
A Public-Key Encryption Scheme
with Pseudo-random Ciphertexts

Bodo Möller�

University of California, Berkeley
bmoeller@eecs.berkeley.edu

Abstract. This work presents a practical public-key encryption scheme
that offers security under adaptive chosen-ciphertext attack (CCA) and
has pseudo-random ciphertexts, i.e. ciphertexts indistinguishable from
random bit strings. Ciphertext pseudo-randomness has applications in
steganography. The new scheme features short ciphertexts due to the
use of elliptic curve cryptography, with ciphertext pseudo-randomness
achieved through a new key encapsulation mechanism (KEM) based on
elliptic curve Diffie-Hellman with a pair of elliptic curves where each
curve is a twist of the other. The public-key encryption scheme resembles
the hybrid DHIES construction; besides by using the new KEM, it differs
from DHIES in that it uses an authenticate-then-encrypt (AtE) rather
than encrypt-then-authenticate (EtA) approach for symmetric cryptog-
raphy.

1 Introduction

Where encryption converts a message (plaintext) into a scrambled message (ci-
phertext) such that revealing the latter does not expose the former, steganography
goes further and seeks to hide even the fact that secret communication is taking
place. A cryptography-based approach is to encrypt the plaintext to be hidden, in
this context also known as the hiddentext, and embed the resulting ciphertext in
a seemingly innocuous message, the covertext. The recipient extracts the cipher-
text from the covertext and then uses the appropriate cryptographic decryption
key to recover the hiddentext. Formal treatments of public-key steganography
based on this approach have recently appeared in [3] and [5].

Public-key encryption schemes usually do not output ciphertexts that are
pseudo-random in the sense of being indistinguishable from uniformly random
bit strings of the same length. Given just the public key, it is typically easy
to tell that certain bit strings cannot have come up during proper encryption
(e.g., a bit string interpreted as an integer would exceed the modulus that would
have been used during encryption). Thus the prospects will often be good for an
adversary who tries to distinguish actual ciphertexts from random bit strings: In
random bit strings, if an invalid encoding appears, this will clearly reveal that the
bit string in question is not an actual ciphertext. Conversely, depending on the
� Supported by a DAAD (German Academic Exchange Service) Postdoc fellowship.

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 335–351, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

336 Bodo Möller

probability that random data will give a valid encoding, seeing a valid encoding
or repeatedly seeing valid encodings can provide possibly strong indication that
these values are not random.

The present work provides a public-key encryption scheme with pseudo-
random ciphertexts as required for public-key steganography constructions like
those from [3] and [5]. Some previous schemes do exist (e.g. based on RSA en-
cryption or Diffie-Hellman, see [3, Section 4]), but their downside is the length
of ciphertexts; and the expense of having relatively long ciphertexts can be es-
pecially high in the context of steganography. (The number of bits available for
embedded ciphertexts typically is a small fraction of the covertext length. To
avoid detection of the steganographic communication, one would generally want
to have to use as little cover channel communication as possible.)

Our scheme uses elliptic curve cryptography to obtain short ciphertexts. Ci-
phertext pseudo-randomness is not immediate with any single cryptographically
secure elliptic curve. Our trick to achieve it is to use a pair of elliptic curves over
a field F2m such that each curve is a twist of the other. (The idea to use elliptic
curves with their twists has also come up in [21] and [22].)

The construction is hybrid and resembles DHIES [2] (also known as DHAES
from the earlier version [1] of that publication): it involves a key encapsula-
tion mechanism (KEM), a one-time message authentication code (MAC), and a
stream cipher. While our elliptic curve KEM is novel and will be described in
detail, a wide range of existing MACs and stream ciphers are available that can
be plugged into the construction.

Like DHIES, our scheme achieves security in a strong sense, namely security
under adaptive chosen-ciphertext attack (CCA). Besides by using a new KEM,
it differs from DHIES in that it applies the symmetric cryptographic primi-
tives in a different order: While DHIES uses an encrypt-then-authenticate (EtA)
approach by computing the MAC on a symmetric ciphertext, our construction
uses an authenticate-then-encrypt (AtE) approach by computing the MAC of the
plaintext and then symmetrically encrypting the MAC and the plaintext. This
modification is needed to prove ciphertext pseudo-randomness without requiring
additional security assumptions. Just as for DHIES, the security assumptions are
mostly standard with the exception of a less conventional oracle Diffie-Hellman
assumption (which finds justification in the random-oracle model based on a
more usual gap-Diffie-Hellman assumption [30], but is a concrete computational
assumption that can be expressed without resorting to this idealized model).

We also provide an appropriate pair of elliptic curves over F2163 to make the
proposed scheme practical, thanks to Reynald Lercier who ran his point counting
algorithms to find suitable curves for the requirements of the scheme. The curve
pair is verifiably pseudo-random (like the well-known curves as in [13]) to allow
for independent verification that it has been generated properly from a seed
value using a standardized process.

Section 2 gives formalizations of public-key encryption and key encapsula-
tion with the relevant notions of security, CCA security and ciphertext pseudo-
randomness. Section 3 presents our elliptic curve KEM as the essential new

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 337

cryptographic primitive. Subsequently, Section 4 looks at well-known symmet-
ric primitives, namely MACs and pseudo-random bit string generators for use
as stream ciphers. Section 5 puts the primitives together to build a public-key
encryption scheme, giving quantitative security results for CCA security and
ciphertext pseudo-randomness. Finally, Section 6 summarizes our conclusions.

2 Public-Key Cryptography
with Pseudo-random Ciphertexts: Concepts

2.1 Public-Key Encryption

We formalize public-key encryption with two security notions, security under
adaptive chosen-ciphertext attack and ciphertext pseudo-randomness. Section 5
will show how to build a public-key encryption scheme with these properties
using appropriate primitives.

We start by describing the notion of public-key encryption in terms of its
interface. Note that algorithms are in general probabilistic.

Definition 1. A public-key encryption scheme PKE specifies a key generation
algorithm PKE.KeyGen and algorithms PKE.Encrypt and PKE.Decrypt. Algo-
rithm PKE.KeyGen takes no input; it outputs a key pair (PK ,SK) consisting
of a public key PK and a secret key SK. For a plaintext m (an arbitrary bit
string, possibly subject to length limitations for the specific public-key encryption
scheme),

PKE.Encrypt(PK , m)

returns a bit string c as ciphertext. On arbitrary input c′,

PKE.Decrypt(SK , c′)

may either return some string m′ or fail and return the special value ⊥. If the
key pair (PK ,SK) has been output by PKE.KeyGen and c has been output by
PKE.Encrypt(PK , m), then evaluating PKE.Decrypt(SK , c) will return the origi-
nal bit string m.

To capture security notions quantitatively, we assume that an adversary inter-
acts with the cryptographic scheme in question in a specific attack game and
define the adversary’s advantage in this game. An adversary is an interactive
probabilistic algorithm with bounded running time. Saying that a cryptographic
scheme is secure under some security notion means that the advantage will be
very low for every practical adversary (i.e. every adversary from some limited
class of admissable adversaries), with details left open on what adversaries would
be considered practical and what advantage would be considered sufficiently low.
(Cryptographic schemes are often described as parameterized by an integer secu-
rity parameter determining features such as the length of keys. Then security can
be formalized as a requirement that any polynomial-time adversary’s advantage
be negligible in the security parameter, i.e. asymptotically smaller than the recip-
rocal of any polynomial. We avoid explicit security parameters, which amounts

338 Bodo Möller

to having a fixed security parameter built into algorithms such as PKE.KeyGen.)
The security result for our public-key encryption scheme in Section 5 will relate
the security of the public-key encryption scheme to the security of its underlying
primitives: intuitively, if all primitives are secure under their respective security
notions, then the complete scheme will be secure.

As the first security notion for public-key encryption, we describe security
under adaptive chosen-ciphertext attack (CCA), CCA security for short. We use
a well-known find-then-guess attack game that expresses security as indistin-
guishability under CCA (IND-CCA). The term indistinguishability refers to the
idea that adversaries should not be able to tell apart encryptions of any two
plaintexts, a notion due to [19]; the CCA scenario, which provides the adversary
with a decryption oracle, is due to [31]. For equivalent formalizations of CCA
security, see [8], [33], and [18, Chapter 5].

Definition 2. In the IND-CCA attack game, an adversary interacts with a
public-key encryption scheme PKE as follows.

1. The adversary queries a key generation oracle, which uses PKE.KeyGen to
determine a key pair (PK ,SK) and responds with PK (while secretly stor-
ing SK).

2. The adversary makes a sequence of queries to a decryption oracle. Each
query is an arbitrary bit string s, and the oracle responds with PKE.Decrypt
(SK , s) before the adversary proceeds.

3. The adversary chooses plaintexts m0 and m1 with |m0| = |m1| (i.e., of the
same length) and sends them to an encryption oracle. This oracle chooses
b ∈ {0, 1} uniformly at random and determines

c = PKE.Encrypt(PK , mb),

which is returned to the adversary as the challenge ciphertext.
4. The adversary again makes a sequence of queries to a decryption oracle as

in stage 2, where this time the decryption oracle refuses being asked for the
decryption of the challenge ciphertext c (responding ⊥ for this case).

5. The adversary outputs a value b̃ ∈ {0, 1}.
If A is any adversary in the IND-CCA attack game, its CCA advantage against
the public key encryption scheme is

AdvIND-CCA
PKE,A =

∣
∣
∣Pr

[
b̃ = 1 | b = 1

] − Pr
[
b̃ = 1 | b = 0

]∣∣
∣.

The value b̃ output by the adversary can be thought of as its guess for b.
The second (less usual) security notion for public-key encryption is ciphertext

pseudo-randomness. We describe it through a real-or-ideal (ROI) attack game.

Definition 3. In the real-or-ideal attack game for a public-key encryption
scheme PKE, an adversary interacts with PKE as follows.

1. The adversary queries a key generation oracle, which uses PKE.KeyGen to
determine a key pair (PK ,SK) and responds with PK .

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 339

2. The adversary makes a query to a real-or-ideal encryption oracle, or encryp-
tion oracle for short. The query consists of a plaintext m of any length valid
for PKE. The encryption oracle determines

c0 = PKE.Encrypt(PK , m),

generates a uniformly random bit string c1 with |c1| = |c0|, chooses b ∈ {0, 1}
uniformly at random, and responds with cb.

3. The adversary outputs a value b̃ ∈ {0, 1}.
An adversary A in this attack game is also called a real-or-ideal distinguisher or
simply a distinguisher. Its real-or-ideal advantage against PKE is

AdvROI
PKE,A =

∣
∣
∣Pr

[
b̃ = 1 | b = 1

] − Pr
[
b̃ = 1 | b = 0

]∣∣
∣.

The real-or-ideal encryption oracle operates as a real encryption oracle if b = 0
and as an ideal encryption oracle if b = 1.

2.2 Key Encapsulation

Following Shoup [32], we use the term key encapsulation mechanism (KEM) for
a scheme in public-key cryptography that is similar to public-key encryption
except that plaintexts cannot be arbitrarily specified by the party that creates a
ciphertext: instead, the randomized “encryption” algorithm, given some public
key, outputs both a pseudo-random plaintext and a corresponding ciphertext
such that the plaintext can be recovered from the ciphertext given the appropri-
ate secret key. Such plaintexts can be used as keys for symmetric cryptography;
hence the term key encapsulation.

Definition 4. A key encapsulation mechanism KEM specifies a key generation
algorithm KEM.KeyGen and algorithms KEM.Encrypt and KEM.Decrypt. Algo-
rithm KEM.KeyGen takes no input; it outputs a key pair (PK ,SK) consisting of
a public key PK and a secret key SK . Algorithm

KEM.Encrypt(PK)

generates a bit string K of a fixed length KEM.OutLen and a ciphertext K of a
fixed length KEM.CipherLen, and outputs the pair (K, K). Evaluating

KEM.Decrypt(SK , K)

will return said bit string K if the key pair (PK ,SK) has been generated by
KEM.KeyGen. On arbitrary input K′, the computation KEM.Decrypt(SK , K′) may
either return some bit string K ′ or fail and return the special value ⊥.

Similarly to Section 2.1, we use attack games to express two security notions:
security under adaptive chosen-ciphertext attack (CCA security) and ciphertext
pseudo-randomness. Section 3 will describe a KEM based on elliptic curve Diffie-
Hellman designed to meet these notions.

340 Bodo Möller

Definition 5. In the real-or-random CCA attack game, an adversary interacts
with a key encapsulation mechanism KEM as follows (cf. [14, Section 7.1.2]).

1. The adversary queries a key generation oracle, which uses KEM.KeyGen to
compute a key pair (PK ,SK) and responds with PK .

2. The adversary makes a sequence of queries to a decryption oracle. Each
query is an arbitrary bit string s of length KEM.CipherLen; the oracle re-
sponds with KEM.Decrypt(SK , s) before the adversary proceeds.

3. The adversary queries a real-or-random key encapsulation oracle, or key
encapsulation oracle for short. This oracle uses KEM.Encrypt(PK) to obtain
a pair (K0, Koracle), generates a uniformly random bit string K1 with |K1| =
|K0|, chooses bKEM ∈ {0, 1} uniformly at random, and responds with

(KbKEM
, Koracle)

as challenge.
4. The adversary again makes a sequence of queries to a decryption oracle

as in stage 2, where this time the oracle refuses the specific query Koracle

(responding ⊥ for this case).
5. The adversary outputs a value b̃KEM ∈ {0, 1}.

If A is any adversary in the real-or-random CCA attack game, its CCA advan-
tage against the key encapsulation mechanism KEM is

AdvROR-CCA
KEM,A =

∣
∣
∣Pr

[
b̃KEM = 1 | bKEM = 1

] − Pr
[
b̃KEM = 1 | bKEM = 0

]∣∣
∣.

The real-or-random key encapsulation oracle operates as a real key encapsulation
oracle if bKEM = 0 and as a random key encapsulation oracle if bKEM = 1.

Definition 6. In the real-or-ideal attack game for a key encapsulation mecha-
nism KEM, an adversary interacts with KEM as follows.

1. The adversary queries a key generation oracle, which uses KEM.KeyGen to
determine a key pair (PK ,SK) and responds with PK .

2. The adversary queries a real-or-ideal key encapsulation oracle, or key encap-
sulation oracle for short. The key encapsulation oracle uses KEM.Encrypt(PK)
to determine a pair (K, K0), generates a uniformly random bit string K1 of
length KEM.CipherLen, chooses bKEM ∈ {0, 1} uniformly at random, and re-
sponds with KbKEM

.
3. The adversary outputs a value b̃KEM ∈ {0, 1}.

An adversary A in this attack game is also called a real-or-ideal distinguisher or
simply a distinguisher. Its real-or-ideal advantage against KEM is

AdvROI
KEM,A =

∣
∣
∣Pr

[
b̃KEM = 1 | bKEM = 1

] − Pr
[
b̃KEM = 1 | bKEM = 0

]∣∣
∣.

The real-or-ideal key encapsulation oracle operates as a real key encapsulation
oracle if bKEM = 0 and as an ideal key encapsulation oracle if bKEM = 1.

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 341

3 An Elliptic Curve KEM with Random Ciphertexts

We need a key encapsulation mechanism (KEM) that is CCA-secure and provides
ciphertext pseudo-randomness.

First consider CCA security (Definition 5). The scheme DHIES from [2] uses
hash Diffie-Hellman (HDH) as a CCA-secure KEM. The idea of HDH is to
employ Diffie-Hellman [15] in some group followed by the application of a key
derivation function (KDF) to obtain pseudo-random bit strings from group ele-
ments. We will use HDH with elliptic curve Diffie-Hellman (ECDH, due to [28]
and [23]) following the idea originally proposed in [28] that it suffices to transfer
just x-coordinates of points. The assumption that HDH schemes are CCA-secure
key encapsulation mechanisms amounts to accepting an oracle Diffie-Hellman
assumption; see [2]. (By appealing to the random-oracle model [9], this assump-
tion can be justified based on a gap-Diffie-Hellman assumption [30], i.e. an as-
sumption on the hardness of the computational Diffie-Hellman problem given a
decisional Diffie-Hellman oracle; cf. [2] and [14, Theorem 9]. There are concerns
about the use of the random-oracle model [11], but here this idealized model
would be only a locally used tool to explain the plausibility of a specific security
assumption on the KEM; the oracle Diffie-Hellman assumption can be expressed
directly without employing the random-oracle model.)

Now consider ciphertext pseudo-randomness (Definition 6). Our KEM will be
constructed to have ciphertexts that are uniformly random bit strings of length
KEM.CipherLen, which implies AdvROI

KEM,A = 0 for any adversary.
We arrive at the KEM by first presenting some preliminaries on elliptic curves

(Section 3.1), then discussing system parameters (Section 3.2 with specific values
in Appendix A), and finally specifying the actual KEM (Section 3.3).

3.1 Preliminaries on Elliptic Curves

The KEM will use elliptic curves over some finite field F2m (refer to e.g. [10]
for introductory material on elliptic curve cryptography). There are well-known
requirements for cryptographically secure elliptic curves over such fields [20],
which we will take into account (Section 3.2). We require that m be an odd
prime as there are security concerns about F2m with m composite. Every non-
supersingular curve over F2m is isomorphic to a curve described by a curve
equation

Ea,b : y2 + xy = x3 + ax2 + b

where coefficients a and b are elements of F2m , b �= 0. The group Ea,b(F2m)
of rational points on such a curve consists of the set of solutions (x, y) of that
equation with x, y ∈ F2m , and an additional point O. We have

∣
∣#Ea,b(F2m) − 2m − 1

∣
∣ < 2 · 2m/2

(Hasse’s inequality). The group operation (see [10] or [20] for the definition) is
commutative, and by convention is written as addition. O, the point at infinity,
is the neutral element; the inverse of any element (x, y) is (x, x + y). The group

342 Bodo Möller

operation canonically gives rise to scalar multiplication kP of a point P by an
integer k.

If TrF2m/F2a = TrF2m/F2a
′, the curves

Ea,b : y2 + xy = x3 + ax2 + b,

Ea′,b : y2 + xy = x3 + a′x2 + b

are isomorphic with a group isomorphism Ea,b(F2m) → Ea′,b(F2m) given by

(x, y) �→ (x, y + sx)

where s ∈ F2m satisfies a′ = a + s + s2 (such an s always exists in this case);
otherwise Ea,b and Ea′,b are called twists of each other.

If Ea,b and Ea′,b are twists of each other, then for every x ∈ F2m there is a
y ∈ F2m such that (x, y) is a point on one of the two curves. Specifically, each x
occurs exactly twice: either there are two different points (x, y) and (x, x+y) on
the same curve; or (x, y) = (0,

√
b), which is a point on both curves. The total

number of points (taking into account O for each curve) is

#Ea,b(F2m) + #Ea′,b(F2m) = 2m+1 + 2.

Hasse’s inequality implies #Ea,b(F2m) ≈ 2m ≈ #Ea′,b(F2m).

3.2 System Parameters

If in the situation of Section 3.1 we vary coefficient a for fixed b, we obtain
curves in one of two equivalence classes depending on whether TrF2m/F2a = 0
or TrF2m/F2a = 1. All curves within a single class are isomorphic; the other
class contains their twists. We have TrF2m/F20 = 0 and TrF2m/F21 = 1 as m is
odd, so we can use E0,b and E1,b as a canonical pair of curves that are twists
of each other. (The explicit isomorphism shown in Section 3.1 means that the
specific choices for a affect only y-coordinates.) Coefficient b remains to be chosen
such that the groups E0,b(F2m) and E1,b(F2m) are both cryptographically secure.
Requirements for suitable curves are ([12, Section 3.1.2.1], [4, Annex A.3.2]):

– The group order #Ea,b(F2m) must be a product ha,b pa,b with 1 ≤ ha,b ≤ 4
and pa,b prime.

– For said prime, it must hold that 2mB �≡ 1 (mod pa,b) for 1 ≤ B ≤ 20
(the MOV condition [27]).

The curve E0,b has a point
(

4
√

b,
√

b
)

of order 4, so we will use h0,b = 4; note
that the group E0,b(F2m) will then necessarily be cyclic. From #E0,b(F2m) +
#E1,b(F2m) ≡ 2 (mod 4), it follows that h1,b = 2; thus E1,b(F2m) will be cyclic
too. Define tb such that

#E0,b(F2m) = 2m + 1 − tb = 4 p0,b,
#E1,b(F2m) = 2m + 1 + tb = 2 p1,b;

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 343

a pair of suitable curves can be generated by choosing b ∈ F2m \ {0}, deter-
mining tb through point counting techniques (see [26] for fast algorithms), and
verifying that

p0,b =
2m + 1 − tb

4
and p1,b =

2m + 1 + tb
2

are indeed both prime and satisfy the MOV condition. Heuristically, for ran-
dom b, the integer p0,b will be prime with probability about 1/m ([17] gives more
precise estimates), and p1,b will be prime as well with probability about 1/m;
the MOV condition is not likely to cause problems if b is actually random. Thus,
one has to expect to have to test approximately m2 random choices for b before
finding a suitable one.

It is common to use standardized pre-generated elliptic curves over appropri-
ate fields instead of generating new curves as part of key generation. Parameters
provided to others are usually expected to be verifiably pseudo-random with
b derived from some seed value through a standardized process, typically with
SHA-1 as specified in [4, Annex A.3.3.1] and [20, Annex A.12.6]. We provide a
verifiably pseudo-random pair of curves over F2163 in Appendix A.

Now let b ∈ F2m \ {0} be fixed such that the curves E0 = E0,b and E1 = E1,b

are both cryptographically suitable with orders

#E0(F2m) = 4 p0 = n0 and #E1(F2m) = 2 p1 = n1

where p0 and p1 are prime. As additional parameters, for a ∈ {0, 1}, let Ga be a
generator of Ea(F2m), i.e. any element of order na. Note that n0+n1 = 2m+1+2.

3.3 Specification

We assume that system parameters as discussed in Section 3.2 have been fixed,
and that mappings

encode : F2m → {0, 1}m and decode : {0, 1}m → F2m

that are inverses of each other have been agreed upon (cf. FE2OSP and OS2FEP
in [20] or FieldElement-to-OctetString and OctetString-to-FieldElement in [12]
and [4]). We also assume that a key derivation function (KDF) that outputs bit
strings of some length KEM.OutLen has been specified (for a practical example,
see KDF1 in [20] or ANSI-X9.63-KDF in [12]). The KDF will be used only on
input bit strings of length 2m. We now show a key encapsulation mechanism
KEM with KEM.CipherLen = m.

KEM.KeyGen: Choose integers s0 and s1 independently uniformly at random
among those satisfying 0 < sa < na with sa and na relatively prime. Then
compute the points Pa = saGa for a ∈ {0, 1}. Output the public key PK =
(P0, P1) and the secret key SK = (s0, s1).

344 Bodo Möller

KEM.Encrypt(PK): Choose a ∈ {0, 1} with probability
n0 − 1
2m+1

for a = 0,
n1 − 1
2m+1

for a = 1. Then choose a uniformly random integer u with 0 < u < na.
Compute Q = uGa and R = uPa in the group Ea(F2m); these points will
never be O with valid system parameters and a valid public key, so they can
be written as coordinate pairs (xQ, yQ) and (xR, yR). Finally, set

K = KDF(K || encode(xR)
)
,

K = encode(xQ)

(|| denotes concatenation) and return the pair (K, K).
KEM.Decrypt(SK , K): Set x = decode(K). Then determine a y ∈ F2m such that

(x, y) is a point on E0 if there is such a y; if so, set a = 0. Otherwise,
determine a y ∈ F2m such that (x, y) is a point on E1 and set a = 1.In either
case, set Q = (x, y) and compute R = saQ in the group Ea(F2m). This point
will never be O with valid system parameters and a valid secret key, so it
can be written as a coordinate pair (xR, yR). Finally, set

K = KDF(K || encode(xR)
)

and return K.

Determining y given x in KEM.Decrypt amounts to performing point decompres-
sion; for algorithms, cf. [4, Section 4.22], [20, Annex A.12.9], or [12, Section 2.3.4].

In KEM.Encrypt, each element of F2m can come up as xQ with probability
2−m (any given xQ appears exactly twice among the x-coordinates of the n0 − 1
points of E0,b(F2m) \ {O} and the n1 − 1 points of E1,b(F2m) \ {O}). Thus, the
distribution of K ∈ {0, 1}m is uniform.

Assuming that a has been correctly recovered, the point Q computed in
KEM.Decrypt will be either identical to or the inverse of the point Q originally
used in KEM.Encrypt; the same relationship will apply to the respective points R
(we have ±R = ±uPa = ±usaGa = ±saQ); so xR will come out correctly as
inversion affects only y-coordinates. KEM.Decrypt can unequivocally recover a
in all cases except one, when x = 0 so that Q = (0,

√
b) is the point of order 2 on

either E0(F2m) or E1(F2m); but in this case (of negligible probability) the same
result would be obtained in either group.

As discussed earlier, it is reasonable to make an oracle Diffie-Hellman as-
sumption implying that this KEM provides CCA security. Ciphertexts generated
as described above are uniformly random. By Hasse’s inequality (Section 3.1),
a simplified variant of KEM.Encrypt that picks a uniformly random a ∈ {0, 1}
would still achieve ciphertext pseudo-randomness.

4 Symmetric Primitives

4.1 Message Authentication Code

The usual notion of a message authentication code (MAC) allows using a single
key for authenticating multiple messages. Like DHIES, we only need a one-time
MAC.

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 345

Definition 7. A one-time message authentication code MAC specifies a key
length MAC.KeyLen, an output length MAC.OutLen, and a deterministic algo-
rithm that, given a bit string K of length MAC.KeyLen (a key) and a bit string m,
returns a bit string MAC(K, m) of length MAC.OutLen (a tag).

The security of a one-time MAC is expressed as follows.

Definition 8. In the forgery attack game, an adversary interacts with a one-
time MAC as follows.

1. The adversary submits a bit string m to a MAC oracle. This oracle generates
a uniformly random bit string K of length MAC.KeyLen and responds with
MAC(K, m).

2. The adversary outputs a list (m1, t1), (m2, t2), . . ., (ml, tl) of pairs of bit
strings.

Let A be any adversary in the forgery attack game. (Its running time bound
implies a bound on the length l of the list.) We say that adversary A has produced
a forgery if there is some k such that MAC(K, mk) = tk and mk �= m. The
adversary’s forgery advantage against MAC, denoted AdvForge

MAC,A, is the probability
that it produces a forgery in the above game.

A popular MAC construction is HMAC [6]; a specific variant with MAC.KeyLen =
160 and MAC.OutLen = 80 is HMAC-SHA1-80 [24].

4.2 Pseudo-random Bit String Generator

Our hybrid construction for public-key encryption uses a stream cipher to per-
form symmetric encryption. While other notions of stream ciphers are conceiv-
able, for simplicity we assume a stream cipher based on the usual XOR paradigm:
symmetric encryption and decryption are the same operation, namely XOR with
a pseudo-random bit string generated from a key.

Definition 9. A pseudo-random bit string generator STREAM specifies a key
length STREAM.KeyLen and a deterministic algorithm that, given a bit string K
of length STREAM.KeyLen (a key) and an integer n, generates an output bit
string STREAM(K, n) of length n.

Security is described through a real-or-ideal attack game.

Definition 10. In the real-or-ideal attack game for a pseudo-random bit string
generator STREAM, an adversary interacts with STREAM as follows.

1. The adversary sends an integer n to a real-or-ideal bit string oracle. The
oracle generates a uniformly random K with |K| = STREAM.KeyLen, sets

stream0 = STREAM(K, n),

generates a uniformly random stream1 with |stream1| = n, chooses bSTR ∈
{0, 1} uniformly at random, and responds with streamb as challenge. (It is
understood that the adversary’s running time bound implies a bound on n.)

346 Bodo Möller

2. The adversary outputs a value b̃STR ∈ {0, 1}.
An adversary A in this attack game is also called a real-or-ideal distinguisher or
simply a distinguisher. Its real-or-ideal advantage against STREAM is

AdvROI
STREAM,A =

∣
∣
∣Pr

[
b̃STR = 1 | bSTR = 1

] − Pr
[
b̃STR = 1 | bSTR = 0

]∣∣
∣.

An example implementation is the counter mode (CTR) of a symmetric block
cipher such as AES (see [7] and [29]). (For n ≤ STREAM.KeyLen, it is also
be possible to define STREAM(K, n) as simply the n-bit prefix of K; then any
distinguisher would have real-or-ideal advantage 0.)

5 Public-Key Encryption with Pseudo-random
Ciphertexts: Hybrid Construction

Now we are ready to show how a public-key encryption scheme PKE as discussed
in Section 2.1 can be built from primitives KEM (Section 2.2 and Section 3), MAC
(Section 4.1), and STREAM (Section 4.2). Section 5.1 presents the hybrid con-
struction, which follows DHIES except that it uses an authenticate-then-encrypt
(AtE) rather than an encrypt-then-authenticate (EtA) approach. Section 5.2
gives security results for CCA security and ciphertext pseudo-randomness.

5.1 Specification

We require that KEM.OutLen = MAC.KeyLen + STREAM.KeyLen. The key gen-
eration algorithm PKE.KeyGen is the same as KEM.KeyGen. The encryption al-
gorithm determines PKE.Encrypt(PK , m) as follows.

1. Use KEM.Encrypt(PK) to generate a pair (K, K).
2. Split K into bit strings KMAC of length MAC.KeyLen and KSTR of length

STREAM.KeyLen; i.e., K = KMAC || KSTR.
3. Compute M = MAC(KMAC, m).
4. Compute C = (M || m) ⊕ STREAM(KSTR, MAC.OutLen + |m|).
5. Return the ciphertext K || C.

We depict the resulting ciphertext structure with concatenation horizontally and
XOR vertically:

K
MAC(KMAC, m)

STREAM(KSTR)

m

The decryption algorithm computes PKE.Decrypt(PK , c) as follows.

1. Abort with an error (return ⊥) if |c| < KEM.CipherLen + MAC.OutLen.
2. Split c into a part K of length KEM.CipherLen and a part C (i.e., c = K || C).

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 347

3. Compute
K = KEM.Decrypt(SK , K).

If this computation fails, abort with an error (return ⊥).
4. Split K into bit strings KMAC of length MAC.KeyLen and KSTR of length

STREAM.KeyLen (i.e., K = KMAC || KSTR).
5. Compute

P = C ⊕ STREAM(KSTR, |C|).
6. Split P into a part M of length MAC.OutLen and a part m (i.e., P = M ||m).
7. Compute

M̃ = MAC(KMAC, m).

If M̃ �= M, abort with an error (return ⊥).
8. Return m as decryption result.

Let c be a ciphertext generated as PKE.Encrypt(PK , m). It is straightforward
to verify that PKE.Decrypt(SK , c) will indeed recover m if KEM is a key encap-
sulation mechanism according to Definition 4 and the key pair (PK ,SK) has
been generated properly. (Note that decryption step 3 cannot actually fail for
the KEM from Section 3 with valid system parameters and a valid secret key.)

In practical use for steganography, the exact length of the ciphertext to be
considered may not always be known in advance when some postfix has been
added. In this case, multiple conceivable lengths can be tried during decryption.
Observe that many such decryption attempts can easily be combined into a
single algorithm such that KEM.Decrypt is used only once.

5.2 Security Results

We relate the security of the public-key encryption scheme PKE to the security
of the underlying primitives KEM, MAC, and STREAM.

First consider CCA security. Let A be an adversary attacking PKE in the
IND-CCA attack game (Definition 2). It can be shown that there are adversaries
A1 against KEM in a real-or-random CCA attack game, A2 against MAC, and
A3 against STREAM, all having essentially the same running time as A, such
that

AdvIND-CCA
PKE,A ≤ 2 · (AdvROR-CCA

KEM,A1
+ AdvForge

MAC,A2
+ AdvROI

STREAM,A3

)
.

The proof uses standard techniques (see e.g. [14]) and requires essentially no
changes for the hybrid AtE construction with a stream cipher compared with
the conventional hybrid EtA construction. We omit the details for lack of space.

Now consider ciphertext pseudo-randomness. Let A be an adversary attack-
ing PKE in the real-or-ideal attack game (Definition 3). It can be shown that
there are adversaries A1 against KEM in a real-or-random CCA attack game,
A2 against KEM in a real-or-ideal attack game, and A3 against STREAM, all
having essentially the same running time as A, such that

AdvROI
PKE,A ≤ 2 · (AdvROR-CCA

KEM,A1
+ AdvROI

KEM,A2
+ AdvROI

STREAM,A3

)
.

Details of the proof are given in Appendix B.

348 Bodo Möller

6 Conclusions

A new variant of elliptic curve Diffie-Hellman employing a pair of curves where
each curve is a twist of the other provides a key encapsulation mechanism (KEM)
with short random ciphertexts.

Such a KEM can be used for CCA-secure public-key encryption with pseudo-
random ciphertexts, as needed for steganography. Our hybrid construction re-
sembles DHIES, but uses an AtE rather than EtA approach in the interest of
provable ciphertext pseudo-randomness. In practice, the ciphertext length can
be as short as the length of the plaintext plus 243 bits (163 bits for the KEM
with elliptic curves over F2163 , 80 bits for the MAC).

References

1. Abdalla, M., Bellare, M., and Rogaway, P. DHAES: An encryption scheme
based on the Diffie-Hellman problem. Submission to IEEE P1363a. http://

grouper.ieee.org/groups/1363/P1363a/Encryption.html, 1998.
2. Abdalla, M., Bellare, M., and Rogaway, P. The oracle Diffie-Hellman as-

sumptions and an analysis of DHIES. In Progress in Cryptology – CT-RSA 2001
(2001), D. Naccache, Ed., vol. 2020 of LNCS, pp. 143–158.

3. Ahn, L. v., and Hopper, N. Public key steganography. In Advances in Cryptology
– EUROCRYPT 2004 (2004), C. Cachin and J. Camenisch, Eds., vol. 3027 of
LNCS, pp. 323–341.

4. American National Standards Institute (ANSI). Public key cryptography
for the financial services industry: The elliptic curve digital signature algorithm
(ECDSA). ANSI X9.62, 1998.

5. Backes, M., and Cachin, C. Public-key steganography with active attacks. Cryp-
tology ePrint Archive Report 2003/231 (revised 16 Feb 2004), 2004. Available from
http://eprint.iacr.org/.

6. Bellare, M., Canetti, R., and Krawczyk, H. Keying hash functions for mes-
sage authentication. In Advances in Cryptology – CRYPTO ’96 (1996), N. Koblitz,
Ed., vol. 1109 of LNCS, pp. 1–15.

7. Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science (FOCS ’97) (1997), IEEE Computer Society, pp. 394–403.

8. Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P. Relations among
notions of security for public-key encryption schemes. In Advances in Cryptology
– CRYPTO ’98 (1998), H. Krawczyk, Ed., vol. 1462 of LNCS, pp. 26–46.

9. Bellare, M., and Rogaway, P. Random oracles are practical: A paradigm for
designing efficient protocols. In First Annual Conference on Computer and Com-
munications Security (1993), ACM, pp. 62–73.

10. Blake, I. F., Seroussi, G., and Smart, N. P. Elliptic Curves in Cryptography,
vol. 265 of London Mathematical Society Lecture Note Series. Cambridge University
Press, 1999.

11. Canetti, R., Goldreich, O., and Halevi, S. The random oracle methodology,
revisited. E-print cs.CR/0010019, 2000. Available from http://arXiv.org/abs/

cs/0010019.
12. Certicom Research. Standards for efficient cryptography – SEC 1: Elliptic curve

cryptography. Version 1.0, 2000. Available from http://www.secg.org/.

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 349

13. Certicom Research. Standards for efficient cryptography – SEC 2: Recom-
mended elliptic curve cryptography domain parameters. Version 1.0, 2000. Avail-
able from http://www.secg.org/.

14. Cramer, R., and Shoup, V. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing . To appear. Available from http://shoup.net/papers/ (2003).

15. Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE Trans-
actions on Information Theory 22, 6 (1976), 644–654.

16. Fouquet, M., Gaudry, P., and Harley, R. Finding secure curves with the
Satoh-FGH algorithm and an early-abort strategy. In Advances in Cryptology –
EUROCRYPT 2001 (2001), B. Pfitzmann, Ed., vol. 2045 of LNCS, pp. 14–29.

17. Galbraith, S., and McKee, J. The probability that the number of points on
an elliptic curve over a finite field is prime. CACR Technical Report CORR 99-51,
1999. Available from http://www.cacr.math.uwaterloo.ca/techreports/1999/.

18. Goldreich, O. Foundations of Cryptography – Vol. II: Basic Applications. Cam-
bridge University Press, 2004.

19. Goldwasser, S., and Micali, S. Probabilistic encryption. Journal of Computer
and System Sciences 28 (1984), 270–299.

20. Institute of Electrical and Electronics Engineers (IEEE). IEEE stan-
dard specifications for public-key cryptography. IEEE Std 1363-2000, 2000.

21. Kaliski, Jr., B. S. A pseudo-random bit generator based on elliptic logarithms.
In Advances in Cryptology – CRYPTO ’86 (1987), A. M. Odlyzko, Ed., vol. 263
of LNCS, pp. 84–103.

22. Kaliski, Jr., B. S. One-way permutations on elliptic curves. Journal of Cryptology
3 (1991), 187–199.

23. Koblitz, N. Elliptic curve cryptosystems. Mathematics of Computation 48 (1987),
203–209.

24. Krawczyk, H., Bellare, M., and Canetti, R. HMAC: Keyed-hashing for
message authentication. RFC 2104. Available from http://www.ietf.org/rfc/

rfc2104.txt, 1997.
25. Lercier, R. Finding good random elliptic curves for cryptosystems defined over

F2n . In Advances in Cryptology – EUROCRYPT ’97 (1997), W. Fumy, Ed.,
vol. 1233 of LNCS, pp. 379–392.

26. Lercier, R., and Lubicz, D. Counting points on elliptic curves over finite fields
of small characteristic in quasi quadratic time. In Advances in Cryptology – EU-
ROCRYPT 2003 (2003), E. Biham, Ed., vol. 2656 of LNCS, pp. 360–373.

27. Menezes, A., Okamoto, T., and Vanstone, S. Reducing elliptic curve loga-
rithms to logarithms in a finite field. IEEE Transactions on Information Theory
39 (1993), 1639–1646.

28. Miller, V. S. Use of elliptic curves in cryptography. In Advances in Cryptology –
CRYPTO ’85 (1986), H. C. Williams, Ed., vol. 218 of LNCS, pp. 417–428.

29. National Institute of Standards and Technology. Recommendation for
block cipher modes of operation – methods and techniques. NIST Special Publica-
tion SP 800-38A, 2001.

30. Okamoto, T., and Pointcheval, D. A new class of problems for the security of
cryptographic schemes. In Public Key Cryptography – PKC 2001 (2001), K. Kim,
Ed., vol. 1992 of LNCS, pp. 104–118.

31. Rackoff, C. W., and Simon, D. R. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology – CRYPTO
’91 (1992), J. Feigenbaum, Ed., vol. 576 of LNCS, pp. 433–444.

350 Bodo Möller

32. Shoup, V. A proposal for an ISO standard for public key encryption. Version 2.1,
December 20, 2001. http://shoup.net/papers/.

33. Watanabe, Y., Shikata, J., and Imai, H. Equivalence between semantic security
and indistinguishability against chosen ciphertext attacks. In Public Key Cryptog-
raphy – PKC 2003 (2003), Y. G. Desmedt, Ed., vol. 2567 of LNCS, pp. 71–84.

A Example Parameters

We use hexadecimal representations of octet strings and encode field elements
of F2163 as polynomials over F2 based on the reducing polynomial given as

0800000000000000000000000000000000000000C9;

see e.g. [12] for a detailed explanation. A suitable pair of elliptic curves for the
KEM in Section 3 is given by

b = 05846d0fda255361606711bf7a99b0722e2ec8f76b.

This b has been generated verifiably pseudo-randomly with SHA-1 from the seed

f391f2426f9ca3af80bc4537dd7224d43c1639aa.

following [4, Annex A.3.3.1] and [20, Annex A.12.6]. The curves E0,b and E1,b

have

n0 = 4 p0 = 4 · 2923003274661805836407371179614143033958162426611,
n1 = 2 p1 = 2 · 5846006549323611672814736302501978089331135490587

rational points, respectively, with both p0 and p1 prime. The curves Ea,b(F2163)
have points Ga = (xa, ya) of order na for example for x0 = 0000. . .01 and
x1 = 0000. . .02.

The above coefficient b was provided by Reynald Lercier, who applied the
point counting algorithms described in [25] and [16] to a list of verifiably pseudo-
random b values and factored the curve orders to detect suitable curve pairs. Out
of the 30 000 (≈ 1632) choices for b examined, five had the desired properties.

B Security Proof: Ciphertext Pseudo-randomness

Let G0 denote the real-or-ideal attack game from Definition 3 where a distin-
guisher A attacks PKE. The encryption oracle stage in G0 can be expressed
as follows for PKE from Section 5.1: A submits m; the encryption oracle uses
KEM.Encrypt(PK) to generate (Koracle, Koracle), splits Koracle = KMAC||KSTR, com-
putes M = MAC(KMAC, m) and stream = STREAM(KSTR, MAC.OutLen + |m|),
sets c0 = Koracle ||

(
(M || m) ⊕ stream

)
, generates a uniformly random c1 with

|c1| = |c0| and a uniformly random b ∈ {0, 1}, and finally responds with cb.

A Public-Key Encryption Scheme with Pseudo-random Ciphertexts 351

Let G1 be like G0 but with Koracle uniformly random (of appropriate length);
G2 like G1 but with Koracle uniformly random; G3 like G2 but with stream uni-
formly random. We can expose A to these different games and look at Pr Gi

[
b̃ =

b
]
. We will build adversaries A1 against KEM in a real-or-random CCA attack

game, A2 against KEM in a real-or-ideal attack game, and A3 against STREAM.
These adversaries run A and provide it with an encryption oracle by performing
the encryption oracle stage as above, using pre-generated values Koracle, Koracle,
and b.

A1 attacks KEM in a real-or-random CCA attack game (Definition 5). First
it picks a uniform random b ∈ {0, 1} and queries its real-or-random key encapsu-
lation oracle to obtain a pair (Koracle, Koracle). Then it runs A (relaying PK from
its key generation oracle), playing the role of the encryption oracle. Finally, when
A outputs b̃, A1 outputs 1 if b̃ = b and 0 otherwise. Observe that

∣
∣
∣Pr G1

[
b̃ = b

] − Pr G0

[
b̃ = b

]∣∣
∣ = AdvROR-CCA

KEM,A1

(G1 corresponds to bKEM = 1, G0 to bKEM = 0).
A2 attacks KEM in a real-or-ideal attack game (Definition 6). First it gen-

erates b ∈ {0, 1} and a bit string Koracle of length KEM.OutLen uniformly at
random and queries its real-or-ideal key encapsulation oracle to obtain a bit
string Koracle. Then it runs A (relaying PK from its key generation oracle), play-
ing the role of the encryption oracle. Finally, when A outputs b̃, A2 outputs 1 if
b̃ = b and 0 otherwise. Observe that

∣
∣
∣Pr G2

[
b̃ = b

] − PrG1

[
b̃ = b

]∣∣
∣ = AdvROI

KEM,A2

(G2 corresponds to bKEM = 1, G1 to bKEM = 0).
A3 attacks STREAM (Definition 10). First it generates b ∈ {0, 1} and bit

strings Koracle of length KEM.OutLen and Koracle of length KEM.CipherLen uni-
formly at random. Then it runs A, playing the role of the key generation oracle
(by using KEM.KeyGen) and the role of the encryption oracle. Finally, when A

outputs b̃, A2 outputs 1 if b̃ = b and 0 otherwise. Observe that
∣
∣
∣Pr G3

[
b̃ = b

] − Pr G2

[
b̃ = b

]∣∣
∣ = AdvROI

STREAM,A3

(G3 corresponds to bSTR = 1, G2 to bSTR = 0) and clearly Pr G3

[
b̃ = b

]
=

1
2
.

Since b is uniformly random, by definition we have AdvROI
PKE,A = 2 · ∣∣1

2 −Pr G0

[̃b = b]
∣
∣; putting all together, we obtain

AdvROI
PKE,A = 2 ·

∣
∣
∣

∑

1≤i≤3

(

Pr Gi

[
b̃ = b

] − PrGi−1

[
b̃ = b

])∣
∣
∣

≤ 2 · (AdvROR-CCA
KEM,A1

+ AdvROI
KEM,A2

+ AdvROI
STREAM,A3

)
.

	1 Introduction
	2 Public-Key Cryptography with Pseudo-random Ciphertexts: Concepts
	2.1 Public-Key Encryption
	2.2 Key Encapsulation

	3 An Elliptic Curve KEM with Random Ciphertexts
	3.1 Preliminaries on Elliptic Curves
	3.2 System Parameters
	3.3 Specification

	4 Symmetric Primitives
	4.1 Message Authentication Code
	4.2 Pseudo-random Bit String Generator

	5 Public-Key Encryption with Pseudo-random Ciphertexts: Hybrid Construction
	5.1 Specification
	5.2 Security Results

	6 Conclusions
	References
	A Example Parameters
	B Security Proof: Ciphertext Pseudo-randomness

