
, β3 =

e + f
2

. (23)

The standard Gauss–Lobatto points can be mapped into [a, b]×[c, d]×[e, f ] as follows:

x1 = α1ξ + β1, x2 = α2η + β2, x3 = α3τ + β3. (24)

where ξ, η and τ are Gauss-Lobatto points along the x1-, x2- and x3-directions, respectively.
We now suppose that F(x1, x2, x3) be the particular solution up of the given problem

(3), which is defined in an arbitrary/irregular 3D domain Ω. Similar to the previous 2D case,
we should extend smoothly up(x1, x2, x3) to a bigger cubic domain [a, b] × [c, d] × [e, f ]
containing the original domain Ω, so that the aforementioned Fourier series expansion (22)
can be used. Substituted Equation (22) into the governing Equation (3), one has:

Lup(x1, x2, x3) =
N1

∑
m=−N1

N2

∑
n=−N2

N3

∑
l=−N3

am,n,l L
[

ei πm
kα1

(x1−β1)ei πn
kα2

(x2−β2)ei πl
kα3

(x3−β3)
]
= f (x1, x2, x3). (25)

By collocating on the M ≥ (2N1 + 1)(2N2 + 1)(2N3 + 1) collocation nodes, the co-
efficients

{
am,n,l

}
can be calculated, and then the particular solutions up(x1, x2, x3) can

be obtained.
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4. The MFS for Homogeneous Solutions

One of the popular methods for calculating the homogeneous equation is the MFS. In
the MFS approach, the homogeneous solution uh(x) can be approximated as [47,66–72]:

uh(x) =
nb

∑
j=1

αjG
(
rj
)
, x ∈ Ω ∪ ∂Ω, (26)

where x = (x1, x2) and x = (x1, x2, x3) for 2D and 3D problems, respectively,
(
αj
)nb

j=1 are the

unknown coefficients, nb denotes the number of source points (s = (s1, s2) or s = (s1, s2, s3))
which are placed outside the computational domain, rj = ‖x− s‖ denotes the Euclidean
distance between points x and s, and

G(r) = − 1
2π

log(r), (27)

G(r) =
i
4

H(1)
0 (λr), (28)

G(r) =
1

2π
K0(λr), (29)

denote the fundamental solutions for 2D Poisson, Helmholtz, and modified Helmholtz
equations [73], where H(1)

0 is the Hankel function of the first kind of order zero, K0 stands
for the modified Bessel function of the second kind of order zero, and

G(r) =
1

4πr
, (30)

G(r) =
1

4πr
exp(−iλr), (31)

G(r) =
1

4πr
exp(−λr), (32)

are fundamental solutions for 3D Poisson, Helmholtz, and modified Helmholtz equations,
respectively [74]. In Equations (28), (29), (31), and (32), the parameter λ presents the
frequency of the acoustical field. The normal derivative of uh(x) can be calculated as:

∂uh(x)
∂n

=
nb

∑
j=1

αj
(
∇G

(
rj
)
· n(x)

)
, x ∈ ∂Ω. (33)

In the MFS, the unknown coefficients
(
αj
)nb

j=1 can be calculated by collocating M
observation points along the boundary ∂Ω according to the specified Dirichlet (7) and
Neumann (8) boundary conditions. Once all unknowns

(
αj
)nb

j=1 are computed, the solution

uh(x) and its derivatives at any point inside the computational domain can be calculated.
The final solution u(x) of the considered inhomogeneous problem can be calculated as
u(x) = up(x) + uh(x). The flowchart of the present method can be found in Figure 4.
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5. Numerical Results and Discussions

Here, the stability and convergence of the present method with respect to the number
of Gauss–Lobatto nodes and the degrees of Fourier polynomials are carefully investigated.
In the MFS simulations, the leave-one-out cross-validation (LOOCV) method [66] is em-
ployed to determine the optimal location of the source points. In this study, all computations
were implemented on a Core_i9 laptop PC with a 2.5 GHz CPU, 80 GB RAM, and 1000 GB
hard drive. The platform used to write the codes is MATLAB 2021a. The following L2 error
norm (global error) and maximum absolute error are employed:

EGlobal =

√√√√ N

∑
k=1

(Ik
numerical − Ik

exact)
2/

√√√√ N

∑
k=1

Ik
exact

2, (34)

EMax = max
1≤k≤N

∣∣∣Ik
numerical − Ik

exact

∣∣∣, (35)

where Ik
numerical and Ik

exact are numerical and analytical solutions, respectively.
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5.1. Poisson Equation (L = ∇2) in a 2D Multiply-Connected Domain

Firstly, let’s consider the Poisson equation with Dirichlet boundary conditions:

∇2u(x1, x2) =
∂2u(x1, x2)

∂x2
1

+
∂2u(x1, x2)

∂x2
2

= f (x1, x2), (x1, x2) ∈ Ω, (36)

u(x1, x2) = u(x1, x2), (x1, x2) ∈ ∂Ω, (37)

where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 is the Laplace operator, and the inhomogeneous term
f (x1, x2) and the boundary condition u(x1, x2) are chosen such that satisfying the following
exact solution:

u(x1, x2) = exp(x1 + x2) + x2
1 + x2

2. (38)

The problem considered here is a square plate with 100 circular holes (see Figure 5).
For the numerical implementation, a total of N = 2080 testing nodes are selected inside
the computational domain. In the MFS, the source points are located on a circle of ra-
dius r (see Figure 6). The LOOCV method [66] is employed to determine the value of r
(r = 1.986). When using the Fourier collocation method for solving particular solutions,
we use M=(2N1 + 4)(2N2 + 4) Gauss–Lobatto nodes (interpolation points) to calculate the
Fourier coefficients, where N1 and N2, as defined in Section 3, stand for degrees of Fourier
polynomials along x1- and x2-directions, respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

5.1. Poisson Equation ( 2L = ∇ ) in a 2D Multiply-Connected Domain 
Firstly, let’s consider the Poisson equation with Dirichlet boundary conditions: 

2 2
2 1 2 1 2

1 2 1 2 1 22 2
1 2

( ) ( )( ) ( ), ( ) ,u x ,x u x ,xu x ,x f x ,x x ,x
x x

∂ ∂∇ = + = ∈Ω
∂ ∂

 (36)

1 2 1 2 1 2( ) ( ), ( ) ,u x ,x u x ,x x ,x= ∈∂Ω  (37)

where 2 2 2 2 2
1 2/ /x x∇ = ∂ ∂ + ∂ ∂  is the Laplace operator, and the inhomogeneous term 

1 2( )f x ,x  and the boundary condition 1 2( )u x ,x  are chosen such that satisfying the fol-
lowing exact solution: 

2 2
1 2 1 2 1 2( ) exp( ) .u x ,x x + x x x= + +  (18)

The problem considered here is a square plate with 100 circular holes (see Figure 5). 
For the numerical implementation, a total of 2080N =  testing nodes are selected inside 
the computational domain. In the MFS, the source points are located on a circle of radius 
r (see Figure 6). The LOOCV method [66] is employed to determine the value of r (

1.986r = ). When using the Fourier collocation method for solving particular solutions, 
we use M = 1(2 4)N + 2(2 4)N +  Gauss–Lobatto nodes (interpolation points) to calcu-

late the Fourier coefficients, where 1N  and 2N , as defined in Section 3, stand for de-

grees of Fourier polynomials along 1x - and 2x -directions, respectively. 

  

(a) (b) 

Figure 5. Geometry of the problem (a) and the distribution of the shifted Gauss–Lobatto nodes (b). Figure 5. Geometry of the problem (a) and the distribution of the shifted Gauss–Lobatto nodes (b).

Firstly, we study the convergence of the present method with the degree of Fourier
polynomials. For this, Table 2 shows the maximum and global errors of the calculated
temperatures using the present FCM-MFS approach, as the degrees of Fourier polynomials
increase from N1 = N2 = 2 to N1 = N2 = 14. We can observe that the calculated results
are accurate and rapidly convergent as the degree of Fourier polynomials increases. We
can also observe that the present method can be quite accurate even with a small degree
of Fourier polynomials. The CPU times taken by the proposed method are also given in
Table 2. Figure 7a,b shows the contours of errors calculated at points inside the whole
domain, by using N1 = N2 = 3 and N1 = N2 = 8, respectively. The purpose of testing this
simple problem is to verify the reliability of the proposed method for the solution of 2D
inhomogeneous elliptic problems.
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Table 2. Numerical results with respect to various degrees of Fourier polynomials.

Degrees of Fourier
Polynomials (N1=N2)

Maximum Absolute
Error (EMax)

Global Error
(EGlobal)

CPU-Times (Second)

2 1.122 × 10−2 2.014 ×10−04 0.222
3 3.604 × 10−04 6.813 × 10−06 0.228
4 1.389 × 10−05 2.790 × 10−07 0.235
5 6.505 × 10−07 1.249 × 10−08 0.239
6 3.038 × 10−08 6.303 × 10−10 0.237
7 1.508 × 10−09 3.235 × 10−11 0.238
8 8.019 × 10−11 1.696 × 10−12 0.252
9 1.747 × 10−11 3.347 × 10−13 0.263

10 2.028 × 10−11 2.899 × 10−13 0.275
11 1.905 × 10−11 2.974 × 10−13 0.342
12 2.104 × 10−11 3.425 × 10−13 0.369
13 2.805 × 10−11 4.350 × 10−13 0.392
14 2.785 × 10−11 4.902 × 10−13 0.479
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5.2. Helmholtz Problems (L = ∇2 + λ2) in a 3D Dolphin-Shaped Solid

Next, let’s consider the following 3D Helmholtz equation with mixed boundary conditions:(
∇2 + λ2

)
u(x1, x2, x3) = f (x1, x2, x3), (x1, x2, x3) ∈ Ω, (39)

u(x1, x2, x3) = u(x1, x2, x3), (x1, x2, x3) ∈ ΓD, (40)

∂u(x1, x2, x3)

∂n
= q(x1, x2, x3), (x1, x2, x3) ∈ ΓN , (41)

where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3 denotes the Laplace operator, λ is the frequency of

the acoustical field. In the above equation, the inhomogeneous term f (x1, x2, x3) and the
boundary conditions u(x1, x2, x3) q(x1, x2, x3) are chosen such that satisfying the following
exact solution:

u(x1, x2, x3) = cos(x1 + x2 + λx3). (42)

Here, we consider a dolphin-shaped solid domain [42], as shown in Figure 8. The dimen-
sions of the dolphin-shaped solid are 3.6 m (length), 1.05 m (width), and 1.36 m (height). The
computational domain is extended here to the cubic [−0.1, 3.7]× [−0.1, 1.1]× [−0.1, 1.4],
so that the shifted Fourier series expansion (22) can be used. A total of 7307 collocation
points are selected inside the computational domain, which contains 5278 boundary nodes
and 2029 interior nodes. The acoustical field is given on the left-half side of the domain
{0 ≤ x ≤ 1.8}, and the sound velocities are prescribed on the remaining boundary points.
The wavenumber here is taken to be λ =

√
3. For the MFS simulations, the fictitious boundary

is set to be a sphere with a radius r = 2.936, as shown in Figure 9. When using the Fourier
collocation method for solving particular solutions, we use M=(2N1 + 4)(2N2 + 4)(2N3 + 4)
Gauss–Lobatto nodes to calculate the Fourier coefficients, where N1, N2 and N3 are degrees
of Fourier polynomials along x1-, x2- and x3-directions, respectively.
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Table 3 lists the maximum and global errors of the sound results calculated using
the proposed FCM-MFS approach, as the degrees of Fourier polynomials increase from
N1 = N2 = N3 = 1 to N1 = N2 = N3 = 10. These results illustrate the high accuracy and
fast convergence of the present method. It can be observed that the present method can be
quite accurate even with a small degree of Fourier polynomials. The CPU times are also
given in Table 3. In the previous examples, we have studied the accuracy and convergence
of the present method with the degrees of Fourier polynomials. Here, we investigate the
effect of the wave number λD on the accuracy of the present FCM-MFS results, where
D = 4 denotes the maximum diameter of the domain. In our computations, the degrees of
Fourier polynomials are taken to be N1 = N2 = N3 = 6. Figure 10 illustrates the errors of
sounds u(x1, x2, x3) and sound derivatives ∂u(x1, x2, x3)/∂x1. As expected, the FCM-MFS
results have been improved as the values of λD decrease.
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Table 3. Numerical results with respect to various degrees of Fourier polynomials.

Degrees of Fourier
Polynomials (N1=N2=N3)

Maximum Absolute
Error (EMax)

Global Error
(EGlobal)

CPU-Times
(Second)

1 3.551 × 10−03 8.722 × 10−04 1.699
2 2.219 × 10−05 4.521 × 10−06 1.883
3 9.751 × 10−07 1.842 × 10−07 1.932
4 4.368 × 10−08 8.492 × 10−09 2.148
5 2.177 × 10−09 4.371 × 10−10 5.464
6 1.787 × 10−10 3.667 × 10−11 17.471
7 6.674 × 10−10 6.694 × 10−11 48.544
8 1.373 × 10−09 2.002 × 10−10 132.663
9 4.130 × 10−09 4.884 × 10−10 350.438

10 4.752 × 10−09 5.329 × 10−10 771.604
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5.3. Modified Helmholtz Problems (L = ∇2 − λ2) in a Five Pieces Fan Blade

Finally, let’s consider the following modified Helmholtz equation:(
∇2 − λ2

)
u(x1, x2, x3) = f (x1, x2, x3), (x1, x2, x3) ∈ Ω, (43)

u(x1, x2, x3) = u(x1, x2, x3), (x1, x2, x3) ∈ ΓD, (44)

∂u(x1, x2, x3)

∂n
= q(x1, x2, x3), (x1, x2, x3) ∈ ΓN , (45)

where the exact solution is chosen as:

u(x1, x2, x3) = e−(x1+x2+λx3) + x1 + x2 + x3. (46)

This example considers a five-piece fan blade domain [75] (see Figure 11). The dimen-
sions of the problem are 1.5 m, 5 m and 5 m along x-, y- and z-axis coordinates, respectively.
The original domain is extended to a bigger cubic [−0.1, 1.6]× [−0.1, 5.1]× [−0.1, 5.1]. A
total of 11,300 collocation points are selected inside the computational domain. Dirichlet
boundary conditions are prescribed on the left-half side of the domain {0 ≤ y ≤ 2.5},
and Neumann boundary conditions are given on the remaining boundary points. The
wavenumber is chosen as λ =

√
3. For the MFS simulations, the fictitious boundary is set

to be a sphere with a radius r = 3.695, as shown in Figure 12. When using the Fourier collo-
cation method for solving particular solutions, we use M = (2N1 + 4)(2N2 + 4)(2N3 + 4)
Gauss–Lobatto nodes to calculate the Fourier coefficients, where N1, N2 and N3 are degrees
of Fourier polynomials along x1-, x2- and x3-directions, respectively.
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Table 4 shows the maximum and global errors of the calculated FCM-MFS results as the
degrees of Fourier polynomials increase from N1 = N2 = N3 = 1 to N1 = N2 = N3 = 10.
These results indicate the high accuracy of the proposed method. Figure 13 shows
the relative error curves of the calculated u(x1, x2, x3) and ∂u(x1, x2, x3)/∂x1 as the non-
dimensional wave number λD increases from 20 to 500, where λ is the wavenumber and
D = 5 denotes the maximum diameter of the computational domain. In our computations,
the degrees of Fourier polynomials are taken to be N1 = N2 = N3 = 6. We can observe that
the proposed FCM-MFS approach can achieve accurate results even with a relatively large
value of wavenumber, for example, λD = 500.
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Table 4. Numerical results with respect to various degrees of Fourier polynomials.

Degrees of Fourier
Polynomials (N1=N2=N3)

Maximum Absolute
Error (EMax)

Global Error
(EGlobal)

CPU-Times
(Second)

1 1.854 × 10−02 6.593 × 10−04 2.355
2 1.646 × 10−03 5.606 × 10−05 2.542
3 1.354 × 10−04 4.353 × 10−06 2.736
4 1.005 × 10−05 3.139 × 10−07 3.306
5 6.777 × 10−07 2.223 × 10−08 5.678
6 4.346 × 10−08 1.609 × 10−09 15.458
7 3.599 × 10−09 1.286 × 10−10 47.648
8 2.934 × 10−09 4.647 × 10−11 132.023
9 5.257 × 10−09 9.232 × 10−11 345.086

10 5.524 × 10−09 1.095 × 10−10 670.547
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6. Concluding Remarks

This paper presents a direct, accurate, and stable technique for the numerical solution
of certain elliptic partial differential equations. In this study, an FCM technique, based
on the Fourier polynomial scheme, is proposed for approximating the particular solu-
tions of the governing equations of interest problems. To guarantee the pseudo-spectral
convergence of the algorithm, the Gauss–Lobatto nodes are used as collocation points
in the developed approach. After the particular solutions have been obtained, the MFS
approach has been employed for solving the resulting homogeneous problem. Of course,
other choices of boundary-type or localized discretization techniques are possible. Several
numerical experiments illustrate that the present method is simple yet highly accurate.
Though the method has been developed in the context of Poisson and Helmholtz-type
equations, an extension of the method to many other problems is fairly straightforward. In
addition, it is necessary to analyze and optimize the proposed method’s implementation to
improve accuracy and efficiency. The analyses include convergence order of the algorithm,
the parameter optimizations of the scale of the extended domain and the number of Gauss–
Lobatto nodes, and new techniques of adaptive mesh refinements. The aforementioned
analyses will be further investigated in future work.
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