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Abstract. In this paper a generalization of the indirect pseudo-spectral method, presented in [17],
for the numerical solution of budget-constrained infinite horizon optimal control problems is presented.
Consideration of the problem statement in the framework of weighted functional spaces allows to arrive
at a good approximation for the initial value of the adjoint variable, which is inevitable for obtaining
good numerical solutions. The presented method is illustrated by applying it to the budget-constrained
linear-quadratic regulator model. The quality of approximate solutions is demonstrated by an example.

Introduction

In the last decades, developing numerical solution methods for infinite horizon optimal control problems has
emerged a lot of attention and a plenty of new results were obtained, cf. [5], [7], [9], [17]. Among them, both direct
and indirect solution methods were established. In the present paper, we extend the indirect pseudospectral
method, introduced in [17], onto the class of budget-constrained infinite horizon optimal control problems. The
plausibility of investigating this class of problems can be seen e.g. in [6], [15], where for instance an upper
bound on the total amount of available and/or tolerated chemotherapeutic agent or vaccine is postulated and
described mathematically by means of an isoperimetric control constraint. This economic and medical evidence
is of great importance especially for the low-income countries.

Theoretical results concerning the existence of optimal solutions and necessary optimality conditions in form
of a Pontryagin Type Maximum Principle for this class of problems were considered in [11], [13].

A big amount of numerical methods, direct and also indirect ones, consider instead of an infinite time horizon
a long but finite horizon (0, T ), i.e. they cut the interval (0,∞) at t = T . In contrast to ”cutting the horizon”
methods, the key idea of the presented indirect pseudospectral method consists in expanding the unknown
solution in a finite Fourier-Laguerre series and using the fact that the Laguerre polynomials build a complete
orthonormal system in the weighted Lebesgue space L2(IR+, e

−ρt). The advantages of consistent using the
framework of weighted functional spaces has been addressed in [12] and we continue to use this here too.

The paper is structured as follows. Section 1 contains the necessary definitions, whereas Section 2 presents the
optimal control problem statement in weighted functional spaces. Section 3 discusses the available necessary
optimality conditions for the considered class of problems. Sections 4 and 5 contain the description of the
method and, respectively, its application to a budget-constrained linear-quadratic regulator model. Finally,
some conclusions finish the paper.
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1. Definitions of weighted functional spaces

Let us write (0,∞) = IR+. We denote byMn(IR+), Lnp (IR+) and C0,n(IR+) the spaces of all vector functions
x : IR+ → IRn which are Lebesgue measurable, in the pth power Lebesgue integrable or continuous, respectively,
see [3], p. 146 and pp. 285; [4], pp. 228. The Sobolev space W 1,n

p (IR+) is then defined as the space of all functions
x : IR+ → IRn which belong to Lnp (IR+) and admit distributional derivative ẋ ( [18], p. 49) belonging to Lnp (IR+)
as well.

Definition 1.1. (a): A continuous function ν : IR+ → IR with non-negative values is called a weight
function.

(b): A weight function ν will be called a density function iff it is Lebesgue integrable over IR+ , i.e.
∞∫
0

ν(t)dt <∞ (cf. [8], p. 18).

(c): By means of a weight function ν ∈ C0(IR+) we define for any 1 ≤ p <∞ the weighted Lebesgue space

Lnp (IR+, ν) =

x ∈Mn(IR+)
∣∣ ‖x‖Ln

p (IR+,ν)
=
( ∞∫

0

|x(t) |p ν(t) dt
)1/p

<∞

 ,

where | · | denotes the euclidean norm in IRn.
(d): For x ∈ Lnp (IR+, ν) let the distributional derivative ẋ be defined according to [18], p. 46. We introduce

the weighted Sobolev space of all Lnp (IR+, ν) functions having its distributional derivative in Lnp (IR+, ν),
(see [8], p. 11):

W 1,n
p (IR+, ν) =

{
x ∈Mn(IR+)

∣∣ x ∈ Lnp (IR+, ν), ẋ ∈ Lnp (IR+, ν)
}

Equipped with the norm ‖x‖W 1,n
p (IR+,ν)

= ‖x‖Ln
p (IR+,ν)

+ ‖ẋ‖Ln
p (IR+,ν)

, W 1,n
p (IR+, ν) becomes a Banach

space, if additionally the condition ν1/(p−1) ∈ L1,loc(IR+) is satisfied, cf. [1], p. 35. (this can be confirmed
analogously to [8], p. 19).

Lemma 1. Let ν be a weight function and the measure generated by ν is σ-finite on IR+. Then any linear
continuous functional ϕ : Lnp (IR+, ν)→ IR can be represented by a function ϕ ∈ Lnq (IR+, ν) with p−1 + q−1 = 1
if 1 < p <∞ and q =∞ if p = 1:

〈ϕ, x 〉 =

∞∫
0

ϕ(t)Tx(t)ν(t)dt ∀x ∈ Lnp (IR+, ν). (1)

Proof. We may apply ( [4], p. 287). �

For p = 2 the spaces Ln2 (IR+, ν) and W 1,n
2 (IR+, ν) become Hilbert spaces, see [8], and (1) is the scalar product

in Ln2 (IR+, ν).
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2. Problem statement

The optimal control problem being considered in the present paper is:

(P̃ )B∞ : J∞(x, u) =

∞∫
0

r0(t, x(t), u(t))ν0(t)dt −→ min ! (2)

(x, u) ∈ W 1,n
2 (IR+, ν1)× Lm2 (IR+, ν1), (3)

ẋ(t) = A(t)x(t) +B(t)u(t) + C(t) a. e. on IR+, (4)

x(0) = x0 > 0, (5)

d =

∞∫
0

DT
0 (t)x(t)ν̂(t)dt, (6)

u(t) ∈ U a. e. on IR+, (7)

where the next assumption has to be fulfilled:

Assumption 1. Let U be a compact convex subset of IRm, ν1(t) := e−ρt, ρ > 0, i.e. ν1 is a density function,
and let ν0 be a weight function as defined in Section 2.

With the denotation

r(t, x(t), u(t)) := r0(t, x(t), u(t))ν0(t)ν−11 (t), (8)

D(t) := D0(t)ν̂(t)ν−11 (t), (9)

an equivalent formulation of (P̃ )B∞ can be given, wherein only one density function ν1(·) appears.

We use this equivalent formulation of (P̃ )B∞, namely

(P )B∞ : J∞(x, u) =

∞∫
0

r(t, x(t), u(t))ν1(t)dt −→ min ! (10)

(x, u) ∈ W 1,n
2 (IR+, ν1)× Lm2 (IR+, ν1), (11)

ẋ(t) = A(t)x(t) +B(t)u(t) + C(t) a. e. on IR+, x(0) = x0 > 0, (12)

d =

∞∫
0

DT (t)x(t)ν1(t)dt, (13)

u(t) ∈ U a. e. on IR+ (14)

and introduce the following basic assumptions for (P̃ )B∞ and (P )B∞:

Assumption 2. Let the matrix functions A : IR+ → IRn×n, B : IR+ → IRm×n, C : IR+ → IRn with A(t) =
[Ask(t)] (s, k ∈ {1, . . . , n}), B(t) = [Bsk(t)] (s ∈ {1, . . . ,m}, k ∈ {1, . . . , n}), C(t) = [Cs(t)] (s ∈ {1, . . . , n})
satisfy A ∈ Ln×n∞ (IR+), B ∈ Lm×n∞ (IR+), C ∈ Ln∞(IR+) and let the vector function D : IR+ → IRn with
D(t) = [Ds(t)] (s ∈ {1, . . . , n}) satisfy D ∈ Ln2 (IR+, ν1) and Dν1 ∈ Ln∞(IR+). Further, the functions A,B,C,D
are assumed to be continuous.

Assumption 3. Let r0 : IR+× IRn× IRm → IR+, and correspondingly r : IR+× IRn× IRm → IR+, be continuous
in the first argument, continuously differentiable in the second and third, and convex in the second and third
argument together.
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The functions x and u are called the state and the control function respectively. The integral in (2) is
understood in Lebesgue sense. The fact that we have to distinguish between different integral types in infinite
horizon optimal control problems was discussed in details in [10], [14].

3. Necessary optimality conditions

We refer some additional assumptions, stated in [13]:

Assumption 4. Let ρ > 0 be chosen in such a way that for any T ≥ τ the solution ζ of the initial value
problem

ζ̇(t) = A(t)ζ(t), ζ(T ) = ζT ,

where ζT ∈ IRn is arbitrary, belongs to W 1,n
2 ([τ,∞), ν1) (dominance condition).

Assumption 5. For the optimal solution (x∗, u∗) let the inclusions

∇vr(·, x∗(·), u∗(·)) ∈ Lm2 (IR+, ν1) and ∇ξr(·, x∗(·), u∗(·)) ∈ Ln2 (IR+, ν1)

be satisfied.

Assumption 6. Let the admissible set be non empty and contain at least one admissible pair besides the
optimal one.

Under Assumptions 1 – 6, the problem (P )B∞ possesses an optimal solution, cf. [11]. Further, the following
necessary optimality conditions in form of a Pontryagin Type Maximum Principle hold true, cf. [13].

Theorem 1. (Maximum Principle for (P )B∞) Let Assumptions 1 – 6 be satisfied and (x∗, u∗) be a global
optimal solution of (P )B∞. Then there are multipliers (λ0, y0, µ0) 6= 0 satisfying λ0 ≥ 0 and

y0 ∈W 1,n
2 (IR+, ν1), (T )

HM (t, x∗(t), u∗(t), y0(t), λ0, µ0) = max
v∈U

HM (t, x∗(t), v, y0(t), λ0, µ0) a.e. on IR+, (M)

ẏ0(t) = ρy0(t)−∇ξHM (t, x∗(t), u∗(t), y0(t), λ0, µ0) a.e. on IR+ , (K)

where HM : IR+ × IRn × IRm × IRn × IR+ × IR→ IR is the modified Pontryagin function, defined by

HM (t, ξ, v, η, λ0, µ0) := −λ0r(t, ξ, v)− µ0DT (t)ξ + ηT (A(t)ξ +B(t)v + C(t)).

2

This theorem provides the kernel for the numerical method presented in the next section.

4. Description of the method

We now intend to describe an indirect numerical solution method, i.e. it acts according to the scheme ”first
optimize, then discretize”, and represents an extended version of the indirect pseudospectral method presented
in [17], for a class of budget-constrained infinite horizon optimal control problems. For incorporating the
method into existing numerical methods compare scheme in Fig. 4. For a density function ν1, cf. Assumption
1, considering

〈x, y〉 :=

∞∫
0

x(t)T y(t)ν1(t)dt (15)
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„Cutting the horizon“
technique

Direct methods

First discretize,
then optimize

Numerical methods 
for infinite horizon

optimal control problems

A priori infinite horizon
technique

Indirect methods

First optimize,
then discretize

Figure 1. Classification of numerical methods. Here, the dashed arrow shows hypothetical
but not yet used possibility of constructing such methods; the red path indicates the strategy
pursued in this paper.

as scalar product in the weighted Lebesgue space L2(IR+, ν1), a spectral method is developed for solving the
control problem (P )B∞ numerically. We propose a discrete approximation scheme based on global collocation
using the Gauss-Laguerre quadrature formula. For this density with a fixed ρ > 0, we apply the Gram-Schmidt
orthogonalization procedure to the system of monomials {1, t, t2, ...} with respect to the weighted scalar product
(15). As a result we obtain the orthonormal sequence of Laguerre polynomials,

Lk(t) =
1

k!
eρt

dk

dtk
(tk
√
ρe−ρt), k = 0, 1, . . . ,

which build a complete orthonormal basis in the space L2(IR+, ν1), cf. [1].
Remind that the element xa representing the best approximation of element x of a Hilbert space H onto

a subspace HN ⊂ H is characterized by the orthogonality condition xa⊥H⊥N . Therefore, similar to Galerkin
methods, see e.g. [19], we can write the approximate solution of the control problem as a linear combination of
Laguerre polynomials Lk(·). Collocation points {t1, . . . , tN} are obtained from the Gauss-Laguerre quadrature
formula ∫ ∞

0

f(t)ν1(t)dt ≈
N∑
k=1

ωkf(tk), (16)

where {t1, . . . , tN} are the zeros of the Laguerre polynomial of degreeN with corresponding weights {ω1, . . . , ωN},
see [1]. Then the integration formula of Gauss-Laguerre type is exact for all polynomials P ∈ P2N−1 of degree
up to 2N − 1 which means that ∫ ∞

0

P (t)ν1(t)dt =

N∑
k=1

ωkP (tk),
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see [2]. Following Lemma 5.5, p. 135 in [1], we obtain the following estimate of the truncation error made when
using the Fourier-Laguerre approximation under appropriate assumptions on f :

‖PNf − f‖Ln
2 (IR+,ν) ≤ cN

− r
2 ·
∥∥∥ dr
dtr

f
∥∥∥
Ln

2 (IR+,ν)
, r ≥ 1. (17)

We now apply the pseudospectral method to the system of necessary optimality conditions from the Pontryagin
type Maximum Principle provided by Theorem 1. Let

(x(·), u(·), y0(·), µ0), ν1(t) = e−ρt, ρ > 0,

be given, satisfying all the conditions of Theorem 1, cf. Section 3. Further let x(·) ∈ C1,n(R+)∩W 1,n
2 (IR+, ν1),

u(·) ∈ C0,m(IR+) ∩ Lm2 (IR+, ν1) and the adjoint y0(·) ∈ C1,n(IR+) ∩W 1,n
2 (IR+, ν1) be satisfied. Assuming that

the control constraints do not become active1 we can calculate the control directly from the maximum condition
in a unique way as follows

∇vHM (t, x(t), u(t), y0(t), µ0) = 0 =⇒ u∗(t) = u∗(t, x(t), y0(t), µ0), (18)

whose solution leads to a reduction of the number of optimization variables by elimination of optimization
variables corresponding to the unknown control. Now, the state x(·) = (x1(·), . . . , xn(·)) and the adjoint
y0(·) = (y01(·), . . . , y0n(·)) are approximated for each t > 0 component-wisely by the following finite Fourier series
expansions:

xs(t) =

N∑
k=0

askLk(t), y0s(t) =

N∑
k=0

cskLk(t) ∀ t ∈ IR+, s = 1, . . . , n; (19)

with unknown coefficients ask, csk ∈ IR, where Lk(·) is the Laguerre polynomial of degree k. Evaluation and
differentiation of the series at the collocation points under consideration of LN (ti) = 0 yield the following
expressions:

xs(ti) =

N−1∑
k=0

askLk(ti), ẋs(ti) =

N∑
k=1

askL̇k(ti), i = 1, . . . , N (20)

y0s(ti) =

N−1∑
k=0

cskLk(ti), ẏ0s(ti) =

N∑
k=1

cskL̇k(ti), i = 1, . . . , N. (21)

The discretization of the Hamiltonian system dynamics is obtained by evaluating for s ∈ {1, . . . , n} the state
equation (12) and the current adjoint equation (K) at the collocation points:

N∑
k=1

askL̇k(ti) = fs(ti, x(ti), u(ti)) =

n∑
k=1

Ask(ti)xk(ti) +

n∑
k=1

Bsk(ti)u
∗
k(ti) + Cs(ti), (22)

N∑
k=1

cskL̇k(ti) = −HM
ξs (ti, x(ti), u

∗(ti), y
0(ti), µ

0) + ρy0s(ti), i = 1, . . . , N, (23)

which means that the approximate solutions fulfill the state and adjoint equations exactly. Considering the
initial time t0 = 0 as an additional non-collocated point, one arrives at the discretization of the initial condition

1We are aware of the fact that this assumption is very restrictive in general. Nevertheless, in this paper we focus primarily on

the theoretic and algorithmic treatment of budget-constrained optimal control problems as such and therefore first work under this
restrictive assumption.
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given by x(0) = xs0 =
∑N
k=0 askLk(t0). We want to emphasize the following advantage of an indirect method

concerning good estimates for the missing initial condition for the adjoint y0. Based on the Pontryagin type
Maximum Principle, cf. Theorem 1, the transversality condition in form of an inclusion can be used in the

framework of the spectral method to conclude the existence of the integral
∞∫
0

ẏ0s(t)ν1(t)dt <∞. Multiplying the

differential equation for the current adjoint variable y0 by the density function ν1 and integrating this over the
interval (0,∞) one obtains

∞∫
0

ẏ0s(t)ν1(t)dt =

∞∫
0

{
ρy0s(t)−HM

ξs (t, x(t), u(t), y0(t), µ0)
}
ν1(t)dt. (24)

On the other hand, integrating the left hand side of the last equation by parts and having in mind that
ν̇1(t) = −ρν1(t) holds true for ν1(t) = e−ρt one has

∞∫
0

ẏ0s(t)ν1(t)dt = −ys(t0) + ρ

∞∫
0

y0s(t)ν1(t)dt. (25)

Since the right hand sides of the last two equations are equal to each other we arrive at

y0s(t0) = ρ

∞∫
0

y0s(t)ν1(t)dt+

∞∫
0

{
−ρy0s(t) +HM

ξs (t, x(t), u(t), y0(t), µ0)
}
ν1(t)dt

=

∞∫
0

HM
ξs (t, x(t), u(t), y0(t), µ0)ν1(t)dt (26)

Applying the Gauss-Laguerre quadrature scheme (16) to the right hand side of (26) and taking y0s(t0) =
N∑
k=0

cskLk(t0) into account we obtain

N∑
i=1

ωiH
M
ξs

(
ti, x(ti), u

∗(ti), y
0(ti), µ

0
)
≈

N∑
k=0

cskLk(t0) (27)

as a discretized transversality condition.
Thus the budget-constrained infinite horizon optimal control problem is replaced by the following system of

2n(N + 1) + 1 linear equations and 2n(N + 1) + 1 unknowns gathered in the vector(
a10, . . . , a1N , . . . , an0, . . . , anN ; c10, . . . , c1N , . . . , cn0, . . . , cnN , µ

0
)T

:

N∑
k=1

cskL̇k(ti) = −HM
ξs (ti, x(ti), u

∗(ti), y
0(ti), µ

0) + ρy0s(ti), i = 1, . . . , N, s = 1, . . . , n; (28)

N∑
k=1

askL̇k(ti) =

n∑
k=1

Ask(ti)xk(ti) +

n∑
k=1

Bsk(ti)u
∗
k(ti) + Cs(ti), i = 1, . . . , N, s = 1, . . . , n; (29)

xs0 =

N∑
k=0

askLk(t0), s = 1, . . . , n; (30)
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N∑
k=0

cskLk(t0) =

N∑
i=1

wiH
M
ξs (ti, x(ti), u

∗(ti), y
0(ti), µ

0), s = 1, . . . , n; (31)

d =

N∑
s=1

N∑
k=0

askdsk (32)

with the constants dsk (k = 0, . . . , N , s = 1, . . . , n) given by dsk :=
∞∫
0

Ds(t)Lk(t)ν1(t)dt and which can be

computed in advance. The system (28) – (32) has a unique solution(
a10, . . . , a1N , . . . , an0, . . . , anN ; c10, . . . , c1N , . . . , cn0, . . . , cnN , µ

0
)T ∈ IR2n(N+1)+1, if the coefficient matrix of

the system is regular.

5. Application of the method to the budget-constrained linear-quadratic
regulator model

Let us consider a linear-quadratic regulator model with an isoperimetrical constraint in order to illustrate
the applicability of the described pseudospectral method. Thus the optimal control is to minimize the objective
functional

J∞(x, u) =
1

2

∞∫
0

{x2(t)e(ρ−2)t + u2(t)e(ρ−2)t}ν1(t)dt→ min! (33)

with respect to all processes (x, u) ∈W 1,1
2 (R+, ν1)× L1

2(R+, ν1) satisfying the constraints

ẋ(t) = 2x(t) + u(t), x(0) = 2, u(t) ∈ [−6, 6]; (34)

d =

∞∫
0

e−αtx(t)e−ρtdt, (35)

where the density function ν is set as follows: ν1(t) := e−ρt, 4 < ρ < 2 + 2
√

2 and α > −ρ2 . Here, additional
pointwise control constraints in (34) with a compact control set are needed in order to be able to apply the
Pontryagin Type Maximum Principle. Therefore, these are chosen in dependence on the initial condition in
such manner that they do not become active. We refer to the work [1], p. 193 ff., where this problem is solved
in case of active control constraints as well, but without budget-constraints.
For the introduced problem, the assumptions of the Pontryagin Type Maximum Principle, cf. Theorem 1, are
satisfied for the analytically computed optimal solution

x∗(t) = (2 + µ0)e(1−
√
2)t − µ0e−t, (36)

u∗(t) = −(2 + µ0)
(√

2 + 1
)
e(1−

√
2)t + 3µ0e−t, y0(t) = u∗(t)e(ρ−2)t (37)

µ0 = (2− C2)
(
(1− α− ρ)2 − 2

)
(38)

with C2 = −2(d(1−α−ρ)+1)(1−
√
2−α−ρ)

(1+
√
2−α−ρ) and for the given values of ρ and λ0 = 1. Moreover, the conditions of the

existence Theorem, cf. Theorem 1 in [11], are fulfilled as well. Now, with the aim of comparison, we apply the
indirect pseudo-spectral method from the previous section to arrive at the numerical solution of the budget-
constrained linear-quadratic optimal control problem. Doing so we arrive at a system of linear equations of the
form

A · (a0 . . . aN c0 . . . cN µ0)T = (0 . . . 0 0 . . . 0 2 0 d)T
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with unknowns (a0 . . . aN c0 . . . cN µ0)T , a regular coefficient matrix A ∈ IR(2N+3)×(2N+3) depending on La-

guerre polynomials Lk(·) and their derivatives L̇k(·) evaluated at collocation points as well as the numbers dk

given by dk :=
∞∫
0

Lk(t)e−(α+ρ)tdt.

Solving the above system of linear equations and substituting the solution vector into the finite Fourier
expansions (19) of the optimal solution, we obtain the following numerical solution of the linear-quadratic
regulator problem for different numbers of collocation points N and ρ = 5, α = −2, d = 1, cf. Figures 2 – 4.
The exact optimal solution is given in black, whereas the magenta, green, cyan, blue and red lines stand for the
approximate solutions with 3, 5, 8, 10 and 12 collocation points respectively.
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xµ

Figure 2. Approximation of
the state for ρ = 5, α = −2,
d = 1
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Figure 3. Approximation of
the control for ρ = 5, α = −2,
d = 1
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t
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Figure 4. Approximation of the adjoint for ρ = 5, α = −2, d = 1

The numerical values for the objective J∞(xN , uN ) as well as the deviation from the optimal value

J∞(x∗(·), u∗(·)) = 2(
√

2+3) are given in Table 1 in dependence on the numberN of collocation points. Obviously

Table 1. Deviation from the optimal value of the objective

N value of the objective deviation from J∞(x∗, u∗)

3 6.322217312521187 2.506209812225003
5 8.851246021993427 0.022818897247237
8 8.824556648125745 0.003870476620445
10 8.828239913229240 1.872115169501143e-04

already with 10 collocation points the approximate solution is so good, that it covers the black line completely.
Moreover, under suitable assumptions, the Fourier-Laguerre approximations converge even uniformly, cf. [1].
This emphasizes our conjecture about the quality of the approximations caused by the fast convergence of Fourier
series, where already several Fourier coefficients are sufficient to deliver a good approximation of a function by a
finite Fourier series. Although we do not provide a rigorous convergence result of the suggested pseudospectral
method here, the results observed above as well as solutions for other optimal control problems provided by
pseudo-spectral method such as inverse pendulum problem or Lotka-Volterra optimal control problem, cf. [1],
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allow us to assume that the chosen strategy would lead to comparable convergence results also for other budget-
constrained optimal control problems.

6. Conclusions

We have presented the extension of the indirect pseudospectral method for infinite horizon optimal control
problems which arises in a natural way from the method developed in [17] through incorporating an additional
isoperimetric, or also called budget-constraint, into the discretization scheme applied to the system of necessary
optimality conditions in form of a Pontryagin Type maximum Principle, established in [13]. The quality and
the convergence rate of the method presented here is comparable with those of the method in [17] and this fact
gives us a reason to presume similar quality of convergence for the whole class of budget-constrained control
problems, although we do not present any rigorous convergence proof here. Besides the convergence proof, one
of the most important focuses of upcoming research will be the generalization of the method to nonlinear infinite
horizon optimal control problems.
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