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Abstract. We proposed a new public-key traitor tracing scheme with
revocation capability using the dynamic share and entity revocation tech-
niques. The enabling block of our scheme is independent of the number
of subscribers, but dependent on the collusion and revocation thresh-
olds. Each receiver holds one decryption key only. Our traitor tracing
algorithm works in a black-box way and is conceptually simple. The dis-
tinct feature of our scheme is that when the traitors are found, we can
revoke their private keys (up to some threshold z) without updating any
private key of the remaining subscribers. Furthermore, we can restore
the decryption privilege of a revoked private key later. We can actually
increase the revocation capability beyond z with dynamic assignment of
shares into the enabling block. This property makes our scheme highly
practical. Previously proposed public-key traitor tracing schemes have to
update all existing private keys even when revoking one private key only.
Our scheme is as efficient as Boneh and Franklin’s scheme in many as-
pects. Our traitor tracing scheme is fully k-resilient such that our traitor
tracing algorithm can find all traitors if the number of them is k or less.
The encryption algorithm of our scheme is semantically secure assuming
that the decisional Diffie-Hellman problem is hard. We also proposed
a variant traitor tracing scheme whose encryption algorithm is seman-
tically secure against the adaptive chosen ciphertext attack assuming
hardness of the decisional Diffie-Hellman problem.

Keywords: broadcast encryption, traitor tracing, revocation.

1 Introduction

A broadcast encryption scheme [10] involves a sender and multiple (authorized)
receivers. The sender has an encryption key and each receiver has a decryption
(private) key such that the sender can encrypt a message and broadcast the
ciphertext so that only the authorized receivers can decrypt the ciphertext.

Consider a situation that a content supplier distributes some digital data to
its subscribers by a broadcast channel. To protect the data from eavesdropping,
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the content supplier encrypts the data and broadcast the ciphertext such that
only its subscribers can decrypt the ciphertext. The content supplier gives each
subscriber a decoder (decoding box) for decrypting the broadcast ciphertext.
Each decoder consists of a tailored private key and a decryption program. How-
ever, a traitor (malicious subscriber) may clone his decoder (and the private key
in it) and sell the pirate decoders for profits. The traitor may modify the pri-
vate key and the decryption program in the pirate decoder to avoid leaking his
identity. Furthermore, some traitors may together create a new and legal private
key that cannot be traced to their creators. To deter the attack, when a pirate
decoder is confiscated, the content supplier wants to reveal the private key in
it and trace back to its original owners. A traitor tracing scheme is a broadcast
encryption scheme with capability of dealing with the above scenario [6]. Fur-
thermore, the content supplier may want to revoke the keys of traitors without
too much work, such as, updating each subscriber’s key. We focus on providing
revocation capability to public-key traitor tracing schemes.

The basic technique of broadcast encryption is: first, to select a (or a set of)
session key s for encrypting the broadcast data as the cipher block and embed the
session key in the enabling block; then, to broadcast 〈enabling block, cipher block〉
to all subscribers. Any decoder with a legal private key can extract the session
key from the enabling block and then uses the session key to decrypt the ci-
pher block. A traitor tracing scheme tries to identify traitors by finding out the
keys embedded in the confiscated pirate decoder. There are two measures for
efficiency: the storage for the private key (or keys) in a decoder and the size of
enabling block. Sometimes, encryption and decryption time is also considered.

The secret-key and coding approach has each decoder holding a set of keys
(or codewords) such that the keys in the pirate decoder can be identified by the
combinatorial methods [4,6,11,15,17,18,20]. There is a trade-off between the size
of enabling block and the number of keys held by each decoder [5,14]. Generally
speaking, if the number of subscribers is large, say millions, the schemes become
impractical as one of the measures grows proportionally with the number of
subscribers.

The public-key approach tries to have the size of enabling block independent
of the number of subscribers and each decoder holding one key only [3,13]. This is
achieved at the expense of tracing capability and computation time, for example
only the collusion of k or less traitors can be dealt with for some threshold
k. Boneh and Franklin’s traitor tracing scheme is algebraic and deterministic
such that k or less traitors who create a single-key pirate decoder can be traced
efficiently. However, they have to embed a hidden trapdoor in the modulus so
that the discrete logarithm problem over Z∗

n2 can be solved in polynomial time.
As to other directions, Naor and Pinkas [15] proposes a threshold traitor

tracing scheme that can trace the private keys in a pirate decoder if the de-
coder’s decrypting probability is over some threshold. Fiat and Tassa’s dynamic
traitor tracing scheme [9] uses the watermarking technique. By observing the
watermarks output by a pirate decoder on the fly, they can trace the traitors
who created the pirate decoder.
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Our results. We propose a new public-key traitor tracing scheme with revoca-
tion capability using the dynamic share and entity revocation techniques [2]. The
enabling block of our scheme is independent of the number of subscribers, but
dependent on the collusion and revocation thresholds, which are k and z, respec-
tively. Each decoder stores only one private key. Our traitor tracing algorithm
works in a black-box way and is conceptually simple. Our traitor tracing scheme
is fully k-resilient, that is, our traitor tracing algorithm can find all traitors if the
number of them is k or less. The encryption algorithm of our scheme is seman-
tically secure against the passive adversary assuming hardness of the decisional
Diffie-Hellman problem.

The distinct feature of our scheme is that when the traitors are found, we
can revoke their private keys (up to z keys totally) without updating any private
key of the remaining subscribers. Furthermore, we can restore a revoked private
key later. We can actually increase the revocation capability beyond the thresh-
old z with dynamic assignment of shares into the enabling block. This property
makes our scheme highly practical. Previously proposed public-key traitor trac-
ing schemes have to update all existing private keys even if revoking one private
key only.

Our scheme is as efficient as Boneh and Franklin’s scheme in many aspects.
For example, the encryption and decryption algorithms of our scheme take O(z)
modular exponentiations. Our black-box tracing algorithm takes O(nk) time
when k ≪ n. Note that the encryption key of our scheme is dynamically depen-
dent on the revoked traitors, while that Boneh and Franklin’s scheme is fixed.

We also propose a variant traitor tracing scheme whose encryption algorithm
is semantically secure against the adaptive chosen ciphertext attack assuming
that computing the decisional Diffie-Hellman problem is hard.

Note: some of our results in this paper are independently discovered in [16]
by Naor and Pinkas. Our scheme possesses traceability in addition.

2 Preliminaries

In this section we review the polynomial interpolation, the decisional Diffie-
Hellman (DDH) problem and the chosen ciphertext attack and provide the def-
inition for a traitor tracing scheme.
Polynomial interpolation. Let f(x) =

∑z

i=0 aix
i be a polynomial of degree

z ≥ 1. Assume that each user i is given a share (xi, f(xi)). Then, a group of z+1
users, say users 0, 1, . . . , z, can compute the polynomial f(x) by the Lagrange
interpolation method, or equivalently solving the system of equations:
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Let XA = F denote the above system of equations. If det(X) �= 0, we can solve
all coefficients of f(x) by A = X−1F . The constant term a0 is equal to the first
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row vector of X−1 multiplying F , which is

z
∑

t=0

(f(xt) ·
∏

0≤j �=t≤z

xj

xj − xt

).

where λt =
∏

0≤j �=t≤z

xj

xj−xt
, 0 ≤ t ≤ z, are the Lagrange coefficients. Fur-

thermore, in the exponent case, if we are given (x0, g
rf(x0)), (x1, g

rf(x1)), . . . ,
(xz, g

rf(xz)), we can compute

gra0 =

z
∏

t=0

(grf(xt))λt .

for arbitrary r. On the other hand, if det(X) = 0, we cannot get any information
about a0 or gra0 .

In traitor tracing, a set of legal users may combine their shares linearly
to form a new “share”, which is the main threat that haunts some public-key
based traitor tracing schemes [13]. For example, the legal users z + i and z + j,
i, j ≥ 1 and i �= j, can combine their shares to form a new “share”

(a+ b, axz+i + bxz+j , . . . , ax
z
z+i + bxz

z+j , af(xz+i) + bf(xz+j)).

Together with the shares (x0, f(x0)), (x1, f(x1)), . . . , (xz−1, f(xz−1)), one can
compute a0 by solving the system of equations:
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We observe that if a pirate P gets a share by linear combination ofm shares of
traitors j1, j2, . . . , jm,m ≤ z, then P and the traitors together cannot compute
a0, or gra0 in the exponent case. We base our traitor tracing algorithm on this
observation. In our system, we give each user i a share (xi, f(xi)). If we suspect
that the users j1, j2, . . . , jm,m ≤ z, are traitors, we broadcast data encrypted
with the session key s, which is embedded in sgra0 , together with the shares

(xj1 , g
rf(xj1

)), . . . , (xjm
, grf(xjm )), (l1, g

rf(l1)), . . . , (lz−m, g
rf(lz−m))

where l1, l2, . . . , lz−m are arbitrarily chosen and different from xj1 , xj2 , . . . , xjm
.

A user who is not a traitor can compute gra0 and thus s. We confirm the traitors
if the pirate decoder cannot decrypt the data properly.
Decisional Diffie-Hellman problem. Let G be a group of a large prime order
q. Consider the following two distribution ensembles R and D:
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- R = (g1, g2, u1, u2) ∈ G4, where g1 and g2 are generators of Gq;
- D = (g1, g2, u1, u2), where g1 and g2 are generators of Gq and u1 = gr

1 and
u2 = gr

2 for r ∈ Zq.

The DDH problem is to distinguish the distribution ensembles R and D. That
is, we would like to find a probabilistic polynomial-time algorithm A such that,
for some positive constant c and all sufficiently large complexity parameter n,

|Pr[A(Rn) = 1] − Pr[A(Dn) = 1] | ≥ 1/nc,

where Rn and Dn are the size-n distributions of R and D, respectively.
Chosen ciphertext attack. The chosen ciphertext attack on an encryption
scheme works as follows. Let PK be the public key of the scheme. The proba-
bilistic polynomial-time adversary A of the attack has two algorithms A1 and A2.
A1 takes as input PK, makes some queries to the decryption oracle adaptively,
and outputs two messages m0 and m1. Then, the encryption oracle randomly
chooses a bit d and encrypts md as C = E(PK,md). A2 takes as input PK, m0,
m1 and C, makes some queries to the decryption oracle in an adaptive way, and
outputs d′. The decryption oracle takes as an input a ciphertext C ′, C ′ �= C,
and returns its corresponding plaintextm′. We say that A attacks the encryption
scheme successfully if the probability of d = d′ is 1/2+ ε for some non-negligible
function ε, where the probability is taken over all coin tossing of d, A1 and A2.
Traitor tracing scheme. A traitor tracing scheme consists of the following
functions.

- System setup. The content supplier sets up the system algorithms and
related parameters.

- Registration. After system setup, a user (subscriber) can register to the
system and get a data decoder that contains a private key specific to the
subscriber. A data decoder with a legal private key can decode the data
broadcast by the content supplier.

- Encryption. When the content supplier would like to broadcast data M , it
uses the encryption algorithm E with an appropriate key s to encrypt the
data as the enabling block T and the cipher block C = E(s,M) such that
only legal subscribers who have decoders with appropriate keys can decrypt
〈T,C〉 to get the content M .

- Decryption. The data decoder consists of a decryption algorithm D such
that with an appropriate private key the decoder can decrypt the broadcast
〈T,C〉 to get the message.

- Traitor tracing. If the content supplier gets a decoder, it wants to deter-
mine who is the original owner of the private key in the decoder. It may be
that some legal subscribers conspire to compute some key that is not legal,
but able to decrypt, maybe with a different decryption algorithm, the broad-
cast data. The traitor tracing algorithm need be able to reveal the identities
of the conspirators. If we trace the owner of the private key in the decoder by
observing the relation between input and output of the decoder, it is called
black box tracing.
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A tracing scheme is k-resilient if it can find at least one traitor among the k
or less traitors. It is fully k-resilient if it can find all of them.

Note. In order to simplify presentation, we omit the security parameter (or
complexity measure) n from the related parameters. For example, when we say
a probability ǫ is negligible, we mean that for any positive constant c, ǫ = ǫ(n) <
1/nc for large enough n. A probability δ is overwhelming if δ = 1 − ǫ for some
negligible probability ǫ.

3 Our Traitor Tracing Scheme

In this section we present our traitor tracing scheme. Let k be the maximum
number of colluded subscribers (traitors) and z be the revocation threshold, ie.,
at most z private keys of traitors can be revoked. We set z ≥ 2k − 1.
System setup. Let Gq be a group of a large prime order q. The content supplier
selects a degree-z polynomial f(x) =

∑z

t=0 atx
t (mod q) with coefficients over

Zq. f(x) is the content supplier’s secret key. The content supplier publishes the
public key

〈g, ga0 , gf(1), . . . , gf(z)〉

for a subscriber to verify his private key.
Registration. When a subscriber i, i > z, registers, the content supplier gives
the subscriber i a decoder with the private key (i, f(i)). The subscriber i verifies
whether the received key is correct by checking whether

ga0 =

z
∏

t=0

gf(xt)λt

where x0 = 1, x1 = 2, . . . , xz−1 = z, xz = i. If it is so, the subscriber i gets a
decoder with the private key (i, f(i)).
Encryption. The content supplier randomly selects z unused shares, which are
not assigned to any subscriber,

(j1, f(j1)), (j2, f(j2)), . . . , (jz, f(jz))

and a one-time random number r ∈ Zq, and computes the enabling block

T = 〈sgra0 , gr, (j1, g
rf(j1)), (j2, g

rf(j2)), . . . , (jz, g
rf(jz))〉,

where s is the session key of encrypting broadcast data. To broadcast message
M , the content supplier broadcasts

E(f(x),M) = 〈T,E′(s,M)〉

where E′ is a secret-key cipher, such as DES.
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For every possible m-coalition {c1, c2, . . . , cm} of the subscribers, m ≤ k,
1. Randomly selects z − m unused shares, say, {j1, . . . , jz−m}.
2. Construct a testing message E(f(x), M) = 〈T, E′(s, M)〉, where

T = 〈sgra0 , g
r
, (c1, g

rf(c1)), (c2, g
rf(c2)), . . . , (cm, g

rf(cm)),

(j1, g
rf(j1)), (j2, g

rf(j2)), . . . , (jz−m, g
rf(jz−m))〉.

3. Feed 〈T, E′(s, M)〉 to the decoder.
4. If the decoder does not output the correct data M , we set {c1, c2, . . . , cm} as a

possible set of traitors.
Output the smallest of all possible sets of traitors found in Step 4.

Fig. 1. A traitor tracing algorithm

Decryption. When receiving the broadcast data 〈T,E′(s,M)〉, the subscriber
i uses T to compute s and then uses s to decrypt E′(s,M) to get M . The
subscriber i computes s with the equation:

s = sgra0/[(gr)f(i)λz ·

z−1
∏

t=0

(grf(xt))λt ]

where x0 = j1, x1 = j2, . . . , xz−1 = jz and xz = i.
Traitor tracing. We present two black box traitor tracing algorithms. We can
mix their use in tracing traitors.

Assume that m subscribers {c1, c2, . . . , cm},m ≤ k, use their shares to create
a decoding key in any form. As long as the share indices {j1, j2, . . . , jz} in
the enabling block covers {c1, c2, . . . , cm}, ie.,{c1, c2, . . . , cm} ⊆ {j1, j2, . . . , jz},
there is no way that the decoder can use the conspired key and the enabling
block to decode the data assuming that computing the discrete logarithm over
Gq is hard. Our first traitor tracing algorithm is based on this idea. If we suspect
the subscribers {c1, c2, . . . , cm},m ≤ k, are traitors, we put their shares in the
enabling block

〈sgra0 , gr, (c1, g
rf(c1)), . . . , (cm, g

rf(cm)), (j1, g
rf(j1)), . . . , (jz−m, g

rf(jz−m))〉,

where j1, j2, . . . , jz−m are unused indices and different from {c1, c2, . . . , cm}.
Therefore, our black box tracing algorithm is in Figure 1

Our second traitor tracing algorithm uses the opposite direction, that is, the
traitors can decrypt the enabling block. If we suspect {c1, c2, . . . , cm}, m ≤ k,
are traitors, we find a degree-z polynomial h(x) =

∑z

t=0 btx
t that passes points

(c1, f(c1)), (c2, f(c2)), . . . , (cm, f(cm)). h(x) is significantly different from f(x),
ie., they share m common points only. We use h(x) to create the enabling block.
Let {j1, j2, . . . , jz} be the indices other than {c1, c2, . . . , cm}. We feed T =
〈sgrb0 , gr, (j1, g

rh(j1)), (j2, g
rh(j2)), . . . , (jz, g

rh(jz))〉 to the decoder. Note that
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this enabling block is computationally indistinguishable from the one created
using f(x), see Lemma 1. A share index xi that is not in {c1, c2, . . . , cm} cannot
decode the enabling block correctly. If the decoder outputs correct data, we
confirm that {c1, c2, . . . , cm} are traitors.

Lemma 1. For degree-z polynomials f(x) and h(x), the distributions of the en-
abling blocks constructed by f(x) and h(x) are computationally indistinguishable
assuming that the DDH problem is hard.

Proof. Note that the distinguisher does not know f(x) and h(x). Let g be
a fixed generator of Gq and a ∈R S denote that a is chosen from the set S
uniformly and independently. Consider the following 3 distributions:

1. T1 = 〈S, gr, (c1, g
r
1), (c2, g

r
2), . . . , (cz, g

r
z)〉, where r ∈R Zq, S ∈R Gq, ci ∈R

Gq, gi = gf(ci). This is the enabling block constructed by f(x).
2. R = 〈S, gr, (c1, u1), (c2, u2), . . . , (cz, uz)〉, where r ∈R Zq, S ∈R Gq, ci ∈R

Gq, ui ∈R Gq, 1 ≤ i ≤ z.
3. T2 = 〈S, gr, (c1, g

r
1), (c2, g

r
2), . . . , (cz, g

r
z)〉, where r ∈R Zq, S ∈R Gq, ci ∈R

Gq, gi = gh(ci). This is the enabling block constructed by h(x).

We can easily show that T1 and R, and R and T2 are computationally indis-
tinguishable. Therefore, T1 and T2 are computationally indistinguishable. ✷

Framing. We now address the framing problem [3]. We show that it is not
possible for two disjoint sets of k subscribers to construct the same “new” share
by linear combination. Therefore, framing is not possible by linear combination
of shares.

Lemma 2. Let C = {c1, c2, . . . , ck} and D = {d1, d2, . . . , dk} be two disjoint
subscriber sets. All linear combination of shares of C and those of D are different
except the zero point.

Proof. We can represent a share i as a z + 2-dimensional vector

vi = (1, i, i2, . . . , iz, f(i)).

Since it is a point of a degree-z polynomial, any z+1 different shares are linearly
independent. If one can use the shares of C and the shares of D to construct the
same non-zero share by linear combination, we have

k
∑

i=1

aivci
=

k
∑

i=1

bivdi
�= 0.

Therefore, we have

k
∑

i=1

aivci
−

k
∑

i=1

bivdi
= 0.

This is a contradiction since not all ai’s and bi’s are zero and C ∪D is linearly
independent. ✷
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Complexity. To broadcast data, the computing time of creating an enabling
block is O(z) modular exponentiations, which can be pre-computed. The runtime
of the decryption algorithm for each subscriber is O(z) modular exponentiations
also. The traitor tracing algorithm runs in O(Cn

k ), where n is the total number
of subscribers. When n≫ k, the runtime is about O(nk).

3.1 Revocation of Traitors

After a pirate decoder is confiscated and the traitors are revealed, we would like
to revoke the private keys of the traitors since thousands of the pirate decoders
may be sold.

Assume that C = {c1, c2, . . . , cm}, m ≤ z, is the set of found traitors or
revoked subscribers. We can revoke their shares without updating the private
keys of the remaining subscribers. To broadcast data to the remained subscribers,
instead of randomly choosing unused shares for the enabling block, the content
suppliers fixes the first m shares as

(c1, g
rf(c1)), (c2, g

rf(c2)), . . . , (cm, g
rf(cm))

and randomly chooses the rest z −m unused shares

(j1, g
rf(j1)), (j2, g

rf(j2)), . . . , (jz−m, g
rf(jz−m)).

We can see that the revoked shares or their combinations cannot be used
to decrypt the broadcast data since their shares are in the enabling block. We
can revoke at most z shares totally before updating the shares of the remaining
subscribers.

3.2 Restoration of a Revoked Key

If for some reason we would like to restore the decryption privilege of a revoked
key, we simply do not use it in forming the enabling block. The restored key can
decrypt the broadcast ciphertext again.

3.3 Revocation beyond the Threshold

It is possible to revoke more than z traitors. The idea is that if a pirate decoder
can get at most c percent of dataM , say 95%, the partial part ofM is useless [1].
For example, if a pirate decoder can only decrypt 95% of a movie, the traitor is
revoked de facto.

Assume that C = {c1, c2, . . . , cm}, m > z, is the set of found traitors or
revoked subscribers. Without loss of generality, let m = tz. To broadcast data
M to the remained subscribers, we partition M as M1||M2|| · · · ||Ml. For each
Mi, 1 ≤ i ≤ l, we construct an enabling block Ti with shares

(ci1 , g
rf(ci1

)), (ci2 , g
rf(ci2

)), . . . , (cir
, grf(ciz )),
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where ci1 , ci2 , . . . , ciz
are randomly chosen from C. With appropriately chosen

r and l, each traitor in C can decrypt at most c percent of M in average.

Let E
(i)
j be the probability that ci is chosen into Tj . We can see that E

(i)
j =

z/m = 1/t. The probability that ci is not chosen into any Tj , 1 ≤ j ≤ l, is
(1 − 1/t)l. With l = 3t, (1 − 1/t)3t ≃ 1/e3 ≃ 0.05. That is, to increase the
revocation capability by 5 folds, we partition M into 15 parts. Furthermore, we
can adjust these values dynamically.

3.4 Speedup of Tracing

Since the runtime of the tracing algorithm is O(Cn
k ), when n or k is large, the

algorithm is not efficient. In practice, we would like to have a more efficient
tracing algorithm.

A practical solution to this problem is to group subscribers into classes C1,
C2, . . . , Cr. Each class Ci consists of a reasonable number of subscribers by the
subscribers’ residence, etc. For each class Ci, the content supplier uses a different
polynomial fi(x) as the secret key. A subscriber j in class Ci is given a share
(j, fi(j)). The data M broadcast to the subscribers of class Ci are encrypted as
E(fi(x),M). The decryption and tracing algorithms are the same as the original
ones except that the keys are different for different classes.

Grouping subscribers can make our revocation mechanism more practical. It
will be less frequent to revoke private keys in a class since the size is smaller.
Even if the content supplier wants to revoke the (z+1)th private key in a class,
only the private keys in the class have to be updated.

4 Security Analysis

We consider both semantic security and security against the z-coalition attack,
in which any coalition of z or less legal subscribers cannot compute a legal private
key for decryption.

The encryption algorithm of our scheme is semantically secure against a pas-
sive adversary if the DDH problem in Gq is hard (or computationally infeasible).
Recall that D = 〈g1, g2, g

r
1, g

r
2〉 and R = 〈g1, g2, g

a
1 , g

b
2〉 where g1, g2 are gener-

ators and a, b and r are randomly chosen over Zq.

Theorem 1 (Semantic security). Assume that the DDH problem is hard. The
encryption algorithm of our traitor tracing scheme is semantically secure against
the passive adversary.

Proof. Suppose that our encryption algorithm is not semantically secure against
the passive adversary. We show that there is a probabilistic polynomial-time
algorithm B that distinguishes D from R with a non-negligible advantage ε.

Assume that adversary A attacks our encryption algorithm successfully in
terms of semantic security. A has two procedures A1 and A2. Given the public
key 〈g, ga0 , gf(1), . . . , gf(z)〉 of the content supplier, A1 finds two session keys s0
and s1 in Gq such that A2 can distinguish them by observing the enabling block.
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Let 〈g1, g2, u1, u2〉 be an input of the DDH problem. The following algorithm
B shall decide whether 〈g1, g2, u1, u2〉 is from D or R.

1. Randomly choose ai ∈ Zq, 1 ≤ i ≤ z, and let f ′(x) =
∑z

t=1 atx
t. Let g = g1,

ga0 = g2, g
f(1) = g2g

f ′(1)
1 , . . . , gf(z) = g2g

f ′(z)
1 , where f(x) = f ′(x) + a0.

Note that we don’t know a0.

2. Feed the public key 〈g, ga0 , gf(1), . . . , gf(z)〉 to A1. A1 returns s0 and s1 in
Gq.

3. Randomly select d ∈ {0, 1} and encrypt sd as

C = 〈sdu2, u1, (j1, u2u
f ′(j1)
1 ), . . . , (jz, u2u

f ′(jz)
1 )〉

where j1, j2, . . . , jz are randomly chosen.

4. Feed C to A2 and get a return d′. Then, the algorithm outputs 1 if and only
if d = d′.

If 〈g1, g2, u1, u2〉 is from D, g = g1, g2 = ga0 , u1 = gr, u2 = gr
2 = gra0

and u2u
f ′(ji)
1 = grf(ji) for 1 ≤ i ≤ z. Thus, C is the encryption of sd and

Pr[B(g1, g2, u1, u2) = 1] = Pr[A2(C) = d] = 1/2 + ε. Otherwise, since u1 = ga
1

and u2 = gb
2, the distribution of C is the same for d = 0 and d = 1. Thus,

Pr[B(g1, g2, u1, u2) = 1] = Pr[A2(C) = d] = 1/2. Therefore, B distinguishes D
from R with a non-negligible advantage ε. ✷

The encryption algorithm of our scheme is secure against z-coalition assuming
that computing the discrete logarithm is hard.

Theorem 2. Assume that computing the discrete logarithm over Gq is hard.
No coalition of z or less legal subscribers can compute the private key of another
legal subscriber with a non-negligible probability.

Proof. Assume that the probabilistic polynomial-time algorithm A can com-
pute a new share (private key) (xu, f(xu)) from the given public key 〈g, ga0 , gf(1),
gf(2), . . . , gf(z)〉 and z shares (x1, f(x1)), . . . , (xz, f(xz)) with a non-negligible
probability ε. We construct another probabilistic polynomial-time algorithm B
to compute the discrete logarithm over Gq with an overwhelming probability.

Let (p, g, y) be the input of the discrete logarithm problem. The following
algorithm B′ computes logg y (mod p) with a non-negligible probability. Let y =
ga0 and f(x) be the degree-z polynomial passing (0, a0) and (xi, f(xi)), 1 ≤ i ≤ z.
By Lagrange interpolation, we can compute gf(i), 1 ≤ i ≤ z. We feed the public
key 〈g, ga0 , gf(1), gf(2), . . . , gf(z)〉 and z shares (x1, f(x1)), . . . , (xz, f(xz)) to
A and shall get a new share (xu, f(xu)) with a non-negligible probability. With
the given z shares and (xu, f(xu)), we can compute f(0) = a0.

By applying the randomized technique to B′ for a polynomial number of
times, we get B. ✷
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5 Chosen Ciphertext Security

It is often desirable to have a cryptosystem secure against the adaptive chosen
ciphertext attack. By the technique of [7], we modify our scheme so that it
becomes secure against the adaptive chosen ciphertext attack under the standard
intractability assumptions. Recall that Gq is a group of order-q and g is its
generator. Our variant traitor tracing scheme is as follows.
System setup. The content supplier randomly chooses a degree-z polynomial
f(x) =

∑z

t=0 atx
t with coefficients in Gq and a, b, x1, x2, y1, y2 ∈ Zq. Its secret

key is 〈f(x), a, b〉 and public key is

〈g, ga0 , gf(1), . . . , gf(z), ga, gb, c, d,H〉

where c = gax1gbx2 , d = gay1gby2 , and H is a collision-resistant hash function.
Let f ′(x) = a−1(f(x) − b) or f(x) = af ′(x) + b.
Registration. When a subscriber i, i > z, registers to the system, the content
supplier gives him a private key

(i, f ′(i), x1, x2, y1, y2)

The subscriber i can verify his share.
Encryption. To broadcast data M , the content supplier randomly selects a
session key s ∈ Gq, a one-time number r ∈ Zq and z unused indices j1, j2, . . . , jz
and computes the enabling block

T = 〈sgra0 , (j1, g
rf(j1)), . . . , (jz, g

rf(jz)), gra, grb, υ〉

where υ = crdrα and α = H(sgra0 , (j1, g
rf(j1)), . . . , (jz, g

rf(jz)), gra, grb). We
use T = 〈S, (j1, Fj1), . . . , (jz, Fjz

), Fa, Fb, υ〉 to denote the enabling block.
Decryption.When receiving the enabling block T = 〈S, (j1, Fj1), . . . , (jz, Fjz

),
Fa, Fb, υ〉, the subscriber i with the private key 〈i, f ′(i), x1, x2, y1, y2〉 can com-
pute the session key s by the following steps.

- Compute α = H(S, (j1, Fj1), . . . , (jz, Fjz
), Fa, Fb, υ);

- Check whether F x1+y1α
a F x2+y2α

b = υ;
- If the checking fails, reject the enabling block; otherwise, compute

S/[F f ′(i)λz

a · Fλz

b ·

z−1
∏

t=0

Fλt

jt
] = S/gra0 = s,

where x0 = j1, x1 = j2, . . . , xz−1 = jz and xz = i.

Traitor tracing. The traitor tracing algorithm is the same as that in Section 3.
The encryption algorithm of the above traitor tracing scheme is semantically

secure against the adaptive chosen ciphertext attack.

Theorem 3. Assume that the DDH problem is hard. The encryption algorithm
of the above traitor tracing scheme is semantically secure against the adaptive
chosen ciphertext attack.
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Proof. We assume that there is a probabilistic polynomial-time adversary A
that can break our encryption algorithm with a non-negligible probability ε. A
consists of two algorithms A1 and A2. A1 takes as input of the content supplier’s
public key and outputs two session keys s0 and s1. Let d be a random bit.
A2 takes as input of the enabling block for sd, makes some chosen ciphertext
queries, and outputs d′. The probability of d = d′ is 1/2 + ε. By A1 and A2, we
can construct a probabilistic polynomial-time algorithm B that distinguishes D
from R with a non-negligible probability.

Given a quadruple (g1, g2, u1, u2) in G4
q, we construct a simulator S that

simulates A’s view in its attack on the algorithm. The simulator S includes an
encryption oracle and a decryption oracle. We will show that if the quadruple is
from D, the simulation of A’s view will be nearly perfect and if the quadruple
is from R, A’s advantage is negligible. The simulator S works as follows.

1. Key setup. The content supplier’s public key is constructed as follows.
(a) Select two degree-z polynomials f ′(x) =

∑z

t=0 atx
t and f ′′(x) =

∑z

t=0 rtx
t and w, j ∈ Zq randomly. Let g = g1, g2 = ga

1 = ga,

f(x) = f ′(x) + wa and gb = gf(j)/g
f ′′(j)
2 . Note that we don’t know

the constant coefficient of f(x) since a is unknown. We have f(j) =
f ′(j) + wa = af ′′(j) + b. We don’t know b, either.

(b) Randomly select x1, x2, y1, y2 and compute

c = gax1gbx2 , d = gay1gby2 .

(c) The public key of the content supplier is

〈g, ga0gw
2 , g

f ′(1)gw
2 , g

f ′(2)gw
2 , . . . , g

f ′(z)gw
2 , g

a, gb, c, d,H〉.

The above key generation is a bit different from the actual cryptosystem,
but the effect is the same. We essentially fix w = 0.

2. Challenge. Feed the public key of the content supplier to A1 and get two
session keys s0 and s1 in Gq.

3. Encryption. Randomly pick d and z indices {j1, . . . , jz} and compute

S = sdu
a0

1 u
w
2 , Fj1 = u

f ′(j1)
1 uw

2 , . . . , Fjz
= u

f ′(jz)
1 uw

2 , Fa = u2,

Fb = u
f ′(j)
1 uw

2 /u
f ′′(j)
2 , α = H(S, (j1, Fj1), . . . , (jz, Fjz

), Fa, Fb),

υ = F x1+y1·α
a · F x2+y2·α

b .

The ciphertext of sd is T = 〈S, (j1, Fj1), . . . , (jz, Fjz
), Fa, Fb, υ〉.

4. Decryption. Given the ciphertext T , the decryption oracle first checks va-
lidity of T by verifying ux1+y1α

1 ux2+y2α
2 = υ. If it is not valid, the oracle

rejects it; otherwise, the oracle returns

s = S/[

z−1
∏

t=0

F
λt−1

jt
· F f ′′(j)λz

a · Fλz

b ],

where x0 = j1, x2 = j1, . . . , xz−1 = jz, xz = j.
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The above completes description of S. The adversary B takes as input
(g1, g2, u1, u2) and outputs 1 if and only if d = A2(T ), where T is the enabling
block of the challenge sd .

If the input comes from D, the ciphertext T of encryption of sd is legitimate.
If the input comes from R, the distribution of T is almost the same for d = 0
and d = 1. To complete the proof, we show:

1. If 〈g1, g2, u1, u2〉 is from D, the joint distribution of the simulator S’s output
(adversary’s view) and the hidden bit d is statistically indistinguishable from
that in the actual attack.

2. If 〈g1, g2, u1, u2〉 is from R, the distribution of the hidden bit d is (essentially)
independent of S’s output.

Lemma 3. If the simulator S’s input 〈g1, g2, u1, u2〉 is chosen from D, the joint
distribution of the adversary’s view and the hidden bit d is statistically indistin-
guishable from that in the actual attack.

Lemma 4. If the simulator S’s input 〈g1, g2, u1, u2〉 is chosen from R, the dis-
tribution of the hidden bit d is (essentially) independent of the adversary’s view.

Since the proofs of the above two lemmas are similar to those of Cramer and
Shoup [7], we put them in Appendix.

This completes the proof of Theorem 3. ✷

6 Discussion

Actually, we can drop the content supplier’s public key from our traitor tracing
schemes if verification of private keys by subscribers is not necessary. This is
indeed the case for practicality. Thus, only the content suppblier can do data
encryption. Since the enabling blocks are computationally indistinguishable from
each other due to the DDH assumption, our scheme should be more secure.

For practicality, we can set z = k. In this case, there may be framing prob-
lem. The probability that a set of k subscribers can frame a specific set of k
subscribers is 1/q. Assume that there are m = 10, 000, 000 subscribers and k is
set as 20. Then, the probability that a set of k subscribers can frame some set
of k subscribers is ≤ Cm

k /q ≈ mk/q ≈ 1/(10)168, for q being 1024-bit long.

7 Conclusion

In this work we have proposed a new public-key traitor tracing scheme with re-
vocation capability using dynamic shares. Its distinct feature of revoking private
keys makes the protocol highly practical. The scheme’s traitor tracing algorithm
is fully k-resilient and conceptually simple. The size of the enabling block is
independent of the number of subscribers.
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Our scheme is semantically secure against the passive adversary assuming
that the DDH problem is hard. We also present a variant scheme that is seman-
tically secure against the adaptive chosen ciphertext attack assuming that the
DDH problem is hard.
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Appendix

Lemma 3. Proof. We need argue two things. One is that the output of the
encryption oracle and the decryption oracle has the right distribution. The other
is that the decryption oracle rejects all invalid ciphertexts except with a negligible
probability.

If the input is from D, we have u1 = gr
1 and u2 = gr

2 for some r. Therefore,

Fji
= u

f ′(ji)
1 uw

2 = gf(ji) for 1 ≤ i ≤ z, Fa = gr
2 = gar, Fb = (u

f ′(j)
1 uw

2 /u
f ′′(x)
2 ) =

gbr, F x1

a F
x2

b = cr, F y1

a F
y2

b = dr. Thus, S = sdu
a0

1 u
w
2 = sdg

a0rgarw = sdg
rf(0)

and υ = crdrα, where α is in right form. Hence, the output of the encryp-
tion oracle has the right distribution. In addition, 〈S, (j1, Fj1), . . . , (jz, Fjz

),
Fa, Fb, υ〉 is a valid ciphertext. Therefore, the decryption oracle outputs

sd = S/
∏z−1

t=0 F
λt−1

jt
· F

f ′′(j)λz
a · Fλz

b .
Moreover, we should prove that the decryption oracle rejects all invalid ci-

phertexts, except with a negligible probability. Consider the distribution of the
point P = (x1, x2, y1, y2) ∈ Z4

q . Recall that g = g1 and logg g2 = a. ¿From c and
d of the public key, we get two equations:

logg c = ax1 + bx2, (1)

logg d = ay1 + by2. (2)

¿From the output of the encryption oracle, we get another equation:

logg υ = rax1 + brx2 + αray1 + αrby2. (3)

If the adversary submits an invalid ciphertext 〈S′, (j1, F
′
j1
), . . . , (jz, F

′
jz

), F ′
a,

F ′
b, υ〉 to the decryption oracle, ie., r1 = logg u

′
1 �= logg2

u′
2 = r2. The decryption

oracle will reject, unless P lies on the hyperplane H defined by

logg υ
′ = ar1x1 + br2x2 + α′ar1y1 + α′r2by2, (4)
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where α′ = H(S′, (j1, F
′
j1
), . . . , (jz, F

′
jz

), F ′
a, F

′
b). Since Equations 1, 2 and 4

are linearly independent, the hyperplane H and the plane P intersect at a line.
The first time the adversary submits an invalid ciphertext, the decryption

oracle rejects it with probability 1 − 1/q. This rejection constrains the point P
with q less points. Furthermore, the ith invalid ciphertext will be rejected with
probability at least 1−q/(q2−q(i−1))=1−1/(q−i+1). Therefore, the decryption
oracle rejects all invalid ciphertexts except with a negligible probability. ✷

Lemma 4. Proof. We should prove that if the decryption oracle rejects all
invalid ciphertexts, the distribution of the hidden bit b is independent of the
adversary’s view. Furthermore, we still need to prove that the decryption oracle
will reject all invalid ciphertexts, except with a negligible probability.

Let t1 = logg u1 and t2 = logg2
u2. Assume that t1 �= t2 since this holds

except with a negligible probability 1/q. The public key l = ga0gaw determines
the equation:

logg l = a0 + aw. (5)

Since the decryption oracle only decrypts valid ciphertexts, the adversary
obtains only linearly dependent equation r′ logg l = r

′a0+r
′wa. Thus, no further

information about (a0, w) is leaked.
Consider that the output of the encryption oracle, we have S = sdg

t1a0

1 gt2w
2 .

Let β = gt1a0

1 gt2w
2 . We get the equation:

logg β = t1a0 + t2wa. (6)

Clearly, Equations 5 and 6 are linearly independent. We can view β as a perfect
one-time pad. As a result that d is independent of the adversary’s view.

Next, we argue that the decryption oracle will reject all invalid ciphertexts
except with a negligible probability. Let us examine the distribution of P = (x1,
x2, y1, y2) ∈ Z4

q , based on the adversary’s view. ¿From the output υ of the
encryption oracle, we get the equation:

logg υ = at1x1 + bt2x2 + αat1y1 + αbt2y2. (7)

¿From the adversary’s view, P is a random point on the line L formed by inter-
secting the hyperplanes of Equations 1, 2 and 7. Assume that the adversary sub-
mits an invalid ciphertext 〈S′, (j1, F

′
j1
), . . . , (jz, F

′
jz

), F ′
a, F

′
b, υ

′〉. Let logg u
′
1 = t′1

and logg2
u′
2 = t′2. There are three cases to consider:

Case I. 〈S′, (j1, F
′
j1
), . . . , (jz, F

′
jz

), F ′
a, F

′
b〉 = 〈S, (j1, Fj1), . . . , (jz, Fjz

), Fa,
Fb〉. Although the hash values are the same, the decryption oracle still reject
because of υ′ �= υ.

Case II. 〈S′, (j1, F
′
j1
), . . . , (jz, F

′
jz

), F ′
a, F

′
b〉 �= 〈S, (j1, Fj1), . . . , (jz, Fjz

), Fa,
Fb〉 and the hash values are not the same. Unless the point P satisfies the hy-
perplane logg υ

′, the decryption oracle will reject. Moreover, Equations 1, 2, 4
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and 7 are linearly independent by observing that

det









a b 0 0
0 0 a b
t1a t2b αt1a αt2b
t′1a t

′
2b α

′t′1a α
′t′2b









= a2b2(α− α′)(t′2 − t′1)(t2 − t1) �= 0.

Thus, the hyperplane and the line L intersect at a point. Therefore, the
decryption oracle rejects the query except with a negligible probability.

Case III. 〈S′, (j1, F
′
j1
), . . . , (jz, F

′
jz

), F ′
a, F

′
b〉 �= 〈S, (j1, Fj1), . . . , (jz, Fjz

), Fa,
Fb〉, but the hash values are the same, which contradicts with the assumption
that H is collision-resistant.

This completes the proof. ✷
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