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Asynchronous circuits 

 A handcrafted piece of art 

 Entangled uneven loops 

 Requires minute 

attention to detail 

 Very valuable for 

specific needs 

 But very expensive 

design time 

 

 

  A powerful heavy machinery 

 Backed-up by big EDA companies 

 Obsessed about clocks 

 Scared of loops 

with synchronous CAD tools? 

  Pseudo-synchronous implementation 

 “Mass-produced” 

 Much cheaper design time 

 Can run fast, nevertheless! 

Trick the 

chain link model  
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Outline 

 Asynchronous circuits with synchronous CAD tools ? 

 Pseudo-synchronous models for C-elements  

 Pseudo-synchronous circuit implementation  

 Benchmarking against asynchronous implementation 

 Real-world implementations 

 Conclusion & perspectives 
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DIMS WHCB pipeline 

combinational loops & optimization 

 Performance is given by the loops cycle times 
 Design optimization needs to constrain those loops 

 Synchronous CAD tools can’t handle them 

need to cut the loops in the timing graph & constrain loop segments 

 Where to cut for a systematic approach 
 in the WCHB C-elements: the ones gathering forward and backward 

data (they must be Resetted) 
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Asynchronous Implementation: cost & flaws 
 Resulting timing constraints: 

 For each WCHB C-element in the cell library, 
disable timing arcs to cut the loops 

 set_disable_timing ‘C_element’ –from ‘in’ –to ‘out’ 
 For each path segment between two WCHB C-elements, 

specify a target maximum delay  

 set_max_delay –from ‘C/elt/inst1/out’ –to ‘C/elt/inst2/in’ 0.5ns 

 Limitation: The WCHB C-elements themselves are not 
optimized 
 Minimal or no drive adaptation of cells depending on cell load 

 No consideration on signal slope on path end 

 Cells can be moved back and forth during placement 

Synchronous CAD tools do not manage asynchronous path ends correctly 

Use pseudo-synchronous models for WCHB C-elements 
to cut timing loops without disabling timing arcs 

to improve tool control over path ends 
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Pseudo-synchronous circuit timing paths 

 Loops are cut naturally at pseudo-synchronous C-elts 
 No need to disable a timing arc 

 Creates 2 kinds of paths in WCHB pipeline: 

 forward paths 

 backward paths 

How to derive pseudo synchronous models ? 

How to constrain resulting paths ? 
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Asynchronous .lib characterization 

 .lib files in Liberty format to model cell timing arcs 
 As a function of input transition times and output capacitance 

 4 values per arc : rise delay, fall delay, rise transition, fall transition 

Reset 

A 

B 

Z 

when B=1 and Reset inactive 

A 

Z 

rise_delay 

rise_tran 

rise_delay(AZ): 

  30ps 120ps 200ps 

  80ps 160ps 250ps 
130ps 210ps 300ps 

   Z output capacitance 

10fF 40fF 100fF 

   A input transition 

10ps 

80ps 

200ps 

rise_tran(AZ): 

12ps 80ps 320ps 

20ps 85ps 320ps 
28ps 90ps 320ps 

   Z output capacitance 

10fF 40fF 100fF 

   A input transition 

10ps 

80ps 

200ps 
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Pseudo-synchronous .lib derivation 

Clk (was Reset) 

A 

B 

Z 

 C-element is modeled like a synchronous flip-flop 
 Reset pin is used as a dummy clock input 

 New arc uses first row of AZ arc, old arcs are turned to setup checks 

A 

Z 

rise_delay 

rise_tran 

rise_delay(ClkZ): 

  30ps 120ps 200ps 

  80ps 160ps 250ps 
130ps 210ps 300ps 

   Z output capacitance 

10fF 40fF 100fF 

rise_tran(ClkZ): 

12ps 80ps 320ps 

20ps 85ps 320ps 
28ps 90ps 320ps 

   Z output capacitance 

10fF 40fF 100fF 

Clk 

setup rise constraint 

setup_rise(AClk) 

 

 

 

 
computed as diff. 
between 1st column of 
previous rise_delay(AZ) 
and new rise_delay(ClkZ) 

 

setup_rise(BClk) 
Idem with previous BZ 

  A input transition 

      10ps 

      80ps 

    200ps 

    0ps 
  50ps 

100ps 
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Simple pseudo-synchronous constraint 
 Declaring a clock on the reset signal constrains all paths 

to a given “dummy” period 
Actual asynchronous cycle time given by biggest sum of 2 fwd + 2bwd delays 

on the loops (for token+bubble) 

as bad as  4x dummy target period 

often less (2x-3x) as no hold fixing is done 

 Dummy clock period limitation:   
 Logic depth can be different on each path 

 Relaxes all paths to worst path length 

Actual throughput not optimal when forward and backward logic are not 

balanced (on most critical local loop) 

Actual forward latency can be really sub-optimal (given by sum of fwd delays) 

What about over-constraining the design ? 
 Negative slack is not a big deal for implementation, circuit is QDI after all ! 

 But over-constrained paths will distract the optimization kernels… 



© CEA. All rights reserved 

Yvain Thonnart  – ASYNC’12 Symposium, Copenhagen, Denmark | May 8th 2012 | 10 

Refined pseudo-synchronous timing 

constraints 

Use dummy clock declaration to identify paths, not to 

constrain design with a given period 
 Declare clock to break loops, with any period (e.g. 0ns) 

 Override delays on all paths with reg2reg set_max_delay constraints 

 set_max_delay 0.23ns –from C/elt/inst1 –to C/elt/inst2 

(no pins given  preserve all arcs inferred by clock declaration) 

 

Resulting constraints very similar to asynchronous 

ones, but with no timing arc disabled 
Better control on timing paths for optimization tools 

Leverage on all existing asynchronous STA methods to predict 

performance 
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WHCB isochronic forks handling 

 Green fork needs no isochronic assumption 
 Both branches are acknowledged by protocol (C-element on point of reconvergence) 

 Red forks should be isochronic (or relaxed) 
 Only one of the branches is acknowledged (reconvergence on a combinational gate) 

BUT  

 they always occur at path ends (previous logic is shared) 

 Shortest adversary path goes through 2 C-elements and at least 1 inverting bwd logic 

 Constraining paths through the fork for shortest possible delays (with refined ‘set_max_delay’ 
constraints) also balances any buffer tree needed at the fork 

 Adversary path isochronic hypothesis is easily met 
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Pseudo-synchronous implementation flow 
Source 

Netlist.ref.v 

Netlist.final.v 

Map & Opt 

preCTS.sdc 

Place & IPO 

CTS 

Route & IPO 

postCTS.sdc 

Delay Calc 

GDS SPEF 

SDF 

Final sim. 

DRC, LVS… Async.lib 

PSync.lib 
dummy.ctsspec 

Reset 

C 

Reset=clk 

C 

Tape-out 

PSyncIP.lib 

< Your preferred asynchronous sythesis method here > 
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Linear pipeline case study 

 Implemented down to layout with Cadence SoC Encounter 

 STMicro 65nm LP technology 

 Very narrow floorplan 20µm*600µm to model a long NoC link 
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x17 MR4 

Physically implemented & optimized with different strategies 

Instantiated 4x to inject the 4 different input values on each MR4  
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Timing constraints strategies 

Asynchronous modeling 

 combinational loops broken at 

C-elements inputs.  

 zero-delay target: 
 ‘set_max_delay 0’ on all paths 

 zero slack: 
 iterations on place-and-route 

flow adjusting per path 
‘set_max_delay’ values 
until implementation reports 
final slack of 0ps. 

 -40ps slack: 
 same as above, but stop iterating 

as soon as final negative slack is 
lesser than 40ps. 

Pseudo-synchronous modeling 

 zero-delay target: 
 ‘create_clock Reset -period 0’ 

 simple: 
 ‘create_clock Reset -period N’ 

with iterations until N cannot be 
reduced with a final slack of 0ps. 

 zero slack: 
 ‘create_clock Reset -period 0’, 

plus iterations on per path 
‘set_max_delay’ values until 
implementation reports a final 
slack of 0ps. 

 -20ps slack: 
 same as above, with a 20ps 

target. 
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Benchmarking results @tt65_1.2V_25C 

 With asynchronous modeling, disabling timing arcs to break 

loops at C-elements degrades performance 

 Simple and 0 target synchronous are comparable in 

performance 

 Less iterations for 0 target, but slightly bigger area 

 Ad-hoc synchronous constraints give best results 
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ANoC implementations 

 ANoC router made of 6 kinds of 
WCHB processes 
 3 per input stage, 3 per output stage 

 Generic data path size 

 Any possible combination of input 
stages and output stages 

 60 “generic” ‘set_max_delay’ 
constraints cover all possible 
arrangements of processes in 
NoC topology 
 60 values to refine for zero-slack 

strategies 

 Recent implementation in 3 chips 
with industrial partnership in 
2011/2012 
 2D-mesh based, in STMicro 65nm LP 

 Req-Resp Master-Slave based in 
STMicro 32nm and 28nm LP 
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28nm P2012_CO ANoC synthesis results 

 According to dummy period: 
 Area increase up to +30% 

 cycle time & latency reduction up to -30% 

 Ad-hoc pseudo-sync. constraints allow for: 
 reproducible best performance @ 1280Mflit/s  

 with reasonable area increase by ~20% compared to under-constrained design 
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MAG3D implementation results 

 Technology 
 STMicroelectronics 

cmos 65nm low-power process 

 Implementation strategy 
 Pseudo-synchronous hard-macro for 

routers 

 Mixed integration on top 
 Synchronous DfT 

 Pseudo-synchronous ANoC links 

 P&R Runtime ~ 17h 

 ANoC Area 
 1M Gate 

 Performance 
 @tt65_1.2V_25C 

 7 routers path 

 ~10 mm links 

 Average throughput: 
850 Mflit/s 

 Average latency: 
9.81ns 

~8.5mm 

Measured NoC path 
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Conclusion 
Asynchronous circuits turned synchronous (not really…) 
 For the designs  a bit more performance 

 DIMS WCHB circuits are not as bad as you would think, aren’t they ?  

 For the designers  a systematic approach for loop 

breaking and design constraints 
 Large asynchronous designs within easy reach 

 For the community  a “benevolent” betrayal 
 Don’t banish me, please… 

 For the industry  a comfortable well-known CAD 

environment 
 Energy-efficient off-the-shelf soft IPs 

 OK, they are actually asynchronous, but only if they ask… 

 But will it work for more than ANoC or DIMS WCHB ? 
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Pseudo-synchronous timing paths in 

QDI (PCHB/PCFB/RSPCHB…) pipelines 

 Up to 5 types of pseudo-synchronous paths instead of 2 
 (+ WCHB like paths for state variable in PCFB) 

 Not necessarily balanced in delays  ad-hoc constraints to be considered, 
dummy period could be insufficient 

 When no Reset input is present on the cells, create and rely on 
an “internal pin” for dummy clock 
 pin(dummy) {direction : “internal”; […]} in .lib file 

 create_clock –name ‘dummy_clk’ [$all_dummy_pins_in_design] in .sdc file 

 Blue paths form an isochronic fork for “bubbles” 
 Need special handling to guarantee data deactivation before EN re-activation 

Ra EN Ra EN 
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timing arcs diversion and timing margin 
 Alternatives for relative delay constraint 

on isochronic fork 
 specify ‘set_data_check’ 
 reduce max delay constraints 

separately on both paths 

to guarantee there is no positive slack 

 Add security margin to data arcs 

 Compatible with simple 

dummy clk period constraint 

 Specify margin thanks to 

dummy clk transition time 
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