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Abstract—One of the main mechanisms that online publishers
use in online advertising in order to sell their advertisement space
is the real-time bidding (RTB) mechanism. In RTB the publisher
sells advertisement space via a second-price auction. Publishers
can set a reserve price for their inventory in the second-price
auction. In this paper we consider an online publisher that
sells advertisement space and propose a method for learning
optimal reserve prices in second-price auctions. We study a
limited information setting where the values of the bids are not
revealed and no historical information about the values of the
bids is available. Our proposed method leverages the dynamics
of particles in particle swarm optimization (PSO) to set reserve
prices and is suitable for non-stationary environments. We also
show that, taking the gap between the winning bid and second
highest bid into account leads to better decisions for the reserve
prices. Experiments using real-life ad auction data show that the
proposed method outperforms popular bandit algorithms.

I. INTRODUCTION

One of the main mechanisms that web publishers use in
online advertising in order to sell their advertisement space is
the real-time bidding (RTB) mechanism [1]. In RTB there are
three main platforms: supply side platforms (SSPs), demand
side platforms (DSPs) and an ad exchange (ADX) which
connects SSPs and DSPs. The SSPs collect inventory of
different publishers and thus serve the supply side of the
market. Advertisers which are interested in showing online
advertisements are connected to DSPs. When a user visits a
webpage with an advertisement (ad) slot, the publisher sends a
request to the ADX (via an SSP) indicating that an impression
can potentially be displayed in this particular ad slot. At the
same time, advertisers that are connected to DSPs send bid
requests to the ADX indicating that they are willing to bid
for this impression. A real-time auction then decides which
advertiser is allowed to display its ad and the amount that the
advertiser needs to pay. The most popular auction mechanism
is the second-price auction, where the winning advertiser pays
the second highest bid in the auction.
Publishers can set a reserve price for their inventory in the
second-price auction. Due to the reserve price, all bids below
the reserve price are disregarded, and as a consequence, there
is a possibility that the ad slot is not sold. If the auction
does have a winner, the winner pays the maximum of the
second highest bid and the reserve price. In this paper we
take the perspective of an online publisher that submits his
inventory of advertisement space to an SSP and needs to
decide on the optimal value of the reserve price. We assume

that the publisher has limited information about the winning
bid and second highest bid in the auction. More specifically,
the publisher does not observe the actual values of the winning
bid and second highest bid. After each sale attempt on the
RTB market, the publisher only knows whether the sale was
successful and the revenue that is received from that sale. This
setting is relevant for publishers that are small and medium
size enterprises (SMEs), since the ADX and the connected
SSPs typically do not reveal the actual bids placed in the
auction but only the result of the auction. Due to the limited
feedback, the publisher faces an exploration-exploitation trade-
off. He needs to experiment with different reserve prices to
figure out which one works best, but at the same time, he
does not want to explore too much since he wants to use the
best reserve price as much as possible (exploitation). In this
paper we present a method called PSO-ETC-RAP (PSO-based
explore-then-commit algorithm with risk-aware pricing) that
addresses the problem of the publisher. Compared to previous
studies our method does not assume that the publisher observes
the actual values of the winning bid and second highest
bid. Our method is based on method from computational
intelligence called particle swarm optimization (PSO). In PSO-
ETC-RAP we cycle through four steps where, the first two
steps are exploration phases, the third step is a commit phase,
and the fourth step is a test phase. In the first step we estimate
the value of the second highest bid and in the second step we
estimate a reference value of the winning bid that represents
a critical boundary: prices above this reference value tend to
be too high and prices below the reference value tend to lead
to successful sales of impressions. Our method exploits the
evolution dynamics of particles in PSO to learn this critical
boundary. In the third step the publisher uses the estimates
for the winning and second highest bid to determine a reserve
price. He subsequently commits to using this reserve price for
a fixed amount of periods. In the fourth step, a test is done
to see whether we should start another commit phase, or, go
back and start with another exploration phase.

We summarize the main contributions of this paper as
follows:

∙ We propose a method for learning optimal reserve prices
in a limited information setting where the values of the
bids are not revealed and no historical information about
the values of the bids is available. Our proposed method



is suitable for non-stationary environments.
∙ We show that taking the gap between the winning bid and

second highest bid into account leads to better decisions
for the reserve prices (we refer to this as risk-aware
pricing).

∙ To the best of our knowledge, we are the first to consider
leveraging techniques from PSO in order to set reserve
prices in online ad auctions.

∙ Experiments using real-life ad auction data show that the
proposed method outperforms popular bandit algorithms.

The remainder of this paper is organized as follows. In
Section II we discuss the related literature. Section III provides
a formal formulation of the problem. In Section IV we
present the our proposed method for setting reserve prices. In
Section V we perform experiments and compare our method
with baseline strategies in order to assess the quality of our
proposed method. Section VI concludes our work and provides
some interesting directions for further research.

II. RELATED LITERATURE

The problem of maximizing revenues in online advertising
has received increasing attention in the machine learning liter-
ature over the last decade. In [2] an online learning approach
is used to derive a policy for setting optimal reserve prices,
but the analysis makes the assumption that the environment is
stationary. Other works such as [3], [4], [5], [6] use historical
data to directly predict the optimal reserve price or the winning
bid (which can indirectly be used to set a reserve price). A
drawback of using models based on historical data is that
they may not perform well in non-stationary environments.
Most of the studies mentioned above do not set reserve prices
in an adaptive way that adjusts to changing environments.
Some studies such as [5], [7], [8] do study adaptive reserve
prices, but they assume that the winning bid and/ or second
highest bid are observed. In this paper we do not make this
assumption. In [9] a different but related problem is studied,
namely optimizing revenues for an SSP using a header-bidding
strategy. Finally, we note that [10] studied a problem in a
similar setting and proposed a parametric method based on
Thompson sampling. In this paper we focus on reserve price
optimization wihtin a single SSP, but there are also studies (e.g.
[11], [12], [13], [14]) that consider optimization problems with
multiple SSPs and guaranteed contracts.

This work is also related to a strand of the literature
that combines PSO and evolutionary algorithms (EAs) to
solve dynamic pricing problems, dynamic optimization prob-
lems in non-stationary environments, and problems with an
exploration-exploitation trade-off. There are studies that use
PSO in a dynamic pricing context to tune forecasting tech-
niques in order to price stocks or options [15], [16], or to
optimize a theoretical model [17]. In this paper we study a
different problem, namely determining the right price when
there is an exploration-exploitation trade-off. In [18] PSO
is used for a stylized dynamic pricing problem with an
exploration-exploitation trade-off. Compared with [18], we
study a different setting (online auctions) and use real-life

data to assess performance in non-stationary environments.
Furthermore, in this paper, PSO is used in a different way:
we use PSO as part of an exploration strategy in order to
learn an unobserved quantity. In [19] an adaptive dynamic
pricing strategy is designed for a duopoly where each firm
has a finite inventory and wants to maximize revenue over
a finite sales horizon. In [19] an EA is used to optimize the
parameters of the pricing strategy offline. In our problem there
is no offline phase and so the techniques developed in [19] are
not applicable to our problem. In [20] a framework for EAs
in online dynamic optimization problems is discussed and the
framework is illustrated on an inventory management problem.
In contrast to this paper, the framework requires the availability
of a simulator in order to optimize the policies and so the
methods presented in [20] are not directly applicable to our
problem. Some studies [21], [22], [23] focus on optimization
problems where the optima can shift over time. The main
differences between our problem and the problems considered
in these studies are that: (i) only one function evaluation is
allowed in our setting (one reserve price each time period);
(ii) after each function evaluation we get a noisy estimate of
the objective value; (iii) in standard PSO problem settings the
objective function is known and may shift over time, whereas
in our setting there is no explicitly known objective function
that can be used in order to directly maximize revenue.

To summarize, the main differences between this paper and
previous works are that: (i) we show how to set adaptive
reserve prices in possibly non-stationary environments; (ii) we
do not assume that the publisher observes the top two bids in
the ad auction, but only observes the revenue of each auction;
(iii) we leverage techniques from PSO and use them as part of
an exploration strategy in order to set reserve prices in online
ad auctions.

III. PROBLEM STATEMENT

We consider a publisher that owns a single advertisement
slot and that there is a sequence of impressions (correspond-
ing to this advertisement slot) arriving over time. Time is
discretized, and time periods are denoted by 𝑡 ∈ ℕ. At the
beginning of each time period (that is, upon arrival of an
impression) the publisher has to decide on a reserve price
𝑝𝑡 ∈ [𝑝𝑙, 𝑝ℎ] = [0, 𝑝ℎ]. The prices 𝑝𝑙, 𝑝ℎ are the minimum and
maximum reserve prices that are acceptable to the publisher.
After deciding on a reserve price, the impression is offered
for sale on the RTB-market via a Supply Side Platform (SSP).
The SSP runs a second-price auction for the impression and
the revenue of the publisher depends on the outcome of this
auction. Let 𝑋𝑡 and 𝑌𝑡 denote the highest and second highest
bid respectively in the auction for the impression at time 𝑡.
Then the revenue (or return) of the publisher at time 𝑡 is given
by 𝑅𝑡 = 𝕀{𝑝𝑡 ≤ 𝑋𝑡} ⋅ max{𝑌𝑡, 𝑝𝑡}. Here 𝕀{𝐴} = 1 if 𝐴 is
true and 𝕀{𝐴} = 0 otherwise. The expression for 𝑅𝑡 says that
if the reserve price 𝑝𝑡 is higher than the winning bid (𝑝𝑡 > 𝑋𝑡)
then the publisher receives zero revenue. If the reserve price
does not exceed the winning bid (𝑝𝑡 ≤ 𝑋𝑡) then the revenue
equals the maximum of the second highest bid and the reserve



price. Note that, in general, the publisher does not observe the
value of 𝑋𝑡 and 𝑌𝑡 after a (successful) sale.

Assumption 1: We assume that all bids are non-negative,
that is, 𝑋𝑡 > 𝑌𝑡 ≥ 0. If a sale was not successful, that is, if
𝑝𝑡 > 𝑋𝑡, then the publisher does not observe 𝑋𝑡 and 𝑌𝑡. If
a sale was successful, that is, if 𝑝𝑡 ≤ 𝑋𝑡, then the publisher
observes max{𝑌𝑡, 𝑝𝑡}.

Assumption 1 formalizes the setting that is relevant for SME
publishers, since the ADX and the connected SSPs typically
do not reveal the actual bids placed in the auction but only
the result of the auction. The objective of the publisher is to
maximize the cumulative revenue over the sales horizon of
length 𝑇 . Thus the revenue optimization problem over 𝑇 time
periods or impressions can be expressed as follows:

max
𝑝1,...,𝑝𝑇

𝔼

{
𝑇∑

𝑡=1

𝕀{𝑝𝑡 ≤ 𝑋𝑡} ⋅max{𝑌𝑡, 𝑝𝑡}
}

(1)

Remark 1: In the literature on online advertising and the
RTB-market, the reserve price is sometimes also referred to
as the floor price. In the remainder of this paper we will use
the term top bid to refer to the winning bid in the online
auction and we will use the term second bid to refer to the
second highest bid.

Remark 2: In order to simplify the exposition of our method,
we focus on the case where there is a single ad slot. However,
in practice, the publisher may want to set a reserve price
depending on the characteristics of the user and the ad slot.
Our method can also be applied in such a setting by, for
example, making segments of users and applying our method
for each segment.

IV. PROPOSED APPROACH: PSO-ETC-RAP

In this section we present a method to sequentially set the
reserve price 𝑝𝑡. We will refer to the method developed in this
section as PSO-ETC-RAP (PSO based explore-then-commit
algorithm with risk-aware pricing). It exploits the dynamic
movements of particles in PSO to learn an estimate of the top
bid. This estimate is then combined with an estimate of the
second bid to set a reserve price.

Our method follows the following main steps:

1) Determine a reference value for the second bid.
2) Using the reference value for the second bid as a

reference point, determine the reference value for of the
top bid.

3) Apply a risk-aware reserve price for 𝐸 periods.
4) If the environment is favorable, apply the risk-aware

reserve price for another 𝐸 periods. Otherwise, go to
step 1.

Our method cycles through 4 steps. The first two steps are
called exploration phases, the third step is called a commit
phase. In the fourth step, a test is done to see whether we
should start another commit phase, or, go back and start with
another exploration phase. We now elaborate on each of these
phases.

A. Exploration phase I: Reference value for the second bid

In the first exploration phase, the goal is to determine
a reference value for the second bid. The reference value
represents a value that is supposed to be close to the second
bid. In order to determine the reference value for the second
bid we can exploit the structure of the second-price auction.
More specifically, there is a risk-free way to actually observe
the second bid. It can be accomplished by setting a reserve
price equal to zero: 𝑝𝑡 = 0. If 𝑝𝑡 = 0, then (by Assumption 1)
the observed revenue will be equal to the second bid since
𝑅𝑡 = max{𝑌𝑡, 𝑝𝑡}. In order to estimate the second bid, we
apply a reserve price of zero for 𝑀 periods and use the
average of the observed revenues as our reference value. That
is, we set 𝑝𝑘 = 0 for 𝑘 = 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑀 − 1 and use
𝑝𝑌 =

∑𝑡+𝑀−1
𝑘=𝑡 𝑅𝑘/𝑀 as our reference value. Here 𝑀 is a

parameter of the algorithm that is chosen by the publisher.

B. Exploration phase II: Reference value for the top bid

In the second exploration phase, the goal is to determine
a good reference value for the top bid. Determining a good
reference value for the top bid is much more complicated since
(by Assumption 1) the top bid is (in general) never observed.
In Algorithm 1 we propose an estimator that performs well in
our numerical experiments. The main idea behind the estimator
in Algorithm 1 is as follows. The estimator takes as input
a sample of 𝐾 auction outcomes {(𝕀{𝑝𝑘 ≤ 𝑋𝑘}, 𝑝𝑘)}𝐾𝑘=1

and returns a reference value 𝑝𝑋 that represents a critical
boundary. The interpretation of the critical boundary is that it
is the highest reserve price such that reserve prices above 𝑝𝑋

tend to lead to unsuccessful sales but reserve prices below 𝑝𝑋

are successful.
Note that it is not immediately clear how to use Algorithm

1 since the values for 𝑝𝑘 need to be chosen and the choices for
these values will determine the quality and usefulness of the
reference value that is obtained. In order to guide the process
of choosing appropriate values for 𝑝𝑘, we exploit the way in
which particles behave and evolve in PSO.

Algorithm 1 Compute-Ref-X
Require: A sample of 𝐾 reserve prices and outcomes

{(𝕀{𝑝𝑘 ≤ 𝑋𝑘}, 𝑝𝑘)}𝐾𝑘=1.
1: Set 𝐴1 = {𝑝𝑘∣𝕀{𝑝𝑘 ≤ 𝑋𝑘} = 1, 1 ≤ 𝑘 ≤ 𝐾}.
2: Set 𝐴2 = {𝑝𝑘∣𝕀{𝑝𝑘 ≤ 𝑋𝑘} = 0, 1 ≤ 𝑘 ≤ 𝐾}.
3: if 𝐴1 = ∅ then
4: Set 𝑝𝑋 = min{𝑝∣ 𝑝 ∈ 𝐴2}.
5: else if 𝐴2 = ∅ then
6: Set 𝑝𝑋 = max{𝑝∣ 𝑝 ∈ 𝐴1}.
7: else
8: Set 𝑝𝑋 = min

{
max{𝑝∣ 𝑝 ∈ 𝐴1},min{𝑝∣ 𝑝 ∈ 𝐴2}}.

9: end if
10: return 𝑝𝑋 .

C. Exploration phase II: Learning the reference value for the
top bid using PSO

In this subsection we will show how PSO can be used to
learn the reference value for the top bid. First we describe



the standard formulation of PSO and then we describe our
implementation.

The basic PSO algorithm was introduced by [24] and sim-
ulates the process of a flock of birds searching for food. The
birds change their position and velocity constantly during the
search process. Initially, the bird flock is scattered randomly,
and later the flock will gradually gather as a group until they
find food. In PSO each bird is represented by a particle and
each particle has an associated location vector and velocity
vector. The evolution of particle 𝑖 is defined as follows:

𝑉𝑖,𝑁 = 𝜅𝑉𝑖,𝑂 + 𝑐1𝑟1(𝑃𝑖 − 𝐿𝑖,𝑂) + 𝑐2𝑟2(𝐺− 𝐿𝑖,𝑂) (2)

𝐿𝑖,𝑁 = 𝐿𝑖,𝑂 + 𝑉𝑖,𝑁 (3)

𝑉𝑀𝐼𝑁 ≤ 𝑉𝑖,𝑁 ≤ 𝑉𝑀𝐴𝑋 (4)

Here 𝑉𝑖,𝑁 ∈ ℝ
𝑛 denotes the new velocity of particle 𝑖,

which is derived from: (i) the old velocity 𝑉𝑖,𝑂 ∈ ℝ
𝑛; (ii)

the old location 𝐿𝑖,𝑂 ∈ ℝ
𝑛; (iii) the best solution found

so far by particle 𝑖 denoted by 𝑃𝑖 ∈ ℝ
𝑛; (iv) and the best

global solution (found by any particle) denoted by 𝐺 ∈ ℝ
𝑛.

The new location of particle 𝑖, denoted by 𝐿𝑖,𝑁 ∈ ℝ
𝑛, is

derived from its old location and new velocity. In Equation
(2), 𝑐1 and 𝑐2 are referred to as acceleration coefficients; 𝜅 is
called the inertia weight to balance global and local search;
𝑟1 ∈ ℝ

𝑛 and 𝑟2 ∈ ℝ
𝑛 with elements that are randomly and

independently chosen numbers in (0, 1). The movement of
the particles is constrained by upper and lower bounds on the
locations: 𝐿𝑀𝐼𝑁 ≤ 𝐿𝑖,𝑁 ≤ 𝐿𝑀𝐴𝑋 . The velocities are also
constrained by (4).

We now discuss the modifications made to the basic PSO
algorithm in our implementation. In our setting, there are 𝑆
particles (the swarm size) and the location of each particle
represents a reserve price. The particles move in a search
neighborhood that is determined by the reference value for
the second bid and a search radius. More specifically, if 𝑝𝑌𝑡
is the reference value available at time 𝑡, then the search
neighborhood is:

𝐿𝑀𝐼𝑁 = 𝑝𝑌𝑡 (5)

𝐿𝑀𝐴𝑋 = 𝑝𝑌𝑡 +𝑊 (6)

Here 𝑊 > 0 is the search radius. The value of 𝐺 is given by
the most recent value of 𝑝𝑋 which is based on information
from all 𝑆 particles. The value of 𝑃𝑖 is given by the most
recent value of 𝑝𝑋 but is only based on information from
particle 𝑖. The update of the velocities is also slightly different
in our implementation. The velocities are updated according
to:

𝑉𝑖,𝑁 = 𝜅𝑉𝑖,𝑂 + 𝑐1𝑟1(𝑃𝑖 − 𝐿𝑖,𝑂) + 𝑐+2 𝑟2(𝐺− 𝐿𝑖,𝑂) (7)

𝑉𝑖,𝑁 = 𝜅𝑉𝑖,𝑂 + 𝑐1𝑟1(𝑃𝑖 − 𝐿𝑖,𝑂) + 𝑐−3 𝑟2(𝐺− 𝐿𝑖,𝑂) (8)

𝑉𝑖,𝑁 = 𝜅𝑉𝑖,𝑂 + 𝑐1𝑟1(𝑃𝑖 − 𝐿𝑖,𝑂) + 𝑐+4 𝑟2(𝐺− 𝐿𝑖,𝑂) (9)

𝑉𝑖,𝑁 = 𝜅𝑉𝑖,𝑂 + 𝑐1𝑟1(𝑃𝑖 − 𝐿𝑖,𝑂) + 𝑐−5 𝑟2(𝐺− 𝐿𝑖,𝑂) (10)

Since the locations of particles represent reserve prices, we
have that 𝐺,𝐿𝑖,𝑂, 𝑃𝑖, 𝑉𝑖,𝑂 ∈ ℝ. There are four types of

updates, and the type of update depends on (i) whether
(𝐺 − 𝐿𝑖,𝑂) is positive or negative; (ii) whether the sample
used to determine 𝐺 contained a reserve price 𝑝𝑘 such that
𝕀{𝑝𝑘 ≤ 𝑋𝑘} = 0. That is, the sample used to determine 𝐺
contains an unsuccessful sale. If there is no unsuccessful sale
while determining 𝐺, then (7) is used if (𝐺− 𝐿𝑖,𝑂) > 0 and
(8) is used if (𝐺 − 𝐿𝑖,𝑂) < 0 with 𝑐+2 > 𝑐−3 . If there is
an unsuccessful sale while determining 𝐺, then (9) is used if
(𝐺 − 𝐿𝑖,𝑂) > 0 and (10) is used if (𝐺 − 𝐿𝑖,𝑂) < 0 with
𝑐+4 < 𝑐−5 . By specifying appropriate values (the exact values
are discussed in Section V) for the acceleration coefficients,
the dynamics in (7) - (10) ensure that the locations of the
particles get updated in the most informative direction relative
to the value of 𝐺. In particular, (7) and (8) ensure that the
locations 𝐿𝑖,𝑂 are updated to explore values above 𝐺 (if there
are no unsuccessful sales), and (9) and (10) ensure that the
locations 𝐿𝑖,𝑂 are updated to explore values below 𝐺 (if there
are unsuccessful sales). The motivation for these dynamics
comes from the definition of the critical boundary as specified
in Algorithm 1. If the sample used to determine 𝐺 contains
an unsuccessful sale, then we know that the next best estimate
for the reference value 𝑝𝑋 will be at most 𝐺, and therefore
the particles need to explore reserve prices lower than 𝐺.
The opposite reasoning holds for the case where there is no
unsuccessful sale while determining 𝐺.

The full procedure for the PSO step is described in Algo-
rithm 2. In our implementation each particle in the swarm is

Algorithm 2 PSO-Ref-X

Require: 𝑆, 𝑚, 𝑡𝑠, 𝑊 , 𝑝𝑌 , 𝜅, 𝑐1, 𝑐+2 , 𝑐−3 , 𝑐+4 , 𝑐−5 , 𝑉𝑀𝐼𝑁 , 𝑉𝑀𝐴𝑋 .
1: Set 𝑡 = 𝑡𝑠.
2: Set 𝑝𝑌𝑡 = 𝑝𝑌 .
3: Initialize 𝐿𝑖,𝑁 for 𝑖 = 1, . . . , 𝑆 according to (4), (5) and (6).
4: Set 𝐵𝑖 = ∅ for 𝑖 = 1, . . . , 𝑆.
5: for 𝑘 = 1 to 𝑚 do
6: for 𝑖 = 1 to 𝑆 do
7: Set 𝑡 = 𝑡+ 1.
8: if 𝑘 > 1 then
9: Update velocity 𝑉𝑖,𝑁 and location 𝐿𝑖,𝑁 of particle 𝑖

using (3),(4), (7)-(10).
10: end if
11: Set reserve price 𝑝𝑡 = 𝐿𝑖,𝑁 .
12: Observe outcome of auction: 𝕀{𝑝𝑡 ≤ 𝑋𝑡}.
13: Set 𝐵𝑖 = 𝐵𝑖 ∪ {(𝕀{𝑝𝑡 ≤ 𝑋𝑡}, 𝑝𝑡)}.
14: Run Compute-Ref-X (Algorithm 1) with input

{(𝕀{𝑝𝑘 ≤ 𝑋𝑘}, 𝑝𝑘)}𝑡𝑘=𝑡𝑠
and 𝑝𝑋 as output.

15: Set 𝐺 = 𝑝𝑋 .
16: Run Compute-Ref-X (Algorithm 1) with input 𝐵𝑖 and

𝑝𝑋𝑖 as output.
17: Set 𝑃𝑖 = 𝑝𝑋𝑖 .
18: end for
19: end for
20: return 𝐺

used 𝑚 times in a cyclic way. The main idea is to first initialize
the particles in the search neighborhood and then use the initial
locations as reserve prices in order to get in initial estimate
for 𝑝𝑋 . After each particle has been used once, we direct the
particles in the direction that is most promising for learning
the critical boundary by updating the velocities and locations



(Line 9). In the end, each particle is used 𝑚 times. Finally, we
remark that in our setting, a function evaluation takes place
every time that a particle is used for setting a reserve price,
and that only one function evaluation is allowed (since only
one reserve price is set) each period.

D. Commit phase: Risk-aware pricing

In the commit phase the publisher uses the reference values
𝑝𝑋𝑡 and 𝑝𝑌𝑡 for the top bid and second bid in order to determine
a reserve price 𝑝∗. The publisher then commits to using 𝑝∗ for
𝐸 periods, that is, 𝑝𝑡+1 = ⋅ ⋅ ⋅ = 𝑝𝑡+𝐸 = 𝑝∗. Here 𝐸 is a
parameter of the algorithm that is chosen by the publisher.
There are in general many ways to select 𝑝∗. In this paper we
present a simple scheme that performs well in our numerical
experiments. The intuition behind the scheme is as follows: (i)
if the gap between 𝑌𝑡 and 𝑋𝑡 is believed to be large, then try
to set a reserve price above the second bid (but not too high);
(ii) if the gap between 𝑌𝑡 and 𝑋𝑡 is believed to be small, then
choose a reserve price close to 𝑌𝑡.

In order to quantify the gap between 𝑌𝑡 and 𝑋𝑡 we look
at the reference values 𝑝𝑋𝑡 and 𝑝𝑌𝑡 for the top bid and second
bid. If ∣𝑝𝑋𝑡 − 𝑝𝑌𝑡 ∣/𝑝𝑌𝑡 ≤ 𝛼 then we consider the gap to be
small and the publisher sets the reserve price according to
𝑝∗ = 𝑝𝑌𝑡 . If on the other hand ∣𝑝𝑋𝑡 − 𝑝𝑌𝑡 ∣/𝑝𝑌𝑡 > 𝛼, then
the gap is considered to be large enough and the publisher
sets a reserve price according to 𝑝∗ = 𝜔𝑝𝑋𝑡 + (1 − 𝜔)𝑝𝑌𝑡 for
some 𝜔 ∈ (0, 1). By controlling the parameters 𝛼 and 𝜔 the
publisher can decide the degree to which he wants to exploit
the fact that the gap between 𝑌𝑡 and 𝑋𝑡 is large.

We refer to this process as risk-aware pricing since the
publisher explicitly takes information about both 𝑌𝑡 and 𝑋𝑡

into account while setting reserve prices in order to reduce
the risk of setting a reserve price that is too high. In principle,
the publisher can choose to set reserve prices solely based on
𝑝𝑋𝑡 , so why would he be interested in risk-aware pricing? The
main motivation for risk-aware pricing is related to estimation
error. Recall that the reference values are approximations that
are based on realizations from the distribution of 𝑌𝑡 and 𝑋𝑡.
The reference value 𝑝𝑋𝑡 is an approximation for the critical
boundary for the top bid, but this value still suffers from errors.
In particular, it depends on (i) the sample of reserve prices
used to determine its value, and (ii) the distribution of 𝑋𝑡.
Assuming a fixed distribution for 𝑋𝑡, a different sample of
reserve prices will lead to a different value of 𝑝𝑋𝑡 . Furthermore,
as the distribution of 𝑋𝑡 might change over time, the value of
𝑝𝑋𝑡 might not be representative for future time periods.

E. Test phase: Monitoring the environment

After using 𝑝∗ for 𝐸 periods, that is, after using 𝑝𝑡+1 =
⋅ ⋅ ⋅ = 𝑝𝑡+𝐸 = 𝑝∗ the publisher can use the observed revenues
in order to determine whether he wants to start another commit
phase. Suppose that {(𝕀{𝑝𝑘 ≤ 𝑋𝑘}, 𝑅𝑘)}𝑡+𝐸

𝑘=𝑡+1 is observed
during the commit phase. The publisher can conduct a test
to see whether the environment has changed substantially and
use this test to determine whether it is worthwhile to start

another commit phase, or, to go back and start another explo-
ration phase. The full procedure for the test is described in
Algorithm 3. The idea is to use a fraction 0 < 𝑓 < 1 to divide

Algorithm 3 Test-Commit-Phase
Require: A sample of size 𝐸 of revenues, auction outcomes

({𝕀{𝑝𝑘 ≤ 𝑋𝑘}, 𝑅𝑘)}𝐸𝑘=1, the commit reserve price 𝑝∗, 𝑓 , 𝜃𝑆 ,
𝑑𝑅, 𝑑𝑆 , 𝜃𝐿, 𝜃𝐻 .
Calculate sample statistics.

1: Set 𝑛∗ = ⌊𝑓 ⋅ 𝐸⌋.
2: Set 𝜇𝐺 =

∑𝐸
𝑘=1𝑅𝑘/𝐸. Set 𝜇𝐵 =

∑𝑛∗
𝑘=1𝑅𝑘/𝑛

∗.
3: Set 𝜇𝐴 =

∑𝐸
𝑘=𝑛∗+1𝑅𝑘/(𝐸 − 𝑛∗).

4: Set 𝜌𝐺 =
∑𝐸

𝑘=1 𝕀{𝑝𝑘 ≤ 𝑋𝑘}/𝐸.
5: Set 𝜌𝐵 =

∑𝑛∗
𝑘=1 𝕀{𝑝𝑘 ≤ 𝑋𝑘}/𝑛∗. Set 𝜌𝐴 = 1− 𝜌𝐵 .

6: if 𝜌𝐺 ≥ 𝜃𝑆 then
7: Set 𝑉 = true.
8: Set 𝐺 = ∣𝜇𝐴 − 𝜇𝐵 ∣/min{𝜇𝐴, 𝜇𝐵}.
9: if 𝐺 ≤ 𝑑𝑅 then

10: if 𝜇𝐺 > 𝑝∗ then
11: Set 𝑉 = false.
12: end if
13: else
14: if 𝜇𝐴 > 𝑝∗ then
15: Set 𝑉 = false.
16: end if
17: end if
18: else
19: if ∣𝜌𝐴 − 𝜌𝐵 ∣ ≤ 𝑑𝑆 then
20: Set 𝑉 = true.
21: if 𝜌𝐺 ≤ 𝜃𝐿 then
22: Set 𝑉 = false.
23: end if
24: else
25: Set 𝑉 = false.
26: if 𝜌𝐴 ≥ 𝜃𝐻 then
27: Set 𝑉 = true.
28: end if
29: end if
30: end if
31: return 𝑉

the sample of observed results {(𝕀{𝑝𝑘 ≤ 𝑋𝑘}, 𝑅𝑘)}𝑡+𝐸
𝑘=𝑡+1 into

two groups, where the first group uses the first 𝑛∗ = ⌊𝑓 ⋅ 𝐸⌋
observations and the other group the remaining 𝐸 − 𝑛∗

observations. Next, two main cases are distinguished: case (i)
where the commit price was not close to the critical boundary
and where most sales were successful; case (ii) where most
of the sales are not successful and the commit price is most
likely too high. In case (i) we start another commit phase,
unless the observed revenues exceed the commit price, because
this is an indication that the second bid will be higher than the
commit price (in particular, it is expected to be higher than the
previous reference value 𝑝𝑌𝑡 ) in the future and that this commit
price will be too low. In case (ii) we check how frequent the
unsuccessful sales are. If the success rate in the two groups
are similar and unsuccessful sales are very frequent, then we
start another exploration phase. If the success rate in the two
groups differ but in the last (most recent) group of observations
the success rate meets a minimum requirement, then we start
another commit phase. Finally, if there are 𝑁𝑡𝑒𝑠𝑡 or more
commit phases in a row, then we start an exploration phase



with probability 𝑃𝑡𝑒𝑠𝑡 (see Lines 27-42 in Algorithm 4).

F. Full algorithm

The details of the full procedure of PSO-ETC-RAP are
described in Algorithm 4.

Algorithm 4 Pseudocode for PSO-ETC-RAP

Require: 𝑀 , 𝐸, 𝜔, 𝛼, 𝑆, 𝑚 , 𝑊 , 𝜅, 𝑐1, 𝑐+2 , 𝑐−3 , 𝑐+4 , 𝑐−5 , 𝑉𝑀𝐼𝑁 ,
𝑉𝑀𝐴𝑋 , 𝑓 , 𝜃𝑆 , 𝑑𝑅, 𝑑𝑆 , 𝜃𝐿, 𝜃𝐻 , 𝑁𝑡𝑒𝑠𝑡, 𝑃𝑡𝑒𝑠𝑡.

1: Set 𝑡 = 0. Set 𝑁 = 0.
Exploration Phase I.

2: Set 𝐴 = ∅.
3: for 𝑗 = 1 to 𝑀 do
4: Set 𝑡 = 𝑡+ 1.
5: Apply reserve price 𝑝𝑡 = 0.
6: Observe outcome of auction: ({𝕀{𝑝𝑡 ≤ 𝑋𝑡}, 𝑅𝑡).
7: 𝐴 = 𝐴 ∪ {𝑅𝑡}
8: end for
9: Set 𝑝𝑌 =

∑
𝑅∈𝐴𝑅/𝑀 .

Exploration Phase II.
10: Set 𝑡𝑠 = 𝑡.
11: Run PSO-Ref-X (Algorithm 2) with inputs 𝑆, 𝑚, 𝑡𝑠, 𝑊 , 𝑝𝑌 ,

𝜅, 𝑐1, 𝑐+2 , 𝑐−3 , 𝑐+4 , 𝑐−5 , 𝑉𝑀𝐼𝑁 , 𝑉𝑀𝐴𝑋 and 𝐺 as output.
12: Set 𝑝𝑋 = 𝐺.

Risk-aware pricing.
13: if ∣𝑝𝑋 − 𝑝𝑌 ∣/𝑝𝑌 ≤ 𝛼 then
14: set 𝑝∗ = 𝑝𝑌

15: else if ∣𝑝𝑋 − 𝑝𝑌 ∣/𝑝𝑌 > 𝛼 then
16: set 𝑝∗ = 𝜔𝑝𝑋 + (1− 𝜔)𝑝𝑌

17: end if
18: Set 𝑡 = 𝑡+ 𝑆 ⋅𝑚.
19: Set 𝑝𝑡 = 𝑝∗.
20: Set 𝐵 = ∅.
21: for 𝑗 = 1 to 𝐸 do
22: Set 𝑡 = 𝑡+ 1.
23: Set reserve price 𝑝𝑡.
24: Observe outcome of auction: ({𝕀{𝑝𝑡 ≤ 𝑋𝑡}, 𝑅𝑡).
25: Set 𝐵 = 𝐵 ∪ {(𝕀{𝑝𝑡 ≤ 𝑋𝑡}, 𝑅𝑡)}.
26: end for

Test for change in environment.
27: Run Test-Commit-Phase (Algorithm 3) with inputs 𝐵, 𝑝∗,

𝑡𝑠, 𝑓 , 𝜃𝑆 , 𝑑𝑅, 𝑑𝑆 , 𝜃𝐿, 𝜃𝐻 and 𝑄 as output.
28: if 𝑄 = true then
29: Set 𝑁 = 𝑁 + 1.
30: if 𝑁 < 𝑁𝑡𝑒𝑠𝑡 then
31: Go to Line 20.
32: else
33: Draw 𝑘 from Bernoulli distribution with parameter 𝑃𝑡𝑒𝑠𝑡.
34: if 𝑘 = 1 then
35: Set 𝑁 = 0 and go to Line 2.
36: else
37: Go to Line 20.
38: end if
39: end if
40: else
41: Go to Line 2.
42: end if

V. NUMERICAL EXPERIMENTS

In this section we conduct experiments to evaluate the
effectiveness of our proposed approach. The experiments are
implemented in Python 2.7 and run on Intel(R) Core(TM)
CPU i5-6300U @ 2.40GHz with 8GB RAM under Windows
7 environment.

A. Dataset Description

In order to evaluate our method we use real-life data from
ad auction markets. We use the publicly available iPinYou
dataset [25], which contains information from the perspective
of nine advertisers on a DSP. It contains information about
bids placed by advertisers on a DSP for impressions during
a week. For each bid there is information about the ad slot
(height, visibility, etc.), time of day, the ad exchange, and the
result of the bid. It is important to note that the dataset only
contains information about the top bid and the second bid if
the advertiser actually wins the auction. As a consequence the
bid records represent a biased sample from the distribution
of the top bid and second bid. However, the dataset contains
information for several advertisers and could still be used to
get a general understanding of the dynamics on the ad auction
market. We use the iPinYou dataset to construct synthetic data
for the top bid and second bid in order to test our proposed
approach. Note that the values of the bids are not revealed to
any of the algorithms: they are only needed in order to test
which methods yield the highest returns.

a) Construction of second bid: For a specific advertiser,
we take the values of the second bid for the first 310000
impressions (sorted chronologically). We then divide these
310000 impressions into blocks with length 500. Within each
block we sample with replacement 500 values of second bid
from the 500 impressions in the block. After we are done with
the sampling, we take rolling mean with window length of 25
observations of the resulting time series. Finally, we take the
last 300000 values of the resulting time series as the values for
the second bid. The main reason for taking a rolling mean is
that the advertisers in this dataset are bidding on ad slots from
different publishers (with different properties etc.), whereas we
are interested in a single publisher that is selling a specific ad
slot. By taking a rolling mean we are effectively extracting the
general trend in the second bids.

b) Construction of top bid: In order to construct the top
bid, we take the time series of the second bid and divide
the time series into blocks with length 𝐵. Within each block
we determine the maximum of the values of the second bid
(denote the maximum by 𝑀𝐵). The value of the top bid
within a block is then equal to 𝑀𝐵 ⋅ (1 + 𝑢) ⋅ (1 + 𝑣) where
𝑣 ∼ 𝒰 (0.0, 𝑧). 𝐵, 𝑧 and 𝑢 are discrete uniformly distributed
with 𝐵 ∈ {50, 100}, 𝑧 ∈ {0, 0.2, 0.4} and 𝑢 ∈ {0, 0.1, 0.2}.
The draws of 𝑢 are identically independently distributed (i.i.d)
between blocks and draws of 𝑣 are i.i.d within blocks. This
construction models a situation where the gap between the top
bid and second bid varies over time and is independent of the
level of the second bid.

We use data from 4 advertisers and we repeat the above
procedure 5 times for each advertiser in order to generate 5
time series for the top bid and second bid.

B. Benchmark Strategies

The MAB framework is a popular framework for decision
making under exploration-exploitation trade-offs. In order to
judge the quality of our proposed method, we compare its



performance with two MAB algorithms: (i) the UCB algorithm
[26] and (ii) the EXP3 algorithm [27]. These are popular
bandit algorithms that are simple to implement and have
satisfactory performance in a broad range of applications. In
the case of i.i.d and bounded rewards for each arm, UCB
achieves an order-optimal upperbound on cumulative regret. In
the adversarial setting with bounded rewards, EXP3 achieves
a worst-case order-optimal upperbound on cumulative regret.

C. Settings and Performance Metrics

In addition to PSO-ETC-RAP, we also consider PSO-ETC-
TB. PSO-ETC-TB does not use a risk-aware price, instead it
uses the reference value for the top bid as the commit price. In
order to measure the performance of the methods, we consider
four performance metrics. The first performance metric is the
cumulative average return, which is defined as

∑𝑇
𝑡=1 �̂�𝑡/𝑇 ,

where �̂�𝑡 is the observed return in period 𝑡. This is our main
metric to determine the profitability of a strategy. The second
metric is the success rate, which is defined as

∑𝑇
𝑡=1 𝕀{𝑝𝑡 ≤

𝑋𝑡}/𝑇 . This measures how often reserve prices are set too
high. The third metric is the revenue rate, which is defined
as

∑𝑇
𝑡=1 𝕀{𝑝𝑡 ≤ 𝑋𝑡}�̂�𝑡/

∑𝑇
𝑡=1𝑋𝑡. This measures the rate

at which the top bid is extracted. The fourth metric is the
revenue rate given success, which is defined as

∑𝑇
𝑡=1 𝕀{𝑝𝑡 ≤

𝑋𝑡}�̂�𝑡/
∑𝑇

𝑡=1 𝕀{𝑝𝑡 ≤ 𝑋𝑡}𝑋𝑡. This measures the rate at which
revenue is extracted given that a sale is successful. We average
the three performance metrics over the 5 samples constructed
for each advertiser.

We use the following settings for PSO-ETC-RAP: 𝑊 = 50,
𝐸 = 25, 𝑀 = 15, 𝑆 = 5, 𝑚 = 3, 𝜅 = 0.45, 𝑐1 = 1,
𝑐+2 = 𝑐−5 = 2.0, 𝑐−3 = 𝑐+4 = 1.05, 𝑓 = 0.5, 𝜃𝑆 = 0.8,
𝑑𝑅 = 0.1, 𝑑𝑆 = 0.1, 𝜃𝐿 = 0.45, 𝜃𝐻 = 0.8, 𝑉𝑀𝐼𝑁 = −∞,
𝑉𝑀𝐴𝑋 = ∞, 𝑁𝑡𝑒𝑠𝑡 = 3, 𝑃𝑡𝑒𝑠𝑡 = 0.05. With these choices
𝑀 = 𝑆𝑚 = 15 and so both exploration phases have the
same duration. The choices for the acceleration coefficients,
in combination with the dynamics in (7) - (10), ensure that the
locations of the particles get updated in the most informative
direction relative to the value of 𝐺. Note that, although the
general PSO algorithm may also feature velocity clamping, we
do not use it in PSO-ETC-RAP and PSO-ETC-TB. The main
reason for this is that the locations of the particles are already
restricted to a search radius and by imposing velocity clamping
we would restrict exploration within this search radius. We use
𝑝𝑙 = 0, 𝑝ℎ = 250 since the resulting time series of the top bid
is at most 250.

The following settings are used for the risk-aware pricing
component in PSO-ETC-RAP: (i) If ∣𝑝𝑋 − 𝑝𝑌 ∣/𝑝𝑌 ≤ 0.1
then set the reserve price according to 𝑝∗ = 𝑝𝑌 ; (ii) If 0.1 <
∣𝑝𝑋 − 𝑝𝑌 ∣/𝑝𝑌 ≤ 0.2, then set the reserve price according to
𝑝∗ = 0.5𝑝𝑋 +0.5𝑝𝑌 ; (iii) If ∣𝑝𝑋𝑡 −𝑝𝑌𝑡 ∣/𝑝𝑌𝑡 > 0.2, then set the
reserve price according to 𝑝∗ = 0.7𝑝𝑋 + 0.3𝑝𝑌 . This models
a situation were the gap between 𝑋𝑡 and 𝑌𝑡 can be “small”,
“medium” and “large”, and for larger gaps 𝑝∗ is closer to
𝑝𝑋 . In the UCB and EXP3 algorithms each arm represents a
reserve price and we use 𝑁 = 100 arms which are equally
spaced in the interval [𝑝𝑙, 𝑝ℎ].

D. Results: PSO-ETC-RAP versus bandits

The results for PSO-ETC-RAP, PSO-ETC-TB, UCB and
EXP3 are displayed in Table I. The results show that PSO-
ETC-RAP generally outperforms the other methods. An in-
teresting observation is that UCB outperforms EXP3, even
though EXP3 makes no assumption on the sequence of re-
turns. A similar finding was also reported in [9]. As UCB
outperforms EXP3, the rest of this subsection focuses on the
differences between UCB and PSO-ETC-RAP. The perfor-
mance gap differs depending on the specific advertiser, but
in general, PSO-ETC-RAP has a cumulative average return
that is about 3.0 to 10.0 units higher than UCB. The main
explanation for the superior performance of PSO-ETC-RAP
compared to UCB is that (i) PSO-ETC-RAP is able to better
track changes in the top bid and (ii) PSO-ETC-RAP is better
in selecting reserve prices that are closer to the top bid when
the gap between the top bid and second bid is large. In Fig. 1a
a rolling average with window size 250 of the selected reserve
prices by PSO-ETC-RAP and UCB relative to the top bid for
a specific advertiser are shown (for a specific sample). From
Fig. 1a we see that UCB tends to be more conservative and
selects reserve prices that are often low, which results in a
higher success rate but a lower revenue rate (see also Table I).
Fig. 1a shows that UCB generally does not react very quickly
to changes in the top bid. On the other hand, the reserve prices
selected by PSO-ETC-RAP are generally higher than those
selected by UCB and they tend to do a better job at tracking
the changes in the top bid. Finally, in Fig. 1b we can see that
it does not take long for PSO-ETC-RAP to outperform UCB
within the sales horizon.

E. Results: Impact of risk-aware pricing

If we compare PSO-ETC-RAP with PSO-ETC-TB, then we
see that PSO-ETC-RAP significantly outperforms PSO-ETC-
TB. The performance gap differs depending on the specific
advertiser, but in general, PSO-ETC-RAP has a cumulative
average return that is at least 5.0 higher than PSO-ETC-TB.
PSO-ETC-TB tends to select reserve prices that are higher then
those selected by PSO-ETC-RAP, and this results in a lower
success rate and a higher revenue rate given success (see Table
I). The results show that estimation errors relating to the top
bid can have a big impact on performance. The main reason
for this is that, in this application, exceeding the top bid by an
amount Δ > 0 is more costly than selecting a reserve price Δ
below the top bid. Taking the gap between the top and second
bid into account leads to better performance.



(a) Reserve prices selected by PSO-ETC-RAP and UCB for
advertiser 2259.

(b) Results for advertisers 1458, 3427, 2259 and 2261.

Fig. 1. Cumulative average returns and selected reserve prices.

TABLE I
PERFORMANCE OF PSO-ETC-RAP, PSO-ETC-TB, UCB AND EXP3 ON SYNTHETIC DATASETS.

PSO-ETC-RAP PSO-ETC-TB UCB EXP3
advertiser 1458 min max mean min max mean min max mean min max mean
cumulative average return 74.48 74.74 74.58 67.93 68.32 68.13 69.07 72.01 70.90 63.50 63.75 63.63
success rate 0.89 0.89 0.89 0.78 0.78 0.78 0.91 1.00 0.97 0.86 0.86 0.86
revenue rate 0.70 0.70 0.70 0.64 0.64 0.64 0.65 0.68 0.67 0.60 0.60 0.60
revenue rate success 0.77 0.77 0.77 0.79 0.79 0.79 0.65 0.72 0.68 0.68 0.68 0.68
advertiser 3427 min max mean min max mean min max mean min max mean
cumulative average return 84.68 85.25 84.90 77.54 78.69 77.98 68.99 77.50 74.31 72.71 73.07 72.96
success rate 0.89 0.90 0.90 0.79 0.80 0.79 0.66 0.93 0.80 0.86 0.87 0.87
revenue rate 0.71 0.71 0.71 0.65 0.66 0.65 0.58 0.65 0.62 0.61 0.61 0.61
revenue rate success 0.78 0.78 0.78 0.79 0.79 0.79 0.68 0.77 0.73 0.69 0.69 0.69
advertiser 2259 min max mean min max mean min max mean min max mean
cumulative average return 99.45 100.16 99.71 93.35 93.93 93.58 95.43 97.23 96.28 88.05 88.59 88.33
success rate 0.91 0.91 0.91 0.82 0.82 0.82 0.95 0.98 0.97 0.88 0.89 0.89
revenue rate 0.71 0.71 0.71 0.66 0.67 0.67 0.68 0.69 0.69 0.63 0.63 0.63
revenue rate success 0.77 0.77 0.77 0.78 0.79 0.79 0.68 0.72 0.70 0.69 0.70 0.69
advertiser 2261 min max mean min max mean min max mean min max mean
cumulative average return 98.11 98.45 98.29 91.84 92.67 92.32 92.17 96.08 94.70 86.95 87.25 87.13
success rate 0.90 0.91 0.90 0.81 0.82 0.82 0.94 0.99 0.97 0.89 0.90 0.90
revenue rate 0.70 0.70 0.70 0.66 0.66 0.66 0.66 0.69 0.68 0.62 0.62 0.62
revenue rate success 0.76 0.76 0.76 0.78 0.78 0.78 0.67 0.71 0.69 0.68 0.68 0.68

Remark 3: We have presented results based on reasonable
settings that performed well across all advertisers. The results
for the other 5 advertisers in the iPinYou dataset are very
similar to those reported in Table I and are omitted due
to space limitations. Results with 𝑆 ∈ {3, 8}, 𝑊 = 75,
𝑀 = 25 are also similar. Performance can be improved by
tuning the parameters for each advertiser separately. Also,
the risk-aware pricing component can be refined to improve
performance. In our experiments we did not conduct extensive
parameter tuning. One approach to conduct paramter tuning is
to use a percentage of the impressions (say the first 10%)
to tune parameters and then evaluate the performance on the
remaining impressions.

VI. DISCUSSION AND CONCLUSION

We proposed a method for learning reserve prices in second-
price auctions. We studied a limited information setting where
the values of the bids are not revealed and no historical

information about the values of the bids is available. Our
method leverages the movement of particles in PSO to set
reserve prices. To the best of our knowledge, we are the first
to consider leveraging techniques from PSO in order to set
reserve prices in online ad auctions.

Our results indicate that it is important to properly deal with
non-stationarity in the distribution of the bids. Although there
are algorithms based on the theory of multi-armed bandits
that have performance guarantees, our results indicate that
using multi-armed bandit strategies is not enough to guarantee
high performance. Another key insight is that incorporating
knowledge about the structure of the problem (e.g. in the form
of risk-aware pricing) can lead to improved performance.

Our approach can be improved in various ways. One draw-
back of our appoach is that is takes a number of control
parameters as input. Future work can be directed towards using
evolutionary algorithms and swarm intelligence to optimize



these parameters. For example, evolutionary algorithms and
swarm intelligence can be employed to optimize the param-
eters of the risk-aware pricing component and to make it
adaptive and self-regulatory.
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[23] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: a survey on problems, methods and measures,” Soft
Computing, vol. 15, no. 7, pp. 1427–1448, Jul 2011. [Online].
Available: https://doi.org/10.1007/s00500-010-0681-0

[24] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4,
Nov 1995, pp. 1942–1948 vol.4.

[25] W. Zhang, S. Yuan, J. Wang, and X. Shen, “Real-time bidding bench-
marking with iPinYou dataset,” arXiv preprint arXiv:1407.7073, 2014.

[26] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Machine Learning, vol. 47, no. 2,
pp. 235–256, May 2002. [Online]. Available: https://doi.org/10.1023/A:
1013689704352

[27] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The
nonstochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002. [Online]. Available: https:
//doi.org/10.1137/S0097539701398375


