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Abstract When homogeneous sensors are deployed into a three-dimensional space instead
of a plane, the mathematical model for the sensor network is a unit ball graph instead of a
unit disk graph. It is known that for the minimum connected dominating set in unit disk
graph, there is a polynomial time approximation scheme (PTAS). However, that construction
cannot be extended to obtain a PTAS for unit ball graph. In this paper, we will introduce a
new construction, which gives not only a PTAS for the minimum connected dominating set
in unit ball graph, but also improves running time of PTAS for unit disk graph.
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1 Introduction

Virtual backbone in wireless sensor network has a wide range of applications (cf [3] and
references there). A virtual backbone is a subset of nodes D such that non-adjacent nodes can
communicate with each other through the nodes in D. Modeling the wireless sensor network
as a graph, the virtual backbone is exactly a connected dominating set. A dominating set
of a graph G is a subset D of vertices such that every vertex x in V (G)\D is adjacent to a
vertex y in D. Vertex x is said to be dominated by y, or y is said to dominate x . A vertex

This work is supported by National Natural Science Foundation of China (60603003), the Key Project of
Chinese Ministry of Education (208161), Scientific Research Program of the Higher Education Institution of
Xinjiang, funded by the National Science Foundation under grant CCF-0514796 and CNS-0524429. The
work was completed when the first author was visiting Department of Computing Science, the University of
Texas at Dallas.

Z. Zhang (B)
College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, People’s
Republic of China
e-mail: zhzhao@xju.edu.cn

X. Gao · W. Wu · D.-Z. Du
Department of Computer Science, University of Texas at Dallas, Richardson TX 75080, USA

123



452 J Glob Optim (2009) 45:451–458

y ∈ D dominates itself. A connected dominating set is a dominating set D such that the
subgraph of G induced by D, denoted by G[D], is connected. In the real world, one often
expects the size of the virtual backbone as small as possible, in order to save the energy
of transmissions, lessen the cost of construction, avoid broadcast storm (that is, unbearable
interferences caused by too many transmissions at the same time) etc. Hence we are faced
with a minimum connected dominating set problem (MCDS): to find a connected dominating
set with the minimum cardinality. The MCDS has been studied extensively in the literatures
[2,11,12,14–16,18].

In practice, the sensors are often assumed to be homogeneous, that is, they have omni-
directional antennas with the same transmission range. In this case, the topology of the
three-dimensional wireless sensor network can be modeled as a unit ball graph. In an unit
ball graph (UBG), each vertex corresponds to a point in the space, two vertices are adjacent
if and only if the Euclidean distance between their corresponding points is less than or equal
to one. In other words, a vertex u is adjacent with a vertex v if and only if u is within the
transmission range of v, which has been scaled to one. When restricted to the plane, a unit ball
graph degenerates to a unit disk graph (UDG). Compared with the large number of studies
on UDGs, the studies on UBGs are relatively much less. There are cases in which three-
dimensional models are needed, such as under-water sensor systems, outer-space sensor
systems, notebooks in a multi-layered buildings, etc.

For MCDS in general graphs, it was proved in [8] that for any 0 < ρ < 1, there is no poly-
nomial time ρ ln n-approximation unless N P ⊆ DT I M E(nO(ln n)), where n is the number
of vertices. A greedy (ln � + 3)-approximation [13] and a greedy (ln � + 2)-approximation
[8,13] were given, where � is the maximum degree of the graph. When restricted to UDG, the
MCDS problem is still NP-hard [7]. Hence computing an MCDS in a UBG is also NP-hard.
Distributed constant-approximations for MCDS in UDG were studied in [1,5,10,17], etc.
Also by distributed strategy, Butenko and Ursulenko [4] gave a 22-approximation for MCDS
in UBG. As to centralized algorithm for CDS in UDG, Cheng et al. [6] gave a polynomial
time approximation scheme (PTAS), that is, for any ε > 0, there exists a polynomial-time
(1 + ε)-approximation. The question is: can their method be generalized to obtain a PTAS
for MCDS in UBG? The answer is ‘no’, since their proof depends on a geometrical property
which holds in the plane but is no longer true in the space.

In this paper, we present a PTAS for UBG. The method of analyzing the performance
ratio is new. In fact, this method can be used to compute CDS for any n-dimensional unit ball
graph. Furthermore, when our method is applied to UDG, the running time can be improved,
compared with the algorithm presented in [6].

In Sect. 2, the algorithm is presented, the correctness is proved, the time complexity is
analyzed. In Sect. 2.1, we prove that this algorithm is a PTAS. A conclusion is given in
Sect. 3.

2 The algorithm

In this section, we present an algorithm for MCDS in UBG. The algorithm uses parti-
tion technique combined with a shifting strategy (which was introduced by Hochbaum and
Maass [9]).

Let Q = {(x, y, z) | 0 ≤ x ≤ q, 0 ≤ y ≤ q, 0 ≤ z ≤ q} be a minimal three-dimensional
cube containing all the unit balls. For a given positive real number ε < 1, let m be an inte-
ger with m = �300ρ/ε�, where ρ is the performance ratio of a constant-approximation for
MCDS in UBG, for example ρ = 22 by the algorithm given by Butenko and Ursulenko [4].
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Set p = �q/m� + 1, and Q̃ = {(x, y, z) | −m ≤ x ≤ mp,−m ≤ y ≤ mp,−m ≤ z ≤ mp}.
Divide Q̃ into (p+1)×(p+1)×(p+1) grid such that each cell is an m ×m ×m cube (each
cube is half cloesed and half open, including the back, left, and bottom sides, excluding the
front, right, and top sides). Denote this partition as P(0). For a = 0, 1, . . . , m − 1, P(a) is
the partition obtained by shifting P(0) such that the left-bottom-hind corner of P(a) is at the
coordinate (a − m, a − m, a − m). For each cell e, the boundary region Be of e is the region
contained in e such that each point in this region is at most distance 3 from the boundary of
e. The central region Ce of e is the region of e such that each point is at least distance 2 away
from the boundary of e. Note that Be and Ce have an overlap.

Algorithm Input: The geometric representation of a connected unit ball graph G and a
positive real number ε < 1.

Output: A connected dominating set D of G.

1. Let m = �300ρ/ε�.
2. Use the ρ-approximation algorithm to compute a connected dominating set D0 of G.

For each a ∈ {0, 1, . . . , m − 1}, denote by D0(a) the set of vertices of D0 lying in the
boundary region of P(a). Choose a∗ with the minimum |D0(a)|.

3. For each cell e of P(a∗), denote by Ge the subgraph of G induced by the vertices in the
central region Ce. Compute a minimum subset De of vertices in e, such that

for each component H of Ge, G[De] has a connected
component dominating H .

(1)

4. Let D = D0(a∗) ∪ ⋃
e∈P(a∗) De.

The following lemma shows the correctness of the algorithm.

Lemma 1 The output D of the algorithm is a CDS of G.

Proof We first show that D is a dominating set. For each vertex x ∈ V (G), suppose x is
in cell e. If x ∈ Ce, then x is dominated by De. If x ∈ e\Ce, then x is in the region of e
at distance less than two from the boundary of e. If x ∈ D0, then x ∈ D0(a∗). If x 
∈ D0,
then the vertex y ∈ D0 which dominates x is in D0(a∗). By the arbitrariness of x , D is a
dominating set of G.

Next, we show that G[D] is connected.
Suppose F1, F2 are two components of G[D0(a∗)] which can be connected by D0 through

the central region of some cell e. Then there exist two vertices x1 ∈ V (F1) ∩ Be ∩ Ce and
x2 ∈ V (F2) ∩ Be ∩ Ce such that x1, x2 are in a same component H of Ge. By step 3 of
the algorithm, x1 and x2 are connected through De, and thus F1 and F2 are also connected
through De ⊆ D. We have shown that any components of G[D0(a∗)] are connected in G[D].

Let G̃ be the component of G[D] containing all vertices in D0(a∗). If G̃ 
= G[D], then
there exists a cell e and a component R of G[De] such that V (R)∩ D0(a∗) = ∅ and R is not
adjacent with any vertex in D0(a∗). Let x be a vertex in D0 such that x dominates some vertex
y ∈ V (R) (y may coincide with x). Since x 
∈ D0(a∗), we have x ∈ e\Be. Hence y ∈ Ce. Let
H be the connected component of Ge containing y. By step 3 of the algorithm, we see that R
dominates H . Since G[D0] is connected, there is a path in G[D0] connecting x to the other
parts of G outside of cell e. Such a path must contain a vertex z ∈ D0 ∩ Be ∩ Ce ⊆ D0(a∗).
Note that z is also in H . Hence there is a vertex w in V (R) dominating z, contradicting
that R is not adjacent with any vertex in D0(a∗). Hence G̃ = G[D], and thus G[D] is
connected. 
�

123



454 J Glob Optim (2009) 45:451–458

The next lemma follows from the well-known fact that any dominating set always has two
connected components which are at most three hops away from each other (see for example
[8]).

Lemma 2 For any dominating set D in a connected graph, at most 2(|D| − 1) vertices are
needed to connect D. In particular, |D2| ≤ 3|D1| − 2, where D1, D2 are, respectively, a
minimum dominating set and a minimum CDS.

The next lemma shows that the time complexity of the algorithm is polynomial in n and ε.

Lemma 3 The above algorithm runs in time nO(1/ε3).

Proof Clearly, the most time-consuming part is the third step. Since any vertex in a
√

3/3 ×√
3/3 × √

3/3 cube dominates any other vertices in the same cube, we see that a mini-
mum dominating set of e uses at most (

√
3m)3 vertices. By Lemma 2, |De| ≤ 3(

√
3m)3.

Hence the exhaust search time takes at most
∑(3

√
3m)3

k=0

(ne
k

) = nO(m3)
e to compute De, where

ne is the number of vertices in e. It follows that the total time complexity is bounded by
∑

e∈P(a∗) nO(m3)
e = nO(m3) = nO(1/ε3). 
�

2.1 The performance ratio

In this section, we show that our algorithm is a PTAS for CDS in UBG. For this purpose, we
need the following two lemmas.

For a path P in G, the length of P , denoted by len(P), is the number of edges in P . Let
H be a subgraph of G. For two subgraphs H1 and H2 of G, the distance between H1 and
H2 in H is distH (H1, H2) = {len(P) | P is the shortest path connecting H1 and H2 in H}.
In another word, if distH (H1, H2) = k, then H1 and H2 can be connected through at most
k − 1 vertices of H .

Lemma 4 Let H be a connected subgraph of G, and D be a subset of V (G) dominating
H. If G[D] does not contain a connected component dominating H, then there exist two
components R and K of G[D] such that distH (R, K ) ≤ 3.

Proof Let H1, H2, . . . , Hk (k ≥ 2) be a minimum set of components of G[D] the union of
which dominates H . The ‘minimum’ ensures that every Hi is adjacent with H . Since H is
connected, we see that

⋃k
i=1 Hi can be connected through vertices in H . Choose Hi and Hj

such that distH (Hi , Hj ) is minimum. Let P = x0x1 . . . xt be the shortest path connecting
Hi and Hj such that x1, . . . , xt−1 ∈ V (H) and x0 ∈ V (Hi ), xt ∈ V (Hj ). Suppose t ≥ 4.
Let H� be a component dominating x2. Then � 
= i and distH (H�, Hj ) < distH (Hi , Hj ), a
contradiction. 
�
Lemma 5 For any vertex u in a unit ball graph G, the neighborhood NG(u) contains at
most 12 independent vertices.

Proof The result can be obtained by transforming the problem into the famous Gregory–
Newton Problem concerning about kissing number [19]. The kissing number is the maximum
number of unit balls that can simultaneously touch the surface of a unit ball (‘touch’ means
two balls have exactly one point in common). Let S(u) be the unit ball with center u, and
{x1, . . . , xt } be a maximum set of independent vertices in S(u). For each i = 1, . . . , t , draw
a radial ri with origin u which goes through xi . Suppose ri intersects the surface of S(u)

at point x̃i . Let Si be a unit ball touching S(u) at x̃i . Since xi ’s are independent, the angle
between any two radials is at least π/3. Hence Si ’s are non-intersecting. It follows that t is
at most the kissing number, which is 12. 
�
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Fig. 1 When the partition shifts, each vertex falls into at most 12 boundary regions

Next, we analyze the performance ratio of the algorithm.

Theorem 1 The algorithm is a (1 + ε)-approximation for CDS in UBG.

Proof Let D∗ be an optimal CDS of G.
Note that when a runs over 0, 1, . . . , m − 1, each vertex belongs to at most 12 boundary

regions of P(a)’s (see Fig. 1). Hence

|D0(0)| + |D0(1)| + · · · + |D0(m − 1)| ≤ 12|D0|,
and thus

|D0(a
∗)| ≤ 12

m
|D0| ≤ 12ρ

m
|D∗| ≤ ε

25
|D∗|. (2)

In the following, we are to add some vertices to D∗ such that the resulting vertex set D̃
satisfies:

(i) |D̃| ≤ |D∗| + 24|D0(a∗)|, and
(ii) for each cell e and each connected component H of Ge, G[D̃∩e] contains a connected

component dominating H .

Before showing how to construct D̃, we first show that as long as this can be done, then the
theorem is proved. In fact, since De is a minimum subset of e satisfying the requirement
(1) and D̃ ∩ e satisfies (ii), we have

|De| ≤ |D̃ ∩ e|.
Then it follows from condition (i) and inequality (2) that
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∣
∣
∣
∣
⋃

e∈P(a∗) De

∣
∣
∣
∣ = ∑

e∈P(a∗) |De| ≤ ∑
e∈P(a∗) |D̃ ∩ e|

= |D̃| ≤ |D∗| + 24|D0(a∗)| ≤ (
1 + 24ε

25

) |D∗|.
(3)

Combining inequalities (2) and (3), we have

|D| ≤ |
⋃

e∈P(a∗)
D(e)| + |D0(a

∗)| ≤ (1 + ε)|D∗|,

where D is the output of the algorithm. This proves the theorem.
In the following we show how to construct D̃ satisfying conditions (i) and (ii).
We first claim that for any cell e and any component H of Ge, H is dominated by D∗ ∩ e.

In fact, any vertex x ∈ V (H) is dominated by some vertex y ∈ D∗. Since x ∈ Ce, we have
y ∈ e.

Set D̃∗
e = D∗ ∩ e. Suppose D̃∗

e does not satisfy condition (ii). Then there is a component
H of Ge such that H is not dominated by one connected component of G[D̃∗

e ]. By Lemma
4, there are two components R and K of G[D̃∗

e ] such that distH (R, K ) ≤ 3. That is, R
and K can be connected through at most two vertices in V (H)\D̃∗

e . Add these vertices into
D̃∗

e to merge R and K . Continue this procedure until D̃∗
e satisfies condition (ii). Suppose k

mergences are executed. Then the resulting D̃∗
e satisfies

|D̃∗
e | ≤ |D∗ ∩ e| + 2k. (4)

Next, we use vertices in D0(a∗) ∩ e to compensate for the 2k term of inequality (4).
Suppose the components are merged in the order that: H1 is merged with H2, H3 is merged
with H4, · · · , H2k−1 is merged with H2k . To simplify the presentation of the idea, we first
assume that the Hi ’s are all distinct components of the original G[D̃∗

e ]. Denote by Ie the
region of e between distance 1 and 2 from the boundary of e. For each i = 1, 2, · · · , k, let
xi be a vertex in V (H2i−1) ∩ Ie. Such xi exists since H2i−1 dominates some vertex in H
which is a component in the central region of e (hence H2i−1 is within distance 1 from the
central region), and G[D∗] is connected (hence H2i−1 is accessible from the outer side of e).
Because D0 is a dominating set of G, there is a vertex zi ∈ D0 dominating xi . Since xi ∈ Ie,
we have zi ∈ Be, and thus zi ∈ D0(a∗) ∩ e. Note that for i 
= j , it is possible that zi = z j .
However, in this case, xi and x j are independent since they are in different components of
G[D̃∗

e ]. Hence by Lemma 5, a vertex serves at most 12 times as zi ’s. Thus we have shown
that

k ≤ 12|D0(a
∗) ∩ e|. (5)

Next, consider the case that there are some repetitions among the Hi ’s. For example, suppose
H3 is the component of the new G[D̃∗

e ] obtained by merging H1 and H2. Since x1 is chosen
to be in V (H1)∩ Ie, we can choose x3 ∈ V (H2)∩ Ie. In general, we are always able to choose
xi ’s such that they are in different components of the original G[D̃∗

e ]. Hence (5) holds in any
case. Combining (5) with (4), we have

|D̃∗
e | ≤ |D∗ ∩ e| + 24|D0(a

∗) ∩ e|. (6)

Let D̃ be the union of the modified D̃∗
e ’s, where e runs over all cells of P(a∗). Then

|D̃| =
∑

e∈P(a∗)
|D̃∗

e | ≤
∑

e∈P(a∗)

(|D∗ ∩ e| + 24|D0(a
∗) ∩ e|) = |D∗| + 24|D0(a

∗)|. (7)

Hence D̃ satisfies requirements (i) and (ii). This completes the proof. 
�
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3 Conclusion

We presented a construction and an analysis of PTAS for the minimum connected dominating
set in unit ball graphs. This construction is different from that in [6] for the minimum con-
nected dominating set in unit disk graphs. In fact, the construction in [6] cannot be extended
to three-dimensional space since a process of merging many parts of connected components
into one in boundary area cannot work. Actually, our construction can be applied to unit ball
graphs in n-dimensional space for any n ≥ 1. An important observation is that the number of
independent vertices in an n-dimensional unit ball is upper bounded by a constant (depend-
ing only on n). In addition, when applied to unit disk graph, the (1 + ε)-approximation
constructed in this paper runs in time nO(1/ε2) while the (1 + ε)-approximation constructed
in [6] runs in time nO((1/ε2) ln(1/ε)). Therefore, our construction also improves the running
time of PTAS for unit disk graph.
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