
A Pseudo-Synchronous Implementation Flow

for WCHB QDI Asynchronous Circuits

Yvain Thonnart, Edith Beigné, Pascal Vivet
CEA-LETI, Minatec, Grenoble, France

Async’2012, May 8th 2012

DTU, Copenhagen, Denmark

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 2

Asynchronous circuits

 A handcrafted piece of art

 Entangled uneven loops

 Requires minute

attention to detail

 Very valuable for

specific needs

 But very expensive

design time

 A powerful heavy machinery

 Backed-up by big EDA companies

 Obsessed about clocks

 Scared of loops

with synchronous CAD tools?

 Pseudo-synchronous implementation

 “Mass-produced”

 Much cheaper design time

 Can run fast, nevertheless!

Trick the

chain link model

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 3

Outline

 Asynchronous circuits with synchronous CAD tools ?

 Pseudo-synchronous models for C-elements

 Pseudo-synchronous circuit implementation

 Benchmarking against asynchronous implementation

 Real-world implementations

 Conclusion & perspectives

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 4

DIMS WHCB pipeline

combinational loops & optimization

 Performance is given by the loops cycle times
 Design optimization needs to constrain those loops

 Synchronous CAD tools can’t handle them

need to cut the loops in the timing graph & constrain loop segments

 Where to cut for a systematic approach
 in the WCHB C-elements: the ones gathering forward and backward

data (they must be Resetted)

C

Fwd
Logic

Bwd
Logic

Reset

C

C

Fwd
Logic

Bwd
Logic

Reset

C

C

Fwd
Logic

Bwd
Logic

Reset

C

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 5

Asynchronous Implementation: cost & flaws
 Resulting timing constraints:

 For each WCHB C-element in the cell library,
disable timing arcs to cut the loops

 set_disable_timing ‘C_element’ –from ‘in’ –to ‘out’
 For each path segment between two WCHB C-elements,

specify a target maximum delay

 set_max_delay –from ‘C/elt/inst1/out’ –to ‘C/elt/inst2/in’ 0.5ns

 Limitation: The WCHB C-elements themselves are not
optimized
 Minimal or no drive adaptation of cells depending on cell load

 No consideration on signal slope on path end

 Cells can be moved back and forth during placement

Synchronous CAD tools do not manage asynchronous path ends correctly

Use pseudo-synchronous models for WCHB C-elements
to cut timing loops without disabling timing arcs

to improve tool control over path ends

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 6

Pseudo-synchronous circuit timing paths

 Loops are cut naturally at pseudo-synchronous C-elts
 No need to disable a timing arc

 Creates 2 kinds of paths in WCHB pipeline:

 forward paths

 backward paths

How to derive pseudo synchronous models ?

How to constrain resulting paths ?

C Fwd
Logic

Bwd
Logic

Reset=clk

C Fwd
Logic

Bwd
Logic

Reset=clk

C Fwd
Logic

Bwd
Logic

Reset=clk

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 7

Asynchronous .lib characterization

 .lib files in Liberty format to model cell timing arcs
 As a function of input transition times and output capacitance

 4 values per arc : rise delay, fall delay, rise transition, fall transition

Reset

A

B

Z

when B=1 and Reset inactive

A

Z

rise_delay

rise_tran

rise_delay(AZ):

 30ps 120ps 200ps

 80ps 160ps 250ps
130ps 210ps 300ps

 Z output capacitance

10fF 40fF 100fF

 A input transition

10ps

80ps

200ps

rise_tran(AZ):

12ps 80ps 320ps

20ps 85ps 320ps
28ps 90ps 320ps

 Z output capacitance

10fF 40fF 100fF

 A input transition

10ps

80ps

200ps

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 8

Pseudo-synchronous .lib derivation

Clk (was Reset)

A

B

Z

 C-element is modeled like a synchronous flip-flop
 Reset pin is used as a dummy clock input

 New arc uses first row of AZ arc, old arcs are turned to setup checks

A

Z

rise_delay

rise_tran

rise_delay(ClkZ):

 30ps 120ps 200ps

 80ps 160ps 250ps
130ps 210ps 300ps

 Z output capacitance

10fF 40fF 100fF

rise_tran(ClkZ):

12ps 80ps 320ps

20ps 85ps 320ps
28ps 90ps 320ps

 Z output capacitance

10fF 40fF 100fF

Clk

setup rise constraint

setup_rise(AClk)

computed as diff.
between 1st column of
previous rise_delay(AZ)
and new rise_delay(ClkZ)

setup_rise(BClk)
Idem with previous BZ

 A input transition

 10ps

 80ps

 200ps

 0ps
 50ps

100ps

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 9

Simple pseudo-synchronous constraint
 Declaring a clock on the reset signal constrains all paths

to a given “dummy” period
Actual asynchronous cycle time given by biggest sum of 2 fwd + 2bwd delays

on the loops (for token+bubble)

as bad as 4x dummy target period

often less (2x-3x) as no hold fixing is done

 Dummy clock period limitation:
 Logic depth can be different on each path

 Relaxes all paths to worst path length

Actual throughput not optimal when forward and backward logic are not

balanced (on most critical local loop)

Actual forward latency can be really sub-optimal (given by sum of fwd delays)

What about over-constraining the design ?
 Negative slack is not a big deal for implementation, circuit is QDI after all !

 But over-constrained paths will distract the optimization kernels…

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 10

Refined pseudo-synchronous timing

constraints

Use dummy clock declaration to identify paths, not to

constrain design with a given period
 Declare clock to break loops, with any period (e.g. 0ns)

 Override delays on all paths with reg2reg set_max_delay constraints

 set_max_delay 0.23ns –from C/elt/inst1 –to C/elt/inst2

(no pins given preserve all arcs inferred by clock declaration)

Resulting constraints very similar to asynchronous

ones, but with no timing arc disabled
Better control on timing paths for optimization tools

Leverage on all existing asynchronous STA methods to predict

performance

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 11

WHCB isochronic forks handling

 Green fork needs no isochronic assumption
 Both branches are acknowledged by protocol (C-element on point of reconvergence)

 Red forks should be isochronic (or relaxed)
 Only one of the branches is acknowledged (reconvergence on a combinational gate)

BUT

 they always occur at path ends (previous logic is shared)

 Shortest adversary path goes through 2 C-elements and at least 1 inverting bwd logic

 Constraining paths through the fork for shortest possible delays (with refined ‘set_max_delay’
constraints) also balances any buffer tree needed at the fork

 Adversary path isochronic hypothesis is easily met

C

Fwd
Logic

Bwd
Logic

Reset

C

C

Fwd
Logic

Bwd
Logic

Reset

C

C

Fwd
Logic

Bwd
Logic

Reset

C

slow branch

fast branch
+ Adversary path
2nd segment

Adversary
path 1st
segment

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 12

Pseudo-synchronous implementation flow
Source

Netlist.ref.v

Netlist.final.v

Map & Opt

preCTS.sdc

Place & IPO

CTS

Route & IPO

postCTS.sdc

Delay Calc

GDS SPEF

SDF

Final sim.

DRC, LVS… Async.lib

PSync.lib
dummy.ctsspec

Reset

C

Reset=clk

C

Tape-out

PSyncIP.lib

< Your preferred asynchronous sythesis method here >

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 13

Linear pipeline case study

 Implemented down to layout with Cadence SoC Encounter

 STMicro 65nm LP technology

 Very narrow floorplan 20µm*600µm to model a long NoC link

C

Reset

C

C

C

C

Reset

C

C

C

C

Reset

C

C

C

C

Reset

C

C

C

C

Reset

C

C

C

C

Reset

C

C

C

x17 MR4

Physically implemented & optimized with different strategies

Instantiated 4x to inject the 4 different input values on each MR4

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 14

Timing constraints strategies

Asynchronous modeling

 combinational loops broken at

C-elements inputs.

 zero-delay target:
 ‘set_max_delay 0’ on all paths

 zero slack:
 iterations on place-and-route

flow adjusting per path
‘set_max_delay’ values
until implementation reports
final slack of 0ps.

 -40ps slack:
 same as above, but stop iterating

as soon as final negative slack is
lesser than 40ps.

Pseudo-synchronous modeling

 zero-delay target:
 ‘create_clock Reset -period 0’

 simple:
 ‘create_clock Reset -period N’

with iterations until N cannot be
reduced with a final slack of 0ps.

 zero slack:
 ‘create_clock Reset -period 0’,

plus iterations on per path
‘set_max_delay’ values until
implementation reports a final
slack of 0ps.

 -20ps slack:
 same as above, with a 20ps

target.

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 15

Benchmarking results @tt65_1.2V_25C

 With asynchronous modeling, disabling timing arcs to break

loops at C-elements degrades performance

 Simple and 0 target synchronous are comparable in

performance

 Less iterations for 0 target, but slightly bigger area

 Ad-hoc synchronous constraints give best results

0

5

10

15

20

25

30

35

300 325 350 375 400 425 450 475 500 525 550 575 600 625 650

cycle time (ps)

n
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

Async 0 target

Async 0ps slack

Async -40ps slack

Sync simple

Sync 0 target

Sync 0ps slack

Sync -20ps slack

0

5

10

15

20

25

30

35

40

175 225 275 325 375 425 475 525 575 625 675 725 775 825 875 925 975 1025

latency (ps)

n
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

Async 0 target

Async 0ps slack

Async -40ps slack

Sync simple

Sync 0 target

Sync 0ps slack

Sync -20ps slack

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 16

ANoC implementations

 ANoC router made of 6 kinds of
WCHB processes
 3 per input stage, 3 per output stage

 Generic data path size

 Any possible combination of input
stages and output stages

 60 “generic” ‘set_max_delay’
constraints cover all possible
arrangements of processes in
NoC topology
 60 values to refine for zero-slack

strategies

 Recent implementation in 3 chips
with industrial partnership in
2011/2012
 2D-mesh based, in STMicro 65nm LP

 Req-Resp Master-Slave based in
STMicro 32nm and 28nm LP

30

20

10

00

3D

(ftol)

TX_BIT
tx_bit00n

TX_BIT
tx_bit00n

31

21

11

01

32

22

12

02

33

23

13

03

2 4 2

6 1 6

6 1 6

2 4 2

2

6

2

5 4 4 4

6 5 5 6

6 3 4 4

1

MEPHISTO
mep_01n

MEPHISTO
mep_01n

MEPHISTO
mep_02n

MEPHISTO
mep_02n

TRX_OFDM
trx_ofdm_03n

TRX_OFDM
trx_ofdm_03n

ARM11
arm11_00w

ARM11
arm11_00w

TRX_OFDM
trx_ofdm_03e

TRX_OFDM
trx_ofdm_03e

SME
sme_01

SME
sme_01

SME
sme_03

SME
sme_03

SME_EXT
sme_10

SME_EXT
sme_10

SME_WIDEIO
sme_11

SME_WIDEIO
sme_11

SME_WIDEIO
sme_12

SME_WIDEIO
sme_12

UDECASIP
asip_13

UDECASIP
asip_13

UDECASIP
asip_13

UDECASIP
asip_13

SME_WIDEIO
sme_21

SME_WIDEIO
sme_21

SME_WIDEIO
sme_22

SME_WIDEIO
sme_22

RX_BIT
rx_bit23

RX_BIT
rx_bit23

SME
sme_31

SME
sme_31

SME
sme_33

SME
sme_33

MEPHISTO_

HEATER
mep_30w

MEPHISTO_

HEATER
mep_30w

MEPHISTO
mep_33e

MEPHISTO
mep_33e

MEPHISTO
mep_33s

MEPHISTO
mep_33s

MEPHISTO
mep_32s

MEPHISTO
mep_32s

TRX_OFDM
trx_ofdm_30s

TRX_OFDM
trx_ofdm_30s

TRX_OFDM
trx_ofdm_31s

TRX_OFDM
trx_ofdm_31s

nocif2

nocif1

3D

(serial2)

3D

(serial2r)

3D

(normal)

TEST

3DNoC

TEST
3DNoC

TEST
Wide IO

TEST
Wide IO

C1_m1

C2_m1

C3_m1

C4_m1

L2_s1

L2_s2

L2_s3

L2_s4

C1_m2

C2_m2

C3_s

C4_s

L3_s1

C3_m2

C4_m2

L3_s2

C1_s

C2_s

FC_m1

L3_m

FC_m2

FC_s

GANoC-L2

GANoC-L3

MAG3D

P2012_CO

 ST 65nm LP

 16 routers

 2 channels

 34b datapath

 1MGate ANoC

 ST 28nm LP

 10 routers

 76b requests

 68b responses

 400kGate ANoC

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 17

28nm P2012_CO ANoC synthesis results

 According to dummy period:
 Area increase up to +30%

 cycle time & latency reduction up to -30%

 Ad-hoc pseudo-sync. constraints allow for:
 reproducible best performance @ 1280Mflit/s

 with reasonable area increase by ~20% compared to under-constrained design

Quality of Results

300

320

340

360

380

400

420

440

0.0 0.2 0.4 0.6 0.8 1.0

Pseudo-Sync Dummy Period (ns)

A
re

a
 (

K
G

a
te

)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

C
ri

ti
c
a

l
¨P

a
th

 L
e

n
g

th
 (

n
s
)

Area (Kgate)

Critical Path (ns)

Negative Slack

Positive Slack

Performance tt28_1.00V_25C

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

0.0 0.2 0.4 0.6 0.8 1.0

Pseudo-Sync Dummy Period (ns)

P
e

a
k
 B

a
n

d
w

id
th

 (
G

B
/s

)

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

A
s
y
n

c
.
e

n
d

 t
o

 e
n

d
 L

a
te

n
c
y
 (

n
s
)

Peak Bandw idth (GB/s)

Async. end2end Latency (ns)

Ad-hoc max delay

pseudo-sync constraints

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 18

MAG3D implementation results

 Technology
 STMicroelectronics

cmos 65nm low-power process

 Implementation strategy
 Pseudo-synchronous hard-macro for

routers

 Mixed integration on top
 Synchronous DfT

 Pseudo-synchronous ANoC links

 P&R Runtime ~ 17h

 ANoC Area
 1M Gate

 Performance
 @tt65_1.2V_25C

 7 routers path

 ~10 mm links

 Average throughput:
850 Mflit/s

 Average latency:
9.81ns

~8.5mm

Measured NoC path

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 19

Conclusion
Asynchronous circuits turned synchronous (not really…)
 For the designs a bit more performance

 DIMS WCHB circuits are not as bad as you would think, aren’t they ?

 For the designers a systematic approach for loop

breaking and design constraints
 Large asynchronous designs within easy reach

 For the community a “benevolent” betrayal
 Don’t banish me, please…

 For the industry a comfortable well-known CAD

environment
 Energy-efficient off-the-shelf soft IPs

 OK, they are actually asynchronous, but only if they ask…

 But will it work for more than ANoC or DIMS WCHB ?

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 20

Pseudo-synchronous timing paths in

QDI (PCHB/PCFB/RSPCHB…) pipelines

 Up to 5 types of pseudo-synchronous paths instead of 2
 (+ WCHB like paths for state variable in PCFB)

 Not necessarily balanced in delays ad-hoc constraints to be considered,
dummy period could be insufficient

 When no Reset input is present on the cells, create and rely on
an “internal pin” for dummy clock
 pin(dummy) {direction : “internal”; […]} in .lib file

 create_clock –name ‘dummy_clk’ [$all_dummy_pins_in_design] in .sdc file

 Blue paths form an isochronic fork for “bubbles”
 Need special handling to guarantee data deactivation before EN re-activation

Ra EN Ra EN

© CEA. All rights reserved

Yvain Thonnart – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 21

timing arcs diversion and timing margin
 Alternatives for relative delay constraint

on isochronic fork
 specify ‘set_data_check’
 reduce max delay constraints

separately on both paths

to guarantee there is no positive slack

 Add security margin to data arcs

 Compatible with simple

dummy clk period constraint

 Specify margin thanks to

dummy clk transition time

EN Ra

A

B

Dummy (or Reset)

Z

modified comb arc

computed from EN

setup
setup

setup

(with security
margin / EN)

setup

(with security

margin / EN)

A

Z

rise_delay

rise_tran

Clk

setup rise constraint

margin
spec

margin

Many thanks to
 My co-authors for their 9-year contribution &

support

 The reviewers for their inspiring feedback

 The audience for

your questions ?

