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Abstract. We present a polynomial-time approximation scheme (PTAS) for
the minimum dominating set problem in unit disk graphs. In contrast to previ-
ously known approximation schemes for the minimum dominating set problem
on unit disk graphs, our approach does not assume a geometric representation
of the vertices (specifying the positions of the disks in the plane) to be given
as part of the input. The algorithm accepts any undirected graph as input,
and is robust in the sense that for instances not reflecting unit disk graphs, it
either returns a (1+ ε)-approximate minimum dominating set, or a certificate
showing that the input graph is no unit disk graph. The given PTAS can easily
be adapted to other classes of related geometric intersection graphs.
Keywords: Minimum Dominating Set, Geometric Intersection Graph, PTAS
AMS-Classification: 05R69, 05R62, 68R10

1 Introduction

In this paper, we consider the minimum dominating set (MDS) problem of
finding a dominating set of minimum cardinality in a unit disk graph for the
case that no geometric representation of the graph is available. A graph is a
unit disk graph (UDG) if its vertices can be drawn as circular disks of equal
radius in the plane in such a way that there is an edge between two vertices
if and only if the two disks have a non-empty intersection. Such a drawing,
i.e. a list of center points of the vertices/disks, is referred to as geometric
representation of the graph. A subset of vertices in such an undirected graph
is called dominating set if every vertex in the graph either is contained in the
subset, or adjacent to a vertex in the set. The MDS problem is NP-hard, even
on unit disk graphs when a geometric representation is given [4].

We present a polynomial-time approximation scheme (PTAS) for the MDS
problem, that is, given any ε > 0, the algorithm gives in polynomial-time an
approximation with a performance guarantee of (1 + ε).
� This work is partially supported by the European research project EYES (IST-2001-

34734).



Unit disk graphs are widely used to model the communication in wireless
ad-hoc networks (e.g. [5]). In such a network, structures like dominating sets
play an important role, e.g. in global flooding to alleviate the so-called broad-
cast storm problem. A message broadcast only in the dominating set is an
efficient way to ensure that it is received by all transmitters in the network,
both in terms of energy and interference. In wireless ad-hoc networks, the
transmitters mostly do not know their own location, as obtaining this infor-
mation is hard or costly, making algorithms that do not rely on positional
information favorable.

Most of the work concerning approximation schemes in unit disk graphs
assume a given geometric representation, which allows for separation of the
graph along a grid ([1],[6]). Approximation schemes for the MDS in unit disk
graphs (with representation), and other related problems, are given in [7].
In [3], a PTAS for the minimum connected dominating set is presented, also
using separation of the graph based on a grid.

However, the case when no geometric representation is present is signif-
icantly different: Computing a possible geometric representation for a given
unit disk graph is NP-hard. Indeed, any polynomial-time algorithm computing
a geometric representation for UDGs can be used in a straightforward way to
solve the corresponding recognition problem, i.e. determining whether a given
graph is a UDG, a problem known to be NP-hard [2]. For the case that a
representation is not given, several approximation algorithms are presented
in [9], including a 5-approximation for the MDS problem.

Besides the independence from a geometric representation, an additional
advantage of the presented PTAS lies in the fact that we can extend the
algorithm towards a robust approximation [11]. The algorithm may then be
applied to an arbitrary undirected graph, and the output is either a (1 + ε)-
approximation for the MDS problem in this graph, or a certificate which allows
us to prove in polynomial-time that the input graph is no unit disk graph. In
other words, we have a polynomial-time algorithm which either approximates
the MDS problem, or solves the recognition problem. In case the input graph
is a UDG, the algorithm always returns a dominating set of desired quality.

The remainder of the paper is organized as follows. In the following section,
we present some basic definitions needed for the description of the approxi-
mation scheme. Section 3 introduces the concept of a 2-separated collection
of subsets, a structure that is used to efficiently separate a graph into smaller
subgraphs for which the problem of computing a dominating set is easier to
tackle. The PTAS itself is then presented in Section 4, where we also show
the polynomial running-time of the method. In Section 5, we discuss the ro-



bustness of the algorithm, and present some extensions to other intersection
graphs of geometric objects.

2 Definitions and preliminaries

A graph G = (V,E) is a unit disk graph (UDG) if it results from the intersec-
tion graph of disks of unit radius in the euclidean plane. In other words, G is
a UDG if there exists a map f : V → R2 satisfying

(u, v) ∈ E ⇐⇒ ‖f(u) − f(v)‖ ≤ 2,

where ‖.‖ denotes the euclidean norm. In this context, f is called a geometric
representation of G and is not unique for a given graph.

A subset D ⊂ V is a dominating set (for V ) if for every vertex v ∈ V ,
either v ∈ D holds or there exists an edge (u, v) ∈ E such that u ∈ D. The
minimum dominating set problem (MDS) seeks to find a dominating set of
minimum cardinality for a given graph.

In this paper, the goal is to give a polynomial-time approximation scheme
(PTAS) for the minimum dominating set problem on unit disk graphs for
the case that a geometric representation is not given. That is, we seek for an
algorithm which, given a UDG G = (V,E) and a parameter ε > 0, computes
a dominating set of cardinality no more than (1 + ε) the size of a minimum
dominating set in G. The running time of the algorithm is allowed to depend on
the parameter ε, but should be polynomial with respect to the input instance,
i.e. polynomial in n = |V | for fixed ε > 0.

We now present some further definitions needed for the description and
discussion of the algorithm and the underlying concepts. Without loss of gen-
erality, we may assume the graph G to be connected. If this is not the case,
we may consider each connected component separately.

Let W ⊂ V denote a set of vertices in G = (V,E). In the following, we
simultaneously use W to also denote the resulting induced subgraph G[W ] :=
(W,E ∩ (W × W )). Obviously, the graph G[W ] is a unit disk graph if the
original graph is one.

Furthermore, we denote by N(v) the closed neighborhood of a vertex v ∈
V , i.e. N(v) := {u ∈ V | (u, v) ∈ E} ∪ {v}. Analogously, for W ⊂ V , let
N(W ) :=

⋃
w∈W N(w) define the neighborhood of W . In this context, we set

N(∅) := ∅. For r ∈ N, we denote by N r(v) := N(N r−1(v)) the recursively
defined r-th neighborhood of v ∈ V , where N1(v) := N(v).

For two vertices u, v ∈ V , let d(u, v) denote the (hop-)distance between
u and v, that is the number of edges on a shortest path between these two
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Fig. 1. Example of a UDG with and without geometric representation

vertices. Thus, alternatively, the r-th neighborhood of v ∈ V is characterized
by N r(v) = {u ∈ V | d(u, v) ≤ r}.

Denote by P(V ) the set of all subsets of vertices. We then define D :
P(V ) → P(V ) to be an operation returning a dominating set of minimum
cardinality for the subset of vertices given as argument to it. Since for a
subset W ⊂ V , the set D(W ) dominates W , i.e. for every w ∈ W , either
w ∈ D(W ) holds, or there is an edge (u,w) ∈ E such that u ∈ D(W ), from
the above definitions, we can state that W ⊂ N(D(W )) holds. Furthermore,
it is easy to see that D(W ) ⊂ N(W ) holds. In the following, we are interested
in an efficient, i.e. polynomial-time, approximation of D(V ) within a factor of
(1 + ε) for any given ε > 0.

Figure 1 illustrates some of the given notations. In the left part, a graph
and its geometric representation are given, whereas in the right part only the
graph and some neighborhoods of a node v are presented. Furthermore, the
circled vertices in the right part give a minimum dominating set for N3(v), i.e.
D(N3(v)). As can be seen from the example, D(W ) ⊂ W need not hold for
a subset W � V : Using the circled vertex in N4(v), we obtain a dominating
set consisting of three vertices, whereas restricting the dominating set only to
vertices from N3(v) yields dominating sets of cardinality 4 or higher.

3 Local dominating sets

In this section, we introduce the concept of a 2-separated collection of subsets.
The subgraphs induced by the subsets of such a collection divide the original
graph into smaller parts for which it becomes easier to tackle the MDS prob-
lem. For a collection of local dominating sets resulting from a separation of



S5

S6

S4S2

S3

S1

Fig. 2. Example for a 2-separated collection S = {S1, . . . , S6}

the graph into smaller subgraphs, we show several properties that allow for
bounds on the cardinalities with respect to an optimal solution. Throughout
this section, we do not assume the graph to be a UDG, the following concepts
are valid for all undirected graphs.

For a graph G = (V,E), let S := {S1, . . . , Sk} be a collection of subsets of
vertices Si ⊂ V , i = 1, . . . , k, with the following property:

(P) for any two vertices s ∈ Si and s̄ ∈ Sj with i 
= j, it is d(s, s̄) > 2.

We refer to S as a 2-separated collection of subsets. An example of such
a 2-separated collection is presented in Figure 2. The grey areas mark the
different subsets that make up the collection, vertices which are not part of
the collection, and thus separate the subsets are white.

The following lemma shows that the sum of the cardinalities of minimum
dominating sets D(Si) for the subsets Si ∈ S of a 2-separated collection forms
a lower bound on the cardinality |D(V )| of a minimum dominating set in G.

Lemma 1. For a 2-separated collection S = {S1, . . . , Sk} in a graph G =
(V,E), we have

|D(V )| ≥
k∑

i=1

|D(Si)|.

Proof. For each subset Si ∈ S, consider the neighborhood N(Si). As a direct
result of property (P), these neighborhoods are pairwise disjoint. Furthermore,
any vertex outside N(Si) has distance more than one to all vertices in Si. Thus,



D(V ) ∩ N(Si) has to dominate all vertices in Si, since D(V ) dominates the
entire vertex set V .
On the other hand, also D(Si) ⊂ N(Si) dominates Si using a minimum number
of vertices in G. Therefore, we get

|D(V ) ∩ N(Si)| ≥ |D(Si)|.
Combining this for all subsets of the 2-separated collection, we get

|D(V )| ≥
k∑

i=1

|D(V ) ∩ N(Si)| ≥
k∑

i=1

|D(Si)|,

as claimed. �

Lemma 1 states that a 2-separated collection S leads to a lower bound on
the cardinality of a MDS. Additionally, such a collection may help in getting
an approximation of this cardinality. If we are able to enlarge the subsets Si

to subsets Ti in such a way that the dominating sets of the expansions are
locally bounded and the unions of theses forms a dominating set for V , we get
a global approximation for the MDS in G.

Corollary 1. Let S = {S1, . . . , Sk} be a 2-separated collection in G = (V,E),
and let T1, . . . , Tk be subsets of V with Si ⊂ Ti for all i = 1, . . . , k.
If there exists a bound ρ ≥ 1 such that

|D(Ti)| ≤ ρ · |D(Si)|
holds for all i = 1, . . . , k, and if

⋃k
i=1 D(Ti) forms a dominating set in G, the

set
⋃k

i=1 D(Ti) is a ρ-approximation of an MDS in G.

Proof. |⋃k
i=1 D(Ti)| ≤

∑k
i=1 |D(Ti)| ≤ ρ · ∑k

i=1 |D(Si)| ≤ ρ · |D(V )|. �

In the following section, we focus on the construction of suitable subsets
Ti ⊂ V , which contain a 2-separated collection Si ⊂ Ti, in a way that a
local (1 + ε)-approximation can be guaranteed. Furthermore, we create these
subsets in such a way that the union of the respective local dominating sets also
dominates the entire set of vertices, resulting in a global (1+ε)-approximation
for the MDS.

4 Efficient construction of suitable subsets

From the previous discussion, we recall that if we have a 2-separated collection
S := {S1, . . . , Sk}, corresponding sets Ti ⊃ Si together with a bound of (1+ε)



for the local dominating sets D(Si) and D(Ti), then the union of the D(Ti)
satisfies the approximation bound required for a PTAS for the MDS problem.
In this section, we show how to construct suitable subsets, for which the union
of the local dominating sets also forms a dominating set for V . Furthermore,
we prove that this can be achieved in polynomial running-time with respect to
the size of the input instance for fixed ε > 0 if the input graph is a UDG. For
ease of notation, let ρ := (1 + ε) denote the desired approximation guarantee
of the algorithm.

The basic idea of the construction is simple: we compute a local dominating
set for a neighborhood of a vertex, and expand this neighborhood until we have
formed sets S and T ⊃ S which satisfy a desired bound. Then, we eliminate the
current neighborhood and continue the same steps for the remaining graph.

In more detail, the algorithm works as follows. We start with an arbitrary
vertex v ∈ V and consider for r = 0, 1, 2, . . . , the r-th neighborhoods N r(v).
Starting with N0(v) = v, we compute dominating sets of minimum cardinality
for these neighborhoods as long as

|D(N r+2(v))| > ρ · |D(N r(v))| (1)

holds. Denote by r̂1 the smallest r for which (1) is violated.
We go on iteratively with this procedure for the graph induced by Vi+1 :=

Vi \ N r̂i+2(vi)), where V1 := V . The vertex vi ∈ Vi is chosen as an arbitrary
central vertex of the neighborhoods. In further iterations, we thus consider
for r = 0, 1, 2, . . . the neighborhoods N r(vi) with respect to Vi, i.e. we have
N r(vi) ⊂ Vi. Note that the dominating sets D(.) are always computed with
respect to the entire input graph G.

This process is then repeated until Vi+1 contains no more vertices. Let
k ∈ N be the total number of iterations. Obviously we have k < n. In the
following, let Ni, i = 1, . . . , k, denote the respective neighborhoods when the
stopping criterion (1) is violated, i.e. Ni := N r̂i+2(vi).

Looking at the dominating sets for these neighborhoods, D(Ni), we have
the following lemma which shows that a dominating set for the entire graph
is given by the union of the sets D(Ni).

Lemma 2. For the collection of neighborhoods {N1, . . . , Nk} created by the
above algorithm, the union D :=

⋃k
i=1 D(Ni) forms a dominating set for the

input graph G.

Proof. It is Vi+1 = Vi \Ni and Ni ⊂ Vi, thus we have Vi = Vi+1 ∪Ni. We stop
the algorithm at Vk+1 = ∅, which implies Vk = Nk. Therefore

⋃k
i=1 Ni = V

by induction, and the claim follows. �



Next, we show that the solution set D :=
⋃k

i=1 D(Ni) returned by the
algorithm satisfies the (1 + ε)-bound on the approximation. We show that
N := {N r̂1(v1), . . . , N r̂k(vk)} is a 2-separated collection in G, and then apply
Corollary 1 to the respective local dominating sets D(Ni).

Lemma 3. The subsets N r̂i(vi), i = 1, . . . , k, created by the algorithm form a
2-separated collection N := {N r̂1(v1), . . . , N r̂k(vk)} in G.

Proof. For ease of notation, let N i denote the neighborhood N r̂i(vi) for it-
eration i ∈ {1, . . . , k} of the algorithm. Recall that a 2-separated collection
is characterized by property (P), i.e. vertices of two different subsets of the
collection have distance more than 2 from one another.
Clearly, {N 1, V2} is a 2-separated collection in G, since V2 = V \ N(N(N 1)).
For induction, suppose that {N 1, . . . ,N i−1, Vi} is a 2-separated collection
in G. Any vertex in Vi has distance more than 2 from any other vertex in
N1, . . . ,N i−1. Considering Vi+1 = Vi \ N(N(N i)), we see that both Vi+1 and
N i satisfy (P). Therefore, {N1, . . . ,N i, Vi+1} again is a 2-separated collection.
�

Additionally, the criterion (1) for stopping to expand the neighborhood
guarantees that each pair of local dominating sets satisfies

|D(Ni)| ≤ ρ · |D(N r̂i(vi))| (i = 1, . . . , k). (2)

Using Corollary 1 and Lemma 2, we now obtain the following result for the
approximation.

Corollary 2. The above algorithm returns a dominating set
⋃k

i=1 D(Ni) of
cardinality no more than (1 + ε) the size of a minimum dominating set in
G = (V,E). �

At this point, it is noteworthy to remind that this Corollary 2 is valid for
any undirected graph G, even if it is not a unit disk graph.

It remains to show that the (1+ε)-approximation algorithm has polynomial
running-time. In contrast to Corollary 2, the polynomial running-time relies
on the fact that the input graph G is a unit disk graph. So, for the further
discussion in this section, we assume G to be a unit disk graph.

The number k of iterations is bounded by n = |V |. We may thus limit the
further discussion to one iteration only. Since any Vi during the execution of
the algorithm again induces a unit disk graph, we focus w.l.o.g. on the graph
G = (V,E) in the first iteration. We show two things:

(1) we can compute the minimal dominating set D(N r(v)) in polynomial time
if the value of r is a constant or polynomially bounded; and



(2) there exists a constant bound for r̂1, i.e. the diameter of the largest neigh-
borhood we need to consider until the stopping criterion (1) is violated.

Before showing that D(N r(v)) can be computed efficiently, we need to in-
troduce the notion of an independent set, and briefly state a key result for
independent sets in UDGs.

Let W ⊂ V . A set I ⊂ W is called an independent set if for every two
vertices u, v ∈ I, there does not exist an edge (u, v) ∈ E. An independent set
is called maximal in W if we cannot add any other vertex from W to I with-
out violating the independence property (of no two vertices being adjacent).
Clearly, any maximal independent set in W also dominates W .

For a UDG, the following result of [10] bounds the size of an independent
set in the neighborhood N r(v). We give the short proof, since we rely on it in
the next section.

Lemma 4. Let G = (V,E) be a UDG. Any independent set Ir ⊂ N r(v), v ∈
V, satisfies

|Ir| ≤ (2r + 1)2 = O(r2).

Proof. Let f : V → R2 be a geometric representation of G. From the definition
of a unit disk graph, we conclude that any w ∈ N r(v) satisfies

‖f(v) − f(w)‖ ≤ 2r.

Thus, Ir consists of pairwise disjoint disks of unit radius inside a disk of radius
2r + 1 around f(v), and therefore |Ir| ≤ π(2r + 1)2/π. �

As a consequence of Lemma 4, any independent set in N r(v) is polynomi-
ally bounded in r, including maximal independent sets. The cardinality of a
minimum dominating set in N r(v) is bounded from above by the cardinality
of a maximal independent set in N r(v), and, therefore, we get

Corollary 3. |D(N r(v))| ≤ (2r + 1)2 = O(r2). �

Assuming r to be fixed or polynomially bounded, a minimum dominating
set D(N r(v)) can then be computed in polynomial time, e.g. by complete
enumeration in time O(nϑ), with ϑ = O(r2).

Next, we show that, for a UDG, there exists such a bound on r̂1, the first
value of r which violates (1). This bound only depends on the approximation
ratio ρ, and not on the size of the unit disk graph G = (V,E) given as input.

Lemma 5. There exists a constant c = c(ρ) such that r̂1 ≤ c, that is, the
largest neighborhood to be considered during the iteration of the algorithm is
bounded by a constant.



Proof. It is |D(N0(v))| = |D(N1(v))| = 1, as the central vertex v dominates
itself and all its neighbors.
Consider an arbitrary value of r < r̂1. First, if r is an even number, due to
the stopping criterion (1) we have

(2r + 1)2 ≥ |D(N r+2(v))| > ρ|D(N r(v)| > · · · > ρ
r
2 |D(N0(v)| = (

√
ρ)r.

Second, if r is uneven, we get

(2r + 1)2 ≥ |D(N r+2(v))| > ρ|D(N r(v)| > · · · > ρ
r
2 |D(N1(v)| = (

√
ρ)r.

Since ρ > 1, and thus
√

ρ > 1, in both cases the above inequations have to be
violated eventually. The bound on r̂1 when these inequations are violated the
first time only depends on ρ and not on the size of the overall graph G. The
claim follows directly. �

Setting c := 1
ε2 ln 1

ε yields (2c + 1)2 < (1 + ε)c, thus the constant for c is
bounded by O( 1

ε2 log 1
ε ).1

Summarizing, if the input graph is a UDG, each iteration has polyno-
mial running time, and therefore the presented algorithm is a polynomial-time
approximation scheme for the MDS problem. Note that the computation of
D(N r(v)) for the largest neighborhood, dominates the running-time of the al-
gorithm. Therefore, the overall time complexity of the approximation is O(nc2)
with c = O( 1

ε2 log 1
ε ).

5 Discussion

Unit disk graphs are a special subclass of undirected graphs. As we have shown
in the previous part, the presented algorithm accepts an arbitrary undirected
graph as input, and returns a dominating set of desired quality for this graph.
However, the polynomial running-time relies on the UDG characterization.
This raises the question of robustness for algorithms designed for a restricted
domain [11]:

An algorithm A, defined on a set G of instances, is robust on a restricted
class U ⊂ G if it solves the problem for all instances in U , and for instances not
in U , the algorithm either solves the problem, or provides a certificate that
the input does not belong to U . Of course, the notion of a robust algorithm
is especially interesting when A has polynomial running-time with respect to
the size of the input instance, and the decision whether an instance belongs
1 For sufficiently small ε ≤ 1

2
, we can use the inequality ln(1 + ε) + ε2 ≥ ε to obtain this

result.



to the subclass U ⊂ G is not as easy to decide. In our situation, G is the set
of undirected graphs, A computes a (1 + ε)-approximation of the cardinality
of an MDS, and U is the subclass of UDGs.

In case the input graph is a unit disk graph, the algorithm always returns
a (1+ ε)-approximate dominating set in polynomial running-time. Also, when
the input is any undirected graph, such an approximation is returned. How-
ever, the polynomial running-time in this case cannot be guaranteed. In the
following, we consider the case that the input is no UDG.

The time complexity of the algorithm is a direct result of the possibility
to bound the cardinality of a minimum dominating set in a neighborhood of
bounded diameter. This bound results from the fact that a maximal indepen-
dent set Ir in such a neighborhood is bounded, i.e. for the r-th neighborhood
of a vertex v ∈ V , we have

|D(N r(v))| ≤ |Ir| ≤ (2r + 1)2.

If, during the execution of the algorithm, we now find a neighborhood
N r(v) for which a minimum dominating set of size less than or equal to (2r +
1)2 cannot be found, we terminate the algorithm, and output the neighborhood
N r(v) as a certificate to show that the input is no UDG. For this neighborhood,
we can then construct a maximal independent set, e.g. by a simple greedy
strategy in time O(n2), which has to violate Lemma 4. This immediately
shows that the input graph cannot be a unit disk graph.

Note that for robustness, we do not need to explicitely consider the bound
r ≤ c (Lemma 5) on the diameter of the neighborhoods N r(v) constructed,
as this bound follows from the polynomial bound on the cardinality of the
dominating sets in the neighborhoods.

The PTAS presented in this paper can be extended in a straightforward
way to intersection graphs of other, related geometric objects, e.g. the unit
disk graph may be defined using other geometric norms. From the discussion
on the complexity in the previous section, it can be seen that a sufficient
condition for the existence of a PTAS for the MDS problem in a geometric
intersection graph is given when there is a polynomial bound on the ratio
of maximum geometric diameter divided by minimum volume of the objects
that make up the intersection graph (see Lemma 4). Thus, the objects in
consideration do not necessarily need to be of equal size or shape, e.g., the
unit disks may be replaced by disks with fixed lower and upper bounds on
the radius. This condition includes Quasi Unit Disk Graphs which are used to
give a more realistic model of a wireless, ad-hoc network [8]. An extension to
a (fixed) dimension d > 2 is also immediately possible.



6 Conclusion

In this paper, we present a new polynomial-time approximation scheme for
the minimum dominating set problem in unit disk graphs. The algorithm
does not need a geometric representation of the graph to compute the (1+ ε)-
approximate dominating set. In fact, it accepts any undirected graph as input
and returns either a dominating set which satisfies the desired bound, or a
certificate to show that the input graph is no UDG. Of course, if the input
graph satisfies the characterization of a UDG, a dominating set is always
returned.

The approximation algorithm that results in the PTAS works by exploiting
the fact that inside a neighborhood of bounded diameter, a locally optimal
minimum dominating set is polynomially bounded in size and can thus be
efficiently computed. For UDGs, the largest neighborhood which has to be
considered in the algorithm is also bounded by a constant that only depends
on the desired approximation factor, and not on the size of the input graph.
The overall time complexity of the (robust) approximation algorithm is O(nc2)
with c = O( 1

ε2 log 1
ε ).
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