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Empirically testable assumptions relate 3 psychophysical primitives: presentations of pairs of
physical intensities (e.g., pure tones of the same frequency and phase to the 2 ears or 2 successive
tones to both ears); a respondent’s ordering of such signal pairs by perceived intensity (e.g.,
loudness); and judgments about 2 pairs of stimuli being related as some proportion (numerical factor,
as in magnitude production). Explicit behavioral assumptions lead to 2 families of psychophysical
functions, one corresponding to unbiased joint presentations and the other to biased ones. Under an
invariance assumption, the psychophysical functions in the unbiased case are approximate power
functions, and those in the biased case are exact power functions. A number of testable predictions
are made. The mathematics involved draws from publications in utility theory and mathematics but
with a reinterpretation of the primitives.

This article offers a psychophysical theory for physical inten-
sities that rests on three psychophysical primitives. The first
concerns the joint presentation of pairs of intensities, which are
called stimuli in contrast to their component signal intensities.
A pure tone example is applying different intensities of the
same frequency, in phase, to the two ears. This and two other
interpretations are detailed below. The second primitive de-
scribes a respondent’s ordering of stimuli according to a subjec-
tive intensity attribute. An example is the ordering of pure tone
sounds of the same frequency according to loudness. When the
same intensity is presented to both ears, the loudness order is
identical to that of physical intensity, but in general, the loud-
ness order is not physically determined. One does not know
a priori if 50 dB to the left ear and 57 dB to the right is louder
or not than 55 dB to the left and 53 dB to the right. The third
primitive is the respondent’s subjective determination of an inten-
sity interval that is some prescribed proportion of another intensity
interval. When the lower end of each interval is the respondent’s

threshold, these judgments are called magnitude productions
(Stevens, 1975).

The assumptions of the theory relate these three attributes—
joint presentations, ordering, and proportions—in terms of sev-
eral testable hypotheses. An invariance postulate sharply limits
the form of the psychophysical function to either a power
function or something that for most of the range closely ap-
proximates a power function. Assuming that such representa-
tions hold for two modalities, the forms of cross-modality
matches are predicted. Another, testable, invariance principle
limits the form of a weighting function that arises in describing
proportion judgments.

The results presented in this article suggest a substantial
empirical program. If the data from some interpretation of the
primitives support the several qualitative assumptions described
here, then the article establishes that a fairly comprehensive
theory of numerical representations holds for global psycho-
physical judgments. This theory integrates three major meth-
ods—proportions, summation over joint presentations, and
matches. If only some of the assumptions are supported empir-
ically, the failures will clarify which aspects of the theory need
modification. One such modification occurred during the de-
velopment of this article. Originally, Luce (2000) presented the
theory only for the unbiased (commutative) cases. When a
psychophysical test rejected that assumption, the noncommuta-
tive cases reported here were developed as well.

Most of the mathematics involved is not presented here because
it is fairly complicated. For the unbiased case, the theory, which
had been developed originally as a theory of utility, was summa-
rized in Luce (2000). The theory for the biased case was developed
by Aczél, Luce, and Ng (in press). Here, I interpret the primitives
differently from the utility interpretation. The mathematical results
constraining the form of the psychophysical function are found in
Luce (2000) and Marchant and Luce (in press), and those con-
straining the possible forms for the weighting function are from
Luce (2001) and Prelec (1998).
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Basic Setup1

The Primitives

Let �� � {x�x is a real number, x � 0} denote the set of
non-negative real numbers ordered by � and endowed with both
addition (�) and multiplication (�).

● The structure ���, �, �, �� is a numerical representation of physical
signal intensities in some fixed units, for example, the intensity of
pure tones of the same frequency, in which � represents intensity
superposition and r � x represents increasing the intensity x by a
factor of r. As usual, multiplication is abbreviated to rx. The
additive identity 0 represents the presentation of no intensity at all.
Over ��, x � y denotes the physical ordering of intensities. Of
course, the physical intensities that can be presented to people are,
in practice and for ethical reasons, necessarily bounded from above.
That fact is not modelled in the present theory. In addition, for many
psychophysical interpretations, signals of sufficiently low intensi-
ties are not detectable. The entire presentation is greatly simplified
by working with suprathreshold intensity measures. Let � denote the
relevant absolute threshold;2 then when we speak of presenting
intensity x, from a purely physical perspective we actually present x�
� x � �. These suprathreshold intensities can also be represented by
���, �, �, ��

● Let x, u denote two suprathreshold intensities, and let (x, u) denote
their joint presentation that is treated by the subject as a single
entity.3 It is important to distinguish the left and right variables in (x,
u). Possible interpretations and properties are given below. We must
assume that there may be distinct left and right thresholds, denoted
�l and �r, and so the actual physical intensities are x� � x � �l, u�
� u � �r. For notational clarity, let

Tl � {x�x � x� � �l, x� � �l � 0}, (1)

Tr � {u�u � u� � �r, u� � �r � 0}. (2)

Observe, as is obvious, that Tl � Tr � ��. Sometimes the T
notation is used for increased clarity, but mostly I use either �� on
the assumption that the reader will recall that we are dealing with
intensity increments above threshold, or I substitute statements such
as x � 0, u � 0. For x � Tl, u � Tr, it is assumed that (x, u) can
always be presented. The convention I follow most often is to use x,
y for intensities in the left position and u, v for those in the right
position.

● Let � denote a psychological ordering over Tl � Tr � �� � ��,
for example, the ordering of auditory stimuli by loudness. For x, y �
Tl, u, v � Tr, let a � (x, u) and b � (y, v). Then a � b denotes the
respondent’s judgment that stimulus a is perceived as exhibiting at
least as much of the attribute as stimulus b, for example, “at least as
loud as” in the case of stimuli constructed from pure tones or noises.
Let � denote psychological indifference in the sense that a � b
means that both a � b and b � a hold, and the strict order � is
defined by a � bN a � b and not (a � b). We do not automatically
assume joint presentation is symmetric (unbiased) in the sense that
for all x, u � ��

	x, u) � (u, x). (3)

● Next is a family of binary operations �i,p on Ti, where i � l, r, p � 0.
In defining the operation on Tl, assume that intensities are presented
to the left position and 0 (i.e., the threshold intensity or less) to the
right position. For x, y � Ti, with x 
 y, let z � x �i,p y 
 y denote
the stimulus that the respondent judges makes the “interval” [y, z]
stand subjectively in proportion p to the interval [y, x], where p may

be any positive real number.4 So, in the case of hearing, these
operations are realized by four successive presentations to the same
ear, the first two defining the intensity interval [y, x] and the second
two defining the intensity interval [y, z], where z � x �i,p y, i � l,
r, is the respondent’s choice.

Three Realizations of Joint Presentation

I describe here the three different psychophysical interpretations
of (x, u) that are under empirical study. Others may be possible.

1. Let (x, u) denote the physical superposition of two intensities
x and u, that is, (x, u) � x � u. Clearly, for this interpretation
symmetry, Equation 3, holds, and it is anticipated that there are no
thresholds, that is, �l � �r � 0. Indeed, the assumptions of
extensive measurement such as closure, monotonicity, commuta-
tivity, and associativity are satisfied. This leads to the subjective
measure being proportional to intensity. This is not an acceptable
model for dimensions such as loudness and brightness where, for
well over a century, it has been explicitly recognized that subjec-
tive intensity is not proportional to physical intensity. This inter-
pretation may be satisfactory, however, for line lengths.5

2. Let the signals in a joint presentation be intensities of pure
tones of the same frequency and phase or of bursts of white noise
with different intensities at each ear. In particular, for x, u � ��,
let (x, u) denote the presentation of physical intensity x � �l to the
left ear and u � �r to the right ear. The subjective summation
corresponding to loudness is automatically carried out by the brain.
Here, joint-presentation symmetry, Equation 3, is not clearly cor-
rect, and auditory data collected by Steingrimsson (2002) suggest
that it holds rarely, if ever, for pure tones. Note that, except for
stimuli quite near 0, there is little psychological distinction be-
tween x and x � �l. For example, suppose that the threshold is 20
dB SPL and the signal is 40 dB above the threshold, then the
intensities are, respectively, 102 and 104 � 102, and the latter in dB

1 The formulation of this section owes a great deal to suggestions made
by Ehtibar Dzhafarov. My earlier version of it was a good deal more
complex and confusing, and he has persuaded me to follow the path taken
here. I am very grateful to him.

2 The model presented here ignores the fact that these as well as other
judged intensities are, in practice, only statistically defined. I do not know
how to construct a probabilistic version of the present theory or, indeed, of
any theory with a strong focus on structure beyond order. This fact leads
to some familiar complications in testing the model. These can be handled
in fairly standard ways of, in essence, superimposing a statistical model on
top of the structural one. This article does not detail this aspect of applying
the theory to data.

3 In the utility interpretation, (x, y) is taken to mean that valued entities
x and y are both received (or held). There (x, y) is treated as a binary
operation Q, which is called joint receipt. In the present context, that term
does not seem very suggestive, and so at A. A. J. Marley’s suggestion it is
called joint presentation and its appraisal as subjective summation, as being
more descriptive of the psychophysical phenomenon. In Table 1, a full
glossary is provided of the utility and psychophysical terminology.

4 The use of p for proportion follows Narens (1996), who has developed
a somewhat related theory of magnitude estimation (see below). His
notation is somewhat different from mine. My statement z � x �p 0 he
writes as (z, p, x). He does not treat the case z � xopy; presumably he would
write ([y, z], p, [y, x]). I will indicate as appropriate some of the similarities
and differences between his predictions and mine.

5 Such a study is underway by John C. Baird (personal communication).
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is 40.04, which is not perceptually different from 40 dB. For other
domains, one can sometimes think of similar interpretations. For
example, in the domain of subjective heaviness, weight x can be
placed in the left hand and u in the right for an overall summed
heaviness corresponding to (x, u).

3. Let (x, u) denote the presentation of intensity x for some brief
duration d to both ears (or eyes, as the case may be) followed
immediately by the presentation of intensity u also for duration d
to both ears (eyes). The subject is instructed to sum these succes-
sive presentations with respect to loudness (brightness) and to
provide a matching intensity y of duration d to both ears (eyes).6

This interpretation seems possible for all intensity domains. One
does not have much reason to suppose that this interpretation will
prove to be symmetric.

In illustrations below, the second interpretation of pure tone
signals to the two ears is used.

After reporting the main results, the complication is explored of
having, in a single modality such as loudness judgments, several
distinct interpretations of joint presentation, (�, �), that each satisfy
the assumptions.

Basic Properties of (�, �) and �
This subsection introduces four basic assumptions underlying

the entire article.
Assumption 1. Equivalence relation: The relation � on �� �

�� is an equivalence relation, that is, transitive, for all f, g, h �
�� � ��,

f � g and g � hf f � h, (4)

symmetric,

f � gN g � f, (5)

and reflexive,

f � f. (6)

This assumption is clearly an idealization; see Footnote 2. Even
without going to probabilistic models, one could assume that �
forms a semiorder and so � is not transitive, although � is, and
so � is not an equivalence relation. I have not yet attempted this
generalization, which no doubt will be complicated.

Assumption 2. Compatibility of � and �: For all x, y, u, v �
��,

	x, u) � (y, u)N x � y, (7)

	x, u) � (x, v)N u � v. (8)

Both conditions concern a situation in which one ear receives
the same intensity in both presentations. In these special cases, the
subjective ordering agrees with the physical ordering. The assump-
tion of compatibility precludes the theory applying to anyone who
is totally deaf in either ear.

Assumption 3. Solvability: For every x, u � ��, there exist
y � y(x, u) and v � v(x, u) � �� such that

	x, u) � ( y, 0) � (0, v). (9)

This simply means that for any joint presentation, one can find
single-ear intensities that are perceived as equally loud as the pair.

By Assumptions 1 and 2, the quantities in Assumption 3 are
unique. For suppose (x, u) � (0, v) and (x, u) � (0, v�), then using
symmetry and reflexivity of � we have

	0, v) � (x, u) � (0, v�),

and so by transitivity (0, v) � (0, v�), whence by Assumption 2,
v � v�. Therefore, the following concepts are well defined.

Definition 1. Define the operations Ql and Qr on �� in terms
of Equation 9 by

x Ql u :� y(x, u), x Qr u :� v(x, u). (10)

Because, by definition, x Qi u, i � l, r, is an intensity, this
definition means that the defined Qi are closed on ��, so they truly
are operations.

Proposition 1. Suppose Assumptions 1–3 hold. Then, for x, y,
u, v � ��,

1. � is a weak7 order.
2. � is weakly monotonic, that is,

	x, u) � (y, u)N (x, v) � (y, v),

	x, u) � (x, v)N ( y, u) � (y, v).

3. The defined operations Ql and Qr are each strictly increasing
in each argument.

4. 0 is a right identity of Ql and a left identity of Qr, that is,

x Ql 0 � x 0 Qr u � u. (11)

5. Stimuli are bounded from below by

x Qi u � 0 Qi 0 � 0 (i � l, r).

6. Joint presentation symmetry, Equation 3, is equivalent to Ql

� Qr � Q being a commutative operation, that is,

x Q u �u Q x. (12)

The proof, as are all others that are new, is given in the
Appendix.

Definition 2. For some x 
 0, u 
 0 such that (x, 0) � (0, u),
left, no, or right bias is said to hold iff x � u, x � u, or x 
 u,
respectively.

Assumption 4. Consistent Bias: For all x 
 0, u 
 0 with (x,
0) � (0, u), a person exhibits just one of left, no, or right bias.

This assumption not only takes into account that joint presen-
tations are not automatically assumed to be symmetric, but asserts
that the asymmetry, if it exists, is consistent in the sense that, for
all suprathreshold intensities, the direction of bias is the same at all
intensity levels. This assumption precludes from the theory the
possibility, for example, that a person is left biased for low
intensity signals and changes to right bias for high intensity ones.
At present, I know of no published data concerning Assumption 4.

6 This interpretation is from Karin Zimmer (personal communication),
who has been using it for experiments. Apparently, such summation is as
automatic as loudness over the two ears (Karin Zimmer & W. Ellermeier,
personal communication, February 16, 2001).

7 The adjective weak applies whenever the indifference relation � is an
equivalence relation different from equality.
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The case of no bias turns out to yield joint presentation sym-
metry, Equation 3, whereas when there is a bias, joint presentation
is necessarily not symmetric.

Another empirical question is whether the direction of the bias
is the same at all values of another attribute of the signals. For
example, is the direction of the bias dependent on the frequency of
pure tones? No assumption about this enters the present theory.

It should be noted that this type of bias is, as far as I know,
unrelated to differences in threshold sensitivity. Nothing in the
theory precludes a person from having a right ear that is more
sensitive than the left in terms of thresholds but who is left biased
in the sense of Definition 2.

Most of the following results for the biased cases are worked out
for left bias with brief mention of how they vary for right bias.

Proposition 2. Suppose that Assumptions 1–4 hold. Then, for
x 
 0, u 
 0,

1. Bias criterion:

left bias N 	x, 0) � (0, x), (13)

no bias N 	x, 0) � (0, x), (14)

right bias N 	x, 0) � (0, x). (15)

2. Positivity:

left bias f x Ql u � x and x Qr u � x, u, (16)

no bias f x Ql u � x, u and x Qr u � x, u, (17)

right bias f x Ql u � x, u and x Qr u � u. (18)

Let us unpack the statements of Equation 16. The assertion x Ql

u � x means that if y is such that (y, 0) � (x, u), then y � x and,
by definition, y � x Ql u. The assertion x Qr u � x, u is shorthand
for the two statements x Qr u � x and x Qr u � u. Thus, writing
v � x Qr u, we have (0, v) � (x, u), and the inequalities are v �
x and v � u.

The conditions of Equations 13–15 are easy criteria to check for
bias, if any. Note that in the biased cases, one operation exhibits
positivity for both independent variables, whereas the other oper-
ation exhibits positivity only for one independent variable. This
asymmetry is important below.

Conditions on Proportion Judgments

So far, nothing has been said about the family of operations �i,p;
this is taken up now.

Structure of Proportions

A plausible representation of subjective proportions is the
following:

Definition 3. A subjective-proportion representation is said to

hold if and only if there exists a function �: ��O¡
onto

�� that is

order preserving and a function W: ��O¡
onto

��, with W(1) � 1,

that are both strictly increasing such that, for x, y, p � ��,

�	x �p y) � �( y)

�(x) � �( y)
� W( p) (x 
y � 0). (19)

The function � is called a psychophysical function and the function
W a subjective weighting function.

Were a person literally to follow the instructions about produc-
ing x �p y in terms of physical intensity, then the result would be

x �p y � y

x � y
� p (x 
 y � 0).

This would happen only if there were no subjective distortions, but
psychophysicists are quite confident that substantial distortions
exist both in the sense that subjective intensity is not the same as
physical intensity and that subjective proportions are not the same
as numerical proportions. So the representation formulates the
same idea but in terms of two subjective distortions, one of
intensities and the other of numbers. Ultimately, I will show how
to derive Equation 19 from behavioral properties.

If instead of p being given in Equation 19 and z � x �p y be
determined by the respondent, we give z and the respondent gives
p, the procedure is called magnitude estimation.

Note that by setting y � 0 in Equation 19, we obtain the form

�	x �p 0) � W( p)�(x), (20)

which is called a separable representation of x �p 0.
Below, the operations �i,p, i � l, r, p � 0, will each be assumed

to have a subjective-proportion representation, (�i, Wi).

Relation to Utility

For those unfamiliar with utility theory, this subsection may be
omitted.

In the utility context, the domain is valued goods, not just
money, and so the domain is more general than ��; the function
� is called a utility function and is usually denoted U; and the
representation of Equation 19 is usually rewritten as follows:

U(x �p y) � U(x)W( p) � U(y)[1 � W( p)] (x � y),

(21)

the domain of p being limited to [0, 1] and interpreted as a
probability. For x � y, assume complementarity in the sense that
x �p y � y �1 � p x, and so U(x �p y) � U(y �1�p x), which follows
from Equation 21. Indeed, the model can be generalized to the case
of uncertain chance events C, in which case p is replaced by C. The
resulting version of Equation 21 is called rank-dependent utility.
Because this term seems somewhat inappropriate in the psycho-
physical interpretation, Equation 19 is called the subjective-
proportion representation and � is called a psychophysical func-
tion, rather than a utility function.

Linking Q and �p: Segregation

Up to this point, the two structures ���, �, Qi� and ���, �,
�i,p�p�0 over �� have been linked only by �. For any substantial
results, Qi and �i,p must be linked to one another in some addi-
tional fashion. The proposed linking property is as follows:

Definition 4. A structure ���, �, Q, �p�p�0 is said to satisfy
binary segregation if and only if, for all x, u, p � 0, when 0 is a
left identity,

	x �p 0) Q u � (x Q u) �p u, (22)
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and when 0 is a right identity,

u Q (x �p 0) � (u Q x) �p u. (23)

One reason for stating segregation in two forms depending on
whether 0 is a left or right identity is to be able to replace,
respectively, 0 Q u and u Q 0 by just u. One can view binary
segregation as asserting a form of translation invariance under Q.
More specifically, assuming a left identity, which, as we saw in
Proposition 1.4, is true for Qr, binary segregation asserts that if p
is the proportional relation of [0, z] to [0, x], that is, z � x �r,p 0,
then the proportion remains p when comparing [u, x Qr u] and [u,
z Qr u], that is, z Qr u � (x Qr u) �r,p u. Clearly, segregation is a
property to be tested empirically. To see exactly what such a test
has to be in this case, we recall, using Definition 1, that Equa-
tion 22 actually means

	x �r,p 0, u) � (0, (x Qr u) �r,p u).

Thus, the judged proportion x �r,p0, which is determined in the
right ear, is then placed in the left ear, whereas (x Qr u) �r,p u is
in the right ear. Later, we will assume that each ���, �, Qi,
�i,p�p�0, i � l, r satisfies segregation.

The Forms for �i(x Qi u)

Generalized Additivity

Definition 5. A structure ���, �, Q� with 0 a left identity is
said to have a generalized additive representation (�, �l), where �,

�l: ��O¡
onto

��, and only if � and �l are each strictly increasing

and for all x, u � ��,

�	x Q u) � �l(u)�(x) � �(u). (24)

For 0 a right identity, the representation is (�, �r) with

�	x Q u) � �(x) � �r(x)�(u). (25)

The name arises from the fact that one may write Equation 24 as

�	x Q u) � �(x) � �(u) � �l(u)�(x), �l(u) � �l(u) � 1.

We will focus mainly on two special cases of this expression.

An Equivalence Among Conditions

Theorem 1. Suppose that ���, �, Q, �p�p�0 is a structure for
which Assumptions 1–4 hold and 0 is a left identity of Q. Suppose

that �, �l, W: ��O¡
onto

�� are strictly increasing functions with

W(1) � 1. Then any two of the following statements imply the
third:

1. The pair (�, W) forms a subjective proportion representation
(Equation 19) of the entities x �p y, x 
 y � 0.

2. Segregation, (Equation 22), holds.
3. The pair (�, �l) forms a generalized additive representation of

Q (Equation 24) and � is a separable representation (Equation 20)
of entities of the form x�p0.

The proofs of this result and the two corollaries below are in
Aczél et al. (in press).

Note that 0 is a two-sided identity if and only if �(0) � 1. For
the case that 0 is a right identity, Condition 3 is based on
Equation 25.

Unbiased Case

Luce (1991) and Luce and Fishburn (1991) prove the result of
Theorem 1 for commutative Q. Specifically, their result can be
stated in the following way:

Corollary 1 to Theorem 1. Suppose the conditions of the
theorem hold. Then Q is commutative if and only if, for some
� � 0, �l(y) � �r(y) � 1 � ��(y).8

When joint presentation is not biased, Part 6 of Proposition 1
says Ql � Qr, so we continue to suppress the subscripts r, l. Thus,
by Corollary 1, we see that for all x � 0, u � 0,

�	x Q u) � �(x) � �(u) � ��(x)�(u) (� � 0). (26)

For � � 0, this says � is additive over Q, whereas for � 
 0, � is
superadditive over Q, that is, �(x Q u) 
 �(x) � �(u). For � 
 0,
Equation 26 may be rewritten as

1 � ��	x Q u) � [1 � ��(x)] [1 � ��(u)],

and so

�	x
 	 ln�1 � ��	x)] (27)

is an additive representation of Q in the sense that

�	x Q u) � �(x) � �(u).

The form of �(x Q u) given by Equation 26 is called polynomial
additive, or, for short, p-additive,9 because it has been shown in the
mathematical literature that Equation 26 is the only polynomial
function that both maps 0 into 0 and that can be transformed into
an additive form.

Because Q has an additive representation, it is associative in the
sense that, for x, y, z � ��,

	x Q y) Q z � x Q (y Q z), (28)

as well as commutative. One way to test Equation 28 empirically
involves first estimating x Q y from (x, y) � (0, x Q y) and then
estimating (x Q y) Q z from (x Q y, z) � (0, (x Q y) Q z). Each
estimate will introduce some error. The right side of Equation 28
is similar.

Biased Cases

The following is parallel to the above result but for the biased
case.

Corollary 2 to Theorem 1. Suppose that the conditions of
Theorem 1 are met and 0 is a left identity. Then Q is bisymmetric
in the sense that, for all x, y, u, v � 0,

8 In the utility case, the constant � may be positive or negative. It is not
difficult to show that in the negative case, � is bounded. This, as Ehtibar
Dzhafarov pointed out to me, is inconsistent with Equation 19 when p 
 1.
So in the psychophysical case, we must assume � � 0. Also, in the utility
context, the notation �� has been used.

9 This “p” has nothing to do with the proportion p.
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	x Q y) Q (u Q v) � (x Q u) Q ( y Q v), (29)

if and only if �l(y) � 
 
 0, a constant.

This second solution is more complex than the first one because
there are two Q operations as well as two forms of bias. Assume
left bias. Applying the result to Qi, i � l, r, and taking into account
Part 4 of Proposition 1, there are 
l 
 0 and 
r 
 1 such that

� l(x Ql u) � �l(x) � 
l�l(u), (30)

�r(x Qr u) � 
r�r(x) � �r(u). (31)

Aczél et al. (in press) call these forms left-weighted additive,
abbreviated lw-additive. The reasons are that the left signal is
overweighted relative to the right one. This is clear for the case of
�r because 
r 
 1, and it follows for �l because, as we show below
in Proposition 3.2, 
l � 1/
r � 1. This subtle asymmetry con-
cerning the domains of the constants 
l and 
r reflects the asym-
metry noted in Part 2 of Proposition 2 concerning positivity.

As with associativity, testing bisymmetry has to be translated
into a series of steps determining, first, the four first-level terms, x
Qi y, and so on, and then in the l case

		x Ql y) Ql (u Ql v), 0
 � (x Ql y, u Ql v),

		x Ql u) Ql (y Ql v), 0
 � (x Ql u, y Ql v).

The test is whether or not the equality (x Ql y) Ql (u Ql v) � (x Ql

u) Ql (y Ql v) holds. Each determination is a source of error.
The case of right bias results also in Equations 30 and 31 but

with the constants satisfying 
l 
 1 and 
r � 1/
l � 1. These are
called rw-additive representations because the right term is
weighted more than the left one.

It is easy to verify the tie between the bias direction and the
constant:

	x, 0) ≺ (0, x)N x Ql 0 � 0 Ql x

N �	x) � 
l�(x)N 1 � 
l.

It is not difficult to show that bisymmetry and Equation 24 are
equivalent to these lw-additive or rw-additive representations.

Relation Between Left and Right Representations

So far, in the biased cases, we have two distinct representations
that, presumably, are related to each other through the fact that
each x Qi u is defined in terms of (x, u). Here we characterize that
relation. Recall that

x Ql u � y Ql vN (x, u) � (y, v)N x Qr u � y Qr v,

so both �l and �r are order preserving. This means that there exists
a strictly increasing function f such that �r � f(�l). So the task is
to determine f. We show the following:

Proposition 3. Suppose the conditions of Corollary 2 are sat-
isfied and that �l, �r are representations for the left bias case, that
Equations 30 and 31 hold, and f is defined by �r � f(�l). Then:

1. For t � 0, there exists some c 
 0 such that

f(t) � ct. (32)

2. The constants of Equations 30 and 31 satisfy


 l
r � 1. (33)

3. The operations Ql and Qr are related as

x Qr u � �l
�1 [
r�l(x Ql u)]. (34)

4. Wl � Wr if and only if �l,p � �r,p.
This result forces the right and left psychophysical functions to

be essentially the same, which in turn forces Ql and Qr to be
closely related. The fourth result is less satisfactory. One has to
argue that the distortion W( p) of p is a mental process that is
independent of which ear is involved, in which case it says the
operations �l,p and �r,p are identical. Whether they are or are not
equal is easily checked experimentally.

Relations to Narens (1996)

Narens (1996) focused only on postulated underlying properties
of proportion judgments and did not include anything about joint
presentations. In particular, he arrived at (in the current notation)
the separable representation Equation 20, which is a special case of
Equation 19. This immediately implies

	x �p 0) �q 0 � (x �q 0) �p 0, (x � 0, p � 0, q � 0), (35)

which is called threshold-proportion commutativity.10 It has been
tested for loudness by Ellermeier and Faulhammer (2000) for
p 
 1 and was well supported. Steingrimsson is investigating it for
p � 1 (personal communication).

Narens (1996) also interpreted one of Stevens’s (1975) basic
assumptions as saying that the probability-reduction property
holds,

	x �p 0) �q 0 � x �pq 0,

which, with separability, implies that W( p) satisfies

W( p)W(q) � W( pq),

and so W( p) � p�, � 
 0. However, Ellermeier and Faulhammer
(2000) rejected this probability-reduction property for auditory
stimuli. A far more general form for W is discussed below.

Two or More Interpretations of Q in a Modality

It is entirely possible to have two or more quite distinct inter-
pretations of (�, �) and so of Qi while holding fixed the subjective
intensity judgment, such as loudness. For example, one can have
both two-ear summation and the summation of successive presen-
tations of signals. Suppose that both interpretations are found to
satisfy the assumptions made here; does this mean there are
different psychophysical functions? The answer is no, because the
subjective-proportion representation of Definition 4 is common to
both structures. Therefore, up to the choice of unit, �i is fixed. The
differences will be of two types. First, each operation, Qi

(j), i � l,
r, j � 1, 2, has one of three representations: p-additive, lw-
additive, or rw-additive, so nine combinations of the two opera-

10 In the utility interpretation where chance events rather than probabil-
ities are used and the role of 0, there denoted e, is interpreted as no change
from the status quo, this commutativity condition is called status-quo event
commutativity.
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tions are a priori possible. Second, one would expect parameter
differences even when the same type of representation occurs. So
if Qi

(1) and Qi
(2) each have a lw-additive representation, one would

expect distinct parameters 
i
(1) and 
i

(2), or, if they each have a
p-additive representation, distinct �1 and �2. Thus, the psychophys-
ical scale does not vary; however, the representations of the
operations certainly do vary.

Possible Mathematical Forms for �

As it stands, there are now two relatively free functions, � and
W. It is desirable to narrow down, in a principled fashion, their
mathematical forms to a few parameters. Concerning � we have
some information, such as �(0) � 0 and that the form of �(x Q y)
is either p-additive, lw-additive, or rw-additive. The p-additive
form is either actually additive or of the form ��(x) � e��(x) � 1,
� 
 0, where � is an additive representation of Q. The idea of this
section is to impose a plausible invariance principle and take
advantage of the additive or near-additive form to pin down � to
a form with only two parameters. A later section does a similar
thing for W.

For �, a principle of multiplicative invariance is invoked that
relates Q and �. Luce (2000) investigated in the commutative case
of Corollary 1 and Marchant and Luce (in press) have done the
same for the noncommutative case of Corollary 2.

Multiplicative Invariance

Consider the following property, commonly called multiplica-
tive invariance: There exists a function 
: ��3 �� such that for
all r 
 0, x � 0, u � 0,

rx Q ru � 
(r)(x Q u). (36)

Observe that if 0 is a left identity, then for x � 0 one has

ru � r0 Q ru � 
(r)(0 Q u) � 
(r)u,

whence 
(r) � r, in which case the property Equation 36 is often
called homogeneity (of Order 1). The case of the right identity is
similar.

Basically, this property is saying that stretching the arguments
by the same amount is the same as stretching the result by that
amount.

Unbiased Case. Given that � of Equation 27 is additive over
Q, Luce (2000) proved that the multiplicative invariance condition
is equivalent to the assertion that there exists some � 
 0 such that

�	x) � �x�, (� 
 0, � 
 0, x � 0). (37)

Note that �(0) � 0 is satisfied. So for � 
 0, � � �� 
 0, and x �
��,

��	x
 	 e��	x
 � 1

	 e�x�
� 1 	� � 0, � � 0
. (38)

For �x� � 0.01, this is approximately �x�, which accords with the
results reported using magnitude estimation and production meth-
ods over much of the dynamic range. A similar computation to the
one above using � � 0.3 suggests that a reasonable value for � is
10�4. An example of this function in log-log coordinates is shown

in Figure 1 using � � 0.3 and a threshold � at 2 bels, that is, 20
dB SPL. The latter seems to accord with magnitude estimation
data.

Biased Case

Marchant and Luce (in press) showed that for � having the
lw-additive form � with parameter 
 
 1, then multiplicative
invariance is equivalent to the existence of parameters � 
 0,
� 
 0 such that

�	x) � �x� (x � 0). (39)

So in this case, the psychophysical function itself is a power
function. By Proposition 3, we see that � is not different for �l

and �r.

Empirical Predictions of Power Psychophysical Functions

Left and Right Operations

Recall that Equation 34 showed that if units are chosen so �r �
�l, then setting 
 � 
r:

x Qr u � �l
�1 [
�l (x Ql u)].

Thus, if �l grows as a power function, Equation 39, with exponent
�, then we know

x Qr u � �(x Ql u), (� � 
1/� 
 0). (40)

In terms of dB measures,

10 log � 	 10 log x Qr u � 10 log x Ql u.

This can be checked empirically using regression analysis, yield-
ing an estimate of the factor 10 log �.

Symmetrizing the Biased Case

Suppose we are in the noncommutative, left-bias case, and
suppose that � grows as a power function (Equation 39). Under
these assumptions we show that the above factor � leads, in a

Figure 1. The function y � ln �(x) � ln(e�(10x � 102)�
� 1)�ln �. The

intensity x is in bels � dB/10, the threshold � is 2 bels, ln � � 8.1,
� � 0.0001, and � � 0.3.
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certain sense, to commutativity (but not associativity). Observe
that for the left bias case, consider

�r	x � r zu
 	 
�r	x
 � �r(zu)

	 
�x� � �z�u�

and

�r	u � r zx
 	 
�r	u
 � �r	zx


	 
�u� � �z�x�.

Therefore,

x Qr zu � u Qr zxN 
 � z�N z � 
1/� � �,

where the value of � can be estimated from Equation 40. R.
Steingrimsson (personal communication) is testing this prediction
in the two-ear, pure-tone case. Indeed, in terms of Definition 2,
which involves setting u � 0 above, then we have x Q 0 � 0 Q �x.
Notice that in terms of dB, the factor � corresponds to a constant
additive dB increment to the right ear independent of signal
intensity above threshold or the same decrement to the left ear. In
the case of right bias, the correction is a constant additive dB
increment to the left ear or the same decrement to the right ear.

Define �� by

x �� r u :� x Qr �u.

Given these formulas, it is routine to show that �� is bisymmetric,
not associative, with the representation

�r	x �� r u
 	 �r	x � �u


	 
�r	x
 � �r	�u


	 
�x� � ���u�

	 
��r	x
 � �r	u
�.

This immediately yields

�r(x �� ru) � �r(u �� r x),

and so �� r is commutative and bisymmetric but not associative.
The development for �� l is similar.

Cross-Modality Matching

Suppose that we have two distinct modalities, such as sound
intensity and light intensity. A procedure introduced by S. S.
Stevens and later summarized in Stevens (1975) was to have a
respondent match, say, brightness to loudness. The empirical find-
ing was that the matches are related by a power law. Let us
consider that finding within the context of the present theory.
Suppose that each modality satisfies the present theory, and dis-
tinguish them by the subscripts 1 and 2.

First, supposing both modalities are commutative, then we as-
sume that the match of x2 to x1 is characterized by

�1�1	x1) � �2�2(x2), (41)

where �i is the parameter of the p-additive form. This assumes that
the thresholds match. Substituting Equation 38 into Equation 41
yields

e�1x1
�1

� 1 � e��2x2
�2

� 1,

and so

x2 � 
x1
�1/�2. (42)

For the noncommutative case, suppose we work with just the
left or the right representations, but not both, and suppress the
subscript. The same result as in the commutative case, Equa-
tion 42, follows immediately from Equation 39. For one modality
commutative and the other one not commutative, the same predic-
tion holds only approximately within a reasonable signal range.

These results warrant three comments. First, they agree with the
empirical findings of Stevens and others that the matches form
approximate power functions between signal intensities relative to
their thresholds. Second, the predictions agree with the invariance
argument advanced by Luce (1990). Third, although this power
relation agrees with the psychophysical function over much of its
domain in the cases where one or both of the joint presentations is
commutative, it does disagree for very intense stimuli. That is to
say, matching is not a fully satisfactory way to get at the psycho-
physical function itself in such cases.

A Possible Form for W

Luce (2000, 2001), modifying an idea of Prelec (1998), devel-
oped a behavioral theory for a particular form for W. Of course, in
the utility context it was formulated only for p � [0, 1]. An
examination of that proof shows that this restriction comes into
play only at one point when a multiplicative Cauchy equation is
solved. It is easy to see what happens in that equation when p 

1 and the result is stated in that form:

Theorem 2. Suppose that a separable representation of the

form Equation 20 holds with �, W: ��O¡
onto

��. Then, the follow-

ing properties are equivalent:
1. Suppose that for p, q � [0, 1] there exists s � s( p, q) � [0,

1] or for p, q � ]1, �[ there exists s � s( p, q) � ]1, �[ such that
if

	x �p 0) �q 0 � x �s 0, (43)

then

	x �pN 0) �qN 0 � x �sN 0, (44)

where N � 2, 3.
2. For some positive constants �, ��, �, ��,

W( p) � �exp[��(�ln p)�] ( p � ]0, 1])
exp[��(ln p)��], ( p � ]1, �[). (45)

The result is equally true for many other pairs of N values in
Equation 44, in particular N � 3

2
and 2 are sufficient, which is more

convenient empirically for p, q 
 1 to stay within acceptable
intensity bounds. One may be surprised that Equation 44 is not
asserted to hold for all integers N, but that is unnecessary because
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by induction one is able to prove from Part 1 of Theorem 2 that
Equation 44 actually holds for all rational numbers N � 2m3n,
where m and n run over all positive and negative integers. This set
of rational numbers is dense in the positive real numbers, and
because W is strictly increasing, Equation 44 can be extended to
hold for N having as its domain all positive real numbers.

The Prelec (1998) form of Part 2 of Theorem 2 is quite flexible.
It can be concave, convex, S shaped, or inverse S shaped over ]0,
1] and the same possibilities, independently, over ]1, �]. It in-
cludes power functions as special cases (�, �� � 1). The equiva-
lent property stated in Part 1 of Theorem 2 is called reduction
invariance. It certainly is important to check whether or not it
holds empirically.

Reduction invariance clearly holds if s( p, q) � pq, because
s( pN, qN) � pNqN � s( p, q)N. This is the multiplicative property
of Narens (1996) that one gets if the numerals of magnitude
estimation or production are treated as numbers. As was noted s( p,
q) � pq implies W is a power function. Stevens (1975) implicitly
assumed this to be true, but with no real empirical justification.
Indeed, once it is stated explicitly, one realizes that there is little
reason to expect that it will hold, and Ellermeier and Faulhammer
(2000) have established empirically that it is false for p 
 1, q 
 1.
My model is more general in the sense that reduction invariance
can hold with s( p, q) � pq. In fact, from separability, Equation 20,
and Equation 43, we see that

W[s( p, q)] � W( p)W(q).

Substituting Equation 45 and taking logarithms yields

� � ln s( p, q)]� � (�ln p)� � (�ln q)� ( p, q � [0, 1]), (46)

�ln s( p, q)]�� � (ln p)�� � (ln q)�� ( p, q � ]1, �[). (47)

So from the data of Equation 43, we can estimate s( p, q), and the
parameters �, �� can be estimated from, respectively, Equations 46
and 47. As an example, Figure 1 of Ellermeier and Faulhammer (p.
1507) shows for one respondent that compounding 2 and 3 as in
Equation 43 corresponds approximately to a factor of 7.5, not 6.
Thus, from Equation 47 we may conclude for this person ��
� 0.85.

Qualitative Conditions for Condition 3

From an empirical perspective, perhaps the most interesting
aspect of Theorem 1 is the fact that Conditions 2 and 3 together
imply the subjective proportion representation, Equation 19. Con-
dition 2, segregation, is simply a straightforward empirical asser-
tion that can be tested independently of other aspects of the theory.
Condition 3 is more complex, but for the two extreme cases
discussed in the corollaries to Theorem 1 it breaks down into three
testable properties. At present no analysis exists of the large family
of cases aside from these two extreme ones (but see below).

The Unbiased Case

The p-additivity of �, Equation 26, is assured if ���, �, Q�
forms an extensive structure (see Krantz, Luce, Suppes, & Tver-
sky, 1971, chap. 3), as it must if Q is interpreted as the addition of
physical intensities. Under other interpretations, such as presenta-
tions to the two ears, this must be justified empirically. It is well

known what must be checked: Aside from monotonicity and
commutativity, the most important property is associativity (Equa-
tion 28) which was discussed earlier.

Turning, then, to separability, two questions need to be ad-
dressed. First, does separability hold at all? And, second, how can
one justify assuming that there is a single psychophysical function
� that is both p-additive and separable?

The first is easily answered (see Krantz et al., 1971, chap. 6). It
must be the case that the entities x �p 0, where x, p � ��, form an
additive conjoint measurement structure ��� � ��, ��. The key
testable conditions are that the operation is strictly increasing
(monotonic) in both variables, and the Thomsen condition of
additive conjoint measurement holds. Monotonicity, which we
expect to hold, is directly testable. The Thomson condition has
been shown to amount to the property threshold-proportion com-
mutativity, Equation 35, described earlier (Luce, 1996). This is
also a property of Narens’s (1996) axiomatization. In addition,
restricted solvability, Archimedeanness, and essentialness must
also be assumed to be satisfied. These definitions are standard and
can be found in any treatment of additive conjoint measurement,
for example, Krantz et al. (1971). There really is nothing empirical
to check in these assumptions.

A stronger version of threshold-proportion commutativity is
also implied by the proportion representation, Equation 19, that is
called simply proportion commutativity;11 that is,

	x �p y) �q y � (x �q y) �p y. (48)

It is desirable to test this as well.
The answer to the second question of what property is equiva-

lent to the simultaneous existence of a p-additive representation
and a separable one with the same psychophysical function � is the
following condition (Luce, 1996):

Definition 6. The structure ���, �, Q, �p�p�0 is said to be
joint-presentation decomposable12 if and only if for each x, p �
��, there exists q � q(x, p) � �� such that for all u � ��,

	x Q u) �p 0 � (x �p 0) Q (u �q 0). (49)

The special case where q � p is called simple joint-presentation
decomposable.

Note that on the left there is a single proportion judgment and on
the right there are two independent ones. The formal result13 is:

Theorem 3. Suppose the structure of Theorem 1 has a
p-additive representation �1 over Q and a separable representation
(�2, W2) over stimuli of the form x �p 0. Then the following
statements are equivalent.

1. There exists a constant � 
 0 such that � � �2
� is p-additive

and the pair (�, W), where W � W2
�, forms a separable

representation.
2. Joint-presentation decomposability (Definition 6) is satisfied.

11 Narens (1996) simply called this property commutativity, but in the
present theory that would be ambiguous because the term is used here in its
usual algebraic sense for Q.

12 In my work on utility, where Q has been called joint receipt, this
concept has been called joint-receipt decomposable.

13 The result is formulated for p, q � [0, 1] in Luce (2000) and a proof
is given on pp. 169–171 of that book. A careful examination of that proof
shows it holds for general positive p, q as well.
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This means that if commutativity and associativity have
been verified, and so for all practical purposes ���, �, Q� is
an extensive structure with p-additive representations, then joint-
presentation decomposability is another critical property to test
empirically. It entails both estimating q for one choice of u and
then showing that Equation 49 holds for a number of other choices
of u. This will clearly be the most time consuming of the properties
to test. Having done that, if we also show that threshold-proportion
commutativity holds, then we know by Theorem 2 that the sub-
jective intensity � has the proportional representation, Equa-
tion 19, over the operation �p.

Biased Case

The remarks concerning the axiomatization of a separable rep-
resentation are unchanged from the previous subsection. To axi-
omatize the lw-additive representation, the main thing to verify is
bisymmetry (Equation 29) and, of course, to check whether the
bias is to the left or the right (Krantz et al., 1971). Again, the
question becomes one of finding a condition so that the same
psychophysical function can be used for both. The result is closely
similar to Theorem 3.

Theorem 4. Suppose the structure of Theorem 1 has a lw-
additive representation �1 over Q and a separable one (�2, W2)
over x �p 0. Then the following statements are equivalent.

1. There exists a constant � 
 0 such that � � �2
� is lw-additive

over Q and the pair (�, W ), where W � W2
�, forms a separable

representation.
2. Simple joint-presentation decomposability (Definition 6) is

satisfied, that is, for each x, u, p � ��,

	x Q u) �p 0 � x �p 0) Q (u �p 0). (50)

Simple joint-presentation decomposability is a property that
must be tested, but doing so is far simpler than testing joint-
presentation decomposability of Theorem 3 because q � p does
not have to be estimated.

It is somewhat remarkable how the unbiased and biased cases
are related and how, in many ways, the latter is simpler than the
former.

Unit Structure Representation of Q

Observe that the two special cases given in the corollaries to
Theorem 1 we have examined can be transformed into a represen-
tation of the following type, which has been studied in an axiom-
atic measurement context by Luce and Narens (1985). It is, in a
sense, the most general class of (mostly noncommutative) binary
operations that exhibit ratio scale invariance.

Definition 7. A unit representation (�, F) of a strictly mono-
tonic increasing operation Q over �� with a left identity is said to

exist if and only if �: ��O¡
onto

�� is a strictly increasing function

and F: ��O¡
onto

]1, �[ is a strictly increasing function, F(z)/z is

strictly decreasing, if 
 0 is a constant, and

�	x Q u
 � ��(u)F��(x)

�(u)� (x � 0, u 
 0)

d�(x) (x � 0, u � 0),
(51)

�	0
 	 0, (52)

F(0) � 1. (53)

The property Equation 53 follows from Equations 51 and 52 with
x � 0 and 0 Q u � u.

For the symmetric case of Corollary 1 of Theorem 1, (�, F) with
F(z) � z � 1 is a unit representation of Q, and for the nonsym-
metric case of Corollary 2 of Theorem 1, (�, F) with F(z) � 
z � 1
is a unit representation.

If instead of a left identity one has a right one, x Q 0 � x, then
instead of Equation 51 one uses the other unit representation:

�	x Q u
 � �(x)F* ��(u)

�(x)� (x 
 0, u � 0).

The remainder of the construction is basically unchanged. As
mentioned earlier, the results are formulated only for left bias in
Definition 2, but what happens in the other case is noted.

Because � and � both preserve the order �, there exits a strictly

increasing function Gi: ��O¡
onto

�� such that, for all stimuli x,

�	x) � G[�(x)]. (54)

Theorem 5. Suppose that the conditions of Theorem 1 and
Equation 24 hold, and that Q also has a unit representation (�, F),
Equation 51. Then, with v � �(y) 
 0, z � �(x)/�(y) 
 0, and
A(v) � � [��1(v)], the following functional equation is satisfied:

A(v)G(vz) � G(v) � G[vF(z)]. (55)

This equation has been studied by Aczél et al. (in press), and the
following amounts to the corollary to their Theorem 4.

Theorem 6. Suppose that the conditions of Theorem 5 hold
and that F is once and G is twice continuously differentiable. Then
there are two classes of solutions to Equation 55, namely, those of
Corollaries 1 and 2 to Theorem 1.

This means that either all other solutions to Equation 55 are not
as smooth as assumed in this theorem or they do not have the
automorphism group corresponding to ratio scales: More work is
needed to understand the rest of the generalized additive forms.
Among other things, I do not know how to axiomatize them in
terms of � and Q.

Summary

Utility-Psychophysics Glossary

As was indicated earlier, much of this mathematics was first
developed in the context of utility theory, where the various
concepts have been given names that are appropriate in that
context. However, those terms do not seem to me very appropriate
in the psychophysical context and so, with some reluctance, I have
introduced more meaningful terms. It seems useful, therefore, to
provide in one place, Table 1, a glossary of the terms.

The Representations

Suppose that the following properties hold: those deduced in
Theorems 1, 3, and 4, multiplicative invariance for Q, and reduc-
tion invariance for �p. Then for commutative Q, there is a numer-
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ical psychophysical representation of proportions and joint presen-
tations that is specified up to six numerical constants: �, � for the
form of the psychophysical function � and �, ��, �, �� for the form
of W( p). Note that the parameter � plays no role because through-
out �� is a normalized function. If a second interpretation of Q is
available, one can estimate �1/�2 even though they cannot be
estimated separately. The representation equations are

�	x Q u) � �(x) � �(u) � ��(x)�(u) (x � 0, u � 0),

and

�	x �p y) � �(y) � W( p)[�(x) � �( y)] (x 
 y � 0),

where

��	x) � exp(�x�) � 1 (x � 0, � 
 0, � 
 0, � � �� 
 0).

Note that the p-additive and proportion forms are unchanged by
multiplying everything by � 
 0. The form of W is

W( p) � � exp[��(�ln p)�] ( p � [0, 1])
exp[��(ln p)��] ( p � ]1, �[).

If s � s( p, q) satisfies

	x �p 0) �q 0 � x �s 0,

then

��ln s( p, q)]� � (�ln p)� � (�ln q)� ( p, q � [0, 1])
[ln s( p, q)]�� � (ln p)�� � (ln q)�� ( p, q � ]1, �[)

.

One way to test the theory is to collect sufficient data to estimate
the six parameters listed above so as to achieve some optimal fit of
the representations of Q and �p.

For noncommutative Q, the expression for W is unchanged and
that for � is

�	x) � �x�,

but � may be chosen arbitrarily. There is, in addition, 
 
 1 from
the lw-additive form that arises in the left bias case such that

� l(x Ql u) � �l(x) �
1



�l(y),

�r(x Qr u) � 
�r(x) � �r(y),

resulting again in a total of six parameters.

Testable Properties

Another way to check this theory empirically is to focus on the
key properties that underlie the representations. Again, the two
cases must be distinguished:

First, if (�, �) is symmetric, then Q is commutative,

x Q u � u Q x,

and, in addition, it is associative,

x Q ( y Q z) � (x Q y) Q z.

Segregation asserts

	x �p 0) Q u � (x Q u) �p u.

Theorem 3 says that the property of joint-presentation decompo-
sition (Equation 49) is a consequence of Theorem 2, that is, there
exists q � q(x, p) such that for all y,

	x Q u) �p 0 � (x �p 0) Q (u �q 0).

Although difficult to test, this property, together with proportion
commutativity and segregation establishes the existence of the
representation described above, but not the specific forms for �
and W.

Alternatively and more relevant empirically, the major tests for
nonsymmetric (�, �) are the left-bias criterion,

x Qi 0 
 0 Qi x (i � l, r),

or the right-bias criterion,

x Qi 0 � 0 Qi x (i � l, r),

and bisymmetry,

	x Qi y) Qi (u Qi v) � (x Qi u) Qi (y Qi v) (i � l, r).

In addition, we have assumed binary segregation in one of two
forms: when 0 is a left identity,

	x �p 0) Q u � (x Q u) �p u,

and when 0 is a right identity,

u Q (x �p 0) � (u Q x) �p u.

The property of threshold-proportion commutativity, Equation 35,

	x �i,p, 0) �i,q 0 � (x �i,q 0) �i,p 0 (i � l, r),

follows from separability, and it goes a long way toward forcing
separability. For p 
 1, Ellermeier and Faulhammer (2000) veri-
fied that threshold-proportion commutativity holds in audition. It

Table 1
A Glossary of Terms and Symbols for the Utility and
Psychophysical Interpretation of the Concepts

Term Symbol

Utility
Status quo, no change from e
Joint receipt Q
Gamble (x, p; u)
Utility function U
Value function V
RDU representation (21)
Event commutativity
Joint-receipt decomposition

Psychophysics
Absolute threshold 0
Joint presentation (x, u), Qi

Proportion judgment x �i,p u
Psychophysical function �i

Additive representation �i

Proportion representation (19)
Proportion commutativity (35)
Joint-presentation decomposition (49)

Note. Numbers in parentheses refer to numbered equations in this article.
RDU � rank-dependent utility.
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remains to check it for p � 1. It would also be desirable to test
proportion commutativity (Equation 48),

	x �i,p y) �i,q y � (x �i,q y) �i,p y (i � l, r).

Finally, Theorem 5 says that for there to be � that is both
lw-additive and separable, simple joint-presentation decomposi-
tion holds, that is,

	x Qi u) �i,p 0 � (x �i,p 0) Qi (u �i,p 0) (i � l, r).

This is far easier to check than joint-presentation decomposition
because q(x, p) is simply p.

Independent of the bias, to verify multiplicative invariance,
which underlies the form for �, we need to focus empirically on
Equation 36,

rx Qi ru � r(x Qi u) (i � l, r).

And to verify the Prelec form for Wi, (i � l, r), Theorem 2, we need
to focus empirically on reduction invariance (Equations 43 and
44): For i � l, r,

	x �i,p 0) �i,q 0 � x �i,s 0,

implies for N � 2, 3 or equally well for N � 3

2
, 2,

	x �i,pN 0) �i,qN 0 � x �i,sN 0.

In this connection, it is desirable to check whether �l,p � �r,p,
which, if true, means there is only one W function.

As was noted early in the article, these testable properties define
a substantial empirical program that will either support the current
theory or indicate where changes are necessary. Such work is
underway and will be published subsequently.
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Appendix

Proofs

Proposition 1

Proof

1. Consider

	x, u) � (y, v) and (y, v) � (z, w).

By compatibility, (Equations 7 and 8), these are equivalent to

x Ql u � y Ql v and y Ql v � z Ql w,

whence x Ql u � z Ql w, which by compatibility is equivalent to (x, u) �
(z, w). Thus, transitivity holds. Connectedness follows similarly from the
fact that � is connected.

2. Observe that by applying Assumption 2 twice

	x, u) � (y, u)N x � yN (x, v) � (y, v).

The other case is similar.
3. The monotonicity of Qi, i � l, r, follows immediately from their

definitions and the weak monotonicity of joint presentation.
4. By definition,

	x, 0) � (x Ql 0, 0),

and so by compatibility, Assumption 2, x � x Ql 0. The other case is
similar.

5. From x � 0 and (7), we have x Qi u � 0 Qi u, and from u � 0 and
(8), we have 0 Qi u � 0 Qi 0. So x Qi u � 0 Qi 0. By (4), 0 Qi 0 � 0.

6. By the definition of Ql, Assumptions 1 and 2, and joint presentation
symmetry for all x, u,

	x, u) � (u, x)N (x Ql u, 0) � (u Ql x, 0)N x Ql u � u Ql x.

So Ql is commutative (Equation 12). A parallel proof of commutativity
holds for Qr. Using joint presentation symmetry again,

	x Ql u, 0) � (x, u) � (0, x Qr u) � (x Qr u, 0),

and so, by Assumption 2, x Ql u � x Qr u, i.e., Ql � Qr.

Proposition 2

Proof

1. Assume left bias. By solvability, there exists u � �� such that (x,
0) � (0, u). By left bias, x � u, and so by Assumption 2,

x � uN (0, x) � (0, u) � (x, 0).

The conclusion follows by transitivity (Proposition 1.1). The other two
cases are similar.

2. Using the axioms freely and the left bias property in the third line,

	x � l u, 0
 � 	x, u
 � 	x, 0
 N x � l u � x,

	0, x � r u
 � 	x, u
 � 	0, u
 N x � r u � u,

	0, x � r u
 � 	x, u
 � 	x, 0
 � 	0, x
 N x � r u � x.

The other two cases are similar.

Proposition 3

Proof

1. From Equations 30 and 31, we have


r�r(x) � �r(u) � f [�l(x) � 
l�l(u)] (
r 
 1, 
l 
 0).

Setting u � 0,


r�r(x) f[�l(x)],

so

f [�l(x)] �
1


r
f [�l(u)] � f [�l(x) � 
l�l(u)].

Let r � �l(x) 
 0, s � 
l�l(u) 
 0, and define

g(s) �
1


r
f � s


l
�.

Then the functional equation becomes the Pexider equation

f(r) � g(s) � f(r � s) (r � 0, s � 0),

which is known (Aczél, 1966, p. 142) to have as its only strictly monotonic
increasing solutions with f(0) � 0,

f(t) � ct � g(t), (c 
 0).

2. By this result and the definition of g,

cs � g(s) �
1


r
f � s


l
� �

cs


r
l
,

whence 
l
r � 1.
3. Using Equations 30 and 31, �l � c�r, and the fact that 
l � 1/
r,


r�l	x � l u
 	 
r�l	x
 � �l	u


	 c�
r�r	x
 � �r	u
�

	 c�r	x � r u


	 �l	x � r u
.

Taking �l
�1 yields the assertion.

4. Using the definition of subjective-proportion representation and Part 1
of Proposition 3, above,

�r	x �l,p y
 � �r	x �r,p y
 	 c�l	x �l,p y
 � �r	x �r,p y


	 Wl	 p
 �c�l	x
 � c�l	y
� � c�l	y


� Wr	 p
 ��r	x
 � �r	y
� � �r	y


	 �Wl	 p
 � Wr	 p
� ��r	x
 � �r	y
�,

in which case the result follows immediately.
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