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Abstract: 

Current data mining tools are characterized by a plethora of algorithms but a 
lack of guidelines to select the right method according to the nature of the 
problem under analysis. Producing such guidelines is a primary goal by the 
field of meta-learning; the research objective is to understand the interaction 
between the mechanism of learning and the concrete contexts in which that 
mechanism is applicable. The field of meta-learning has seen continuous 
growth in the past years with interesting new developments in the construction 
of practical model-selection assistants, task-adaptive learners, and a solid 
conceptual framework. In this paper, we give an overview of different 
techniques necessary to build meta-learning systems. We begin by describing 
an idealized meta-learning architecture comprising a variety of relevant 
component techniques. We then look at how each technique has been studied 
and implemented by previous research. In addition, we show how meta-
learning has already been identified as an important component in real-world 
applications.  

1 Introduction 

Meta-learning differs from base-learning in the scope of the level of adaptation; 
whereas learning at the base-level is focused on accumulating experience on a 
specific learning task (e.g., credit rating, medical diagnosis, mine-rock 
discrimination, fraud detection, etc.), learning at the meta-level is concerned with 
accumulating experience on the performance of multiple applications of a learning 
system. If a base-learner fails to perform efficiently, one would expect the learning 
mechanism itself to adapt in case the same task is presented again. Briefly stated, the 
field of meta-learning is focused on the relation between tasks or domains and 
learning strategies. In that sense, by learning or explaining what causes a learning 
system to be successful or not on a particular task or domain, we go beyond the goal 
of producing more accurate learners to the additional goal of understanding the 
conditions (e.g., types of example distributions) under which a learning strategy is 
most appropriate. 

From a practical stance, meta-learning helps solve important problems in the 
application of machine learning (ML) and data mining (DM) tools, particularly in the 
area of classification and regression. First, the successful use of these tools outside 
the boundaries of research (e.g., industry, commerce, government) is conditioned on 
the appropriate selection of a suitable predictive model (or combination of models) 
according to the domain of application. Without some kind of assistance, model 
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selection and combination can turn into solid obstacles to end-users who wish to 
access the technology more directly and cost-effectively. End-users often lack not 
only the expertise necessary to select a suitable model, but also the availability of 
many models to proceed on a trial-and-error basis (e.g., by measuring accuracy via 
some re-sampling technique such as n-fold cross-validation). A solution to this 
problem is attainable through the construction of meta-learning systems. These 
systems can provide automatic and systematic user guidance by mapping a particular 
task to a suitable model (or combination of models). 

Second, a problem commonly observed in the practical use of ML and DM tools 
is how to profit from the repetitive use of a predictive model over similar tasks. The 
successful application of models in real-world scenarios requires continuous 
adaptation to new needs. Rather than starting afresh on new tasks, one would expect 
the learning mechanism itself to re-learn, taking into account previous experience 
([16],[41],[47],[52]). Again, meta-learning systems can help control the process of 
exploiting cumulative expertise by searching for patterns across tasks. 

Our goal in this paper is to give an overview of different techniques necessary to 
build meta-learning systems. To provide some structure, we begin by describing an 
idealized meta-learning architecture comprising a variety of component techniques. 
We then show what role these techniques played in previous research. We hope that 
by proceeding in this way the reader can not only learn from past work, but in 
addition gain some insights concerning how to construct new meta-learning systems.  

We also hope to show how recent advances in meta-learning are increasingly 
filling the gaps in the construction of practical model-selection assistants and task-
adaptive learners, as well as in the development of a solid conceptual framework 
([6],[7],[28]).  

The paper is organized as follows. In the next section we illustrate an idealized 
meta-learning architecture and detail its constituent parts. In Section 3 we describe 
previous research in meta-learning and its relation to our architecture. Section 4 
describes meta-learning tools that have been instrumental in real applications. 
Finally, Section 5 concludes the paper. 

 

2  A Meta-Learning Architecture 

In this section, we provide a general view of a software architecture that will be used 
as a reference to describe many of the principles and current techniques in meta-
learning. Though not every technique in meta-learning fits into this architecture, such 
a general view helps us understand the challenges that need to be overcome before 
we can turn the techniques into a set of useful and practical tools. 

Conceptually, our proposed meta-learning system can be divided into two modes 
of operation: acquisition and advisory, as detailed in the following sections. 

2.1 Meta-Learning: Knowledge Acquisition Mode 
During the knowledge acquisition mode, the main goal is to learn about the learning 
process itself.  Figure 1 illustrates this mode of operation. We assume that the input 
to the system consists of datasets of examples (e.g., sets of pairs of feature vectors 
and classes; Fig. 1-A). Upon arrival of each dataset, the meta-learning system 
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invokes a component responsible for extracting dataset characteristics or meta-
features (Fig. 1-B). The goal of this component is to gather information that 
transcends a particular domain of application. We look for information that can be 
used to generalize to other example distributions. Section 3.1 details current research 
pointing in this direction.  

During the knowledge acquisition mode, the learning techniques (Fig. 1-C) do 
not exploit knowledge of previous results. Statistics derived from different learning 
strategies (e.g., a classifier or combination of classifiers, Fig. 1-D) and their 
performance (Fig. 1-E) may be used as a form of characterizing the task under 
analysis (Sections 3.1 and 3.2).  

Information derived from the meta-feature generator and the performance 
evaluation module can be combined into a meta-knowledge base (Fig. 1-F). This 
knowledge base is the main result of the knowledge acquisition phase; it reflects 
experience accumulated across different tasks. Meta-learning is tightly linked to the 
process of acquiring and exploiting meta-knowledge. One can even say that advances 
in the field of meta-learning hinge on one specific question: how can we acquire and 
exploit knowledge about learning systems (i.e., meta-knowledge) to understand and 
improve their performance? As we describe current research in meta-learning we will 
be pointing to different forms of meta-knowledge. 

 
Figure 1. Meta-Learning: The Knowledge Acquisition Mode. 

2.2 Meta-Learning: Advisory Mode 
In the advisory mode, meta-knowledge acquired in the exploratory mode is used to 
configure the learning system in a manner that exploits the characteristics of the new 
data. Meta-features extracted from the dataset (Fig. 2-B) are “matched” with the 
meta-knowledge base (Fig. 2-F) to produce a recommendation regarding the best 
available learning strategy. At this point we move away from experimentation with 
the base learners to the ability to do informed model selection or combination of base 
learners (Fig. 2-C).  
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      The effectiveness of the meta-learner increases as it accumulates meta-
knowledge. The lack of experience at the beginning of the learner's existence 
compels the meta-learner to use one or more learning strategies without a clear 
preference for any one of them; experimenting with many different strategies is time 
consuming. However, as more training sets have been examined, we expect the 
expertise of the meta-learner to dominate the process of deciding which learning 
strategy suits best the characteristics of the current problem.  

 The nature of the match between the set of meta-features and the meta-
knowledge base can have several interpretations. The traditional view poses this 
problem as a learning problem itself where a meta-learner is invoked to output an 
approximating function mapping meta-features to learning strategies (e.g., learning 
model). However, it is conceivable that the meta-learner could be subject to 
improvement through meta-learning ([43],[51]). Here, the matching process is not 
intended to modify our set of available learning techniques, but simply enables to 
select one or more strategies that seem effective given the characteristics of the 
dataset under analysis.  

The final classifier (or combination of classifiers; Fig. 2-D) is selected based 
not only on its estimate of the generalization performance over the current dataset, 
but also on information derived from exploiting past experience. In this case, the 
system has moved from experimenting with different learning strategies (or choosing 
on at random) to the ability of selecting one dynamically.  

 

 
Figure 2. Meta-Learning: The Advisory Mode. 

 
We will show how the constituent components conforming our two-mode meta-
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3 Techniques in Meta-Learning 

In this section we describe previous research in meta-learning and in particular 
address the following specific research issues: 
 

1. The characterization of datasets can be performed using a variety of 
statistical, information-theoretic, and model-based approaches (Section 3.1). 
Matching meta-features to predictive model(s) can help in model selection 
or ranking. 

2. Information collected from the performance of a set of learning algorithms 
at the base level can be combined through a meta-learner (Section 3.2).   

3. Within the learning-to-learn paradigm, a continuous learner can extract 
knowledge across domains or tasks to accelerate the rate of learning 
convergence (Section 3.3). 

4. The learning strategy can be modified in an attempt to shift this strategy 
dynamically (Section 3.4). A meta-learner in effect explores not only the 
space of hypotheses within a fixed family set, but in addition the space of 
families of hypotheses. 

3.1  Meta-Learning for Machine Learning 

3.1.1 Dataset Characterization 

A critical component of any meta-learning system needs to extract relevant 
information about the task under analysis (Fig. 1-B and 2-B). The central idea is that 
high-quality dataset characteristics or meta-features provide some information to 
differentiate the performance of a set of given learning strategies. We describe a 
representative set of techniques in this area.  
 
Statistical and Information-Theoretic Characterization 
Much work in dataset characterization has concentrated on extracting statistical and 
information-theoretic parameters estimated from the training set 
([2],[21],[25],[31],[34],[46]). Measures include number of classes, number of 
features, ratio of examples to features, degree of correlation between features and 
target concept, average class entropy and class-conditional entropy, skewness, 
kurtosis, signal–to-noise ratio, etc. This work has produced a number of research 
projects with positive and tangible results (e.g., ESPRIT Statlog and METAL).  

 
Model-Based Characterization 
In addition to statistical measures, a different form of dataset characterization 
exploits properties of the induced hypothesis as a form of representing the dataset 
itself. As an example, one can build a decision tree from a dataset and collect 
properties of the tree (e.g., nodes per feature, maximum tree depth, shape, tree 
imbalance, etc.), as a means to characterize the dataset ([9],[38]). 
 
Landmarking 
Another source of characterization falls within the concept of landmarking ([8],[39]). 
The idea is to exploit information obtained from the performance of a set of simple  
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learners (i.e., learning systems with low capacity) that exhibit significant differences 
in their learning mechanism. The accuracy (or error rate) of these landmarkers is used 
to characterize a dataset and identify areas where each of the simple learners can be 
regarded as an expert.  

Another idea related to landmarking is to exploit information obtained on 
simplified versions of the data (e.g. samples). Accuracy results on these samples 
serve to characterise individual datasets and are referred to as sub-sampling 
landmarks. This information is subsequently used to select an appropriate learning 
algorithm ([24],[45]). 

3.1.2 Mapping Datasets to Predictive Models 

An important and practical use of meta-learning is the construction of a mechanism 
that maps an input space composed of datasets or applications to an output model 
space composed of predictive models. Criteria such as accuracy, storage space, and 
running time can be used for performance assessment ([27]; Fig. 1-E). Several 
approaches have been developed in this area. 
 
Hand-Crafting Meta Rules 
Using human expertise and empirical evidence, a number of meta-rules matching 
domain characteristics with learning techniques may be crafted manually [14]. For 
example, in decision tree learning, a heuristic rule can be used to switch from 
univariate tests to linear tests if there is a need to construct non-orthogonal partitions 
over the input space. Crafting rules manually has the disadvantage of failing to 
identify many important rules. As a result most research has focused on learning 
these meta-rules automatically as explained next.  
 
Learning at the Meta-Level 
The characterization of a dataset is a form of meta-knowledge (Fig. 1-F) that is 
commonly embedded in a meta-dataset as follows. After learning from several tasks, 
one can construct a meta-dataset where each element pair is made up of the 
characterization of a dataset (meta-feature vector) and a class label corresponding to 
the model with best performance on that dataset. A learning algorithm can then be 
applied to this well-defined learning task to induce a hypothesis mapping datasets to 
predictive models. 

A variation to the approach above is to look at the neighbourhood of a query in 
the space of meta-features. When a new query dataset is presented, the k-nearest 
neighbour instances (i.e., datasets) around this dataset are identified to select the 
model with best average performance [11].  

Instead of mapping a task or dataset to a predictive model, a different approach 
consists of selecting a model for each individual query example. The idea is similar 
to the nearest-neighbour approach: select the model displaying best performance 
around the neighbourhood of the query example [32].  
 
Ranking Models 
Rather than mapping a dataset to a single predictive model, one may also produce a 
ranking over a set of different models. One can argue that such rankings are more 
flexible and useful to users. In a practical scenario, the advice should not be limited 
to a single item; this could lead to problems if the suggested final model happens to 
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be unsatisfactory. Rankings provide alternative solutions to users who may wish to 
incorporate their own expertise or any other criterion (e.g., financial constraints) into 
their decision-making process. Various approaches have been suggested attacking the 
problem of ranking predictive models ([11],[12],[25],[36]). 

3.2 Combining Base-Learners 
Another approach to meta-learning consists of learning from base learners. The idea 
is to make explicit use of information collected from the performance of a set of 
learning algorithms at the base level; such information is then incorporated into the 
meta-learning process. 
 
Stacked Generalization 
Meta-knowledge (Fig. 1-F) can incorporate predictions of base learners, a process 
known as stacked generalization [54]. The process works under a layered 
architecture. Each of a set of base-classifiers is trained on a dataset; the original 
feature representation is then extended to include the predictions of these classifiers. 
Successive layers receive as input the predictions of the immediately preceding layer 
and the output is passed on to the next layer. A single classifier at the topmost level 
produces the final prediction. Most research in this area focuses on a two-layer 
architecture ([13],[18],[44] etc.). 

Stacked generalization is considered a form of meta-learning because the 
transformation of the training set conveys information about the predictions of the 
base-learners (i.e., conveys meta-knowledge). Research in this area investigates what 
base-learners and meta-learners produce best empirical results (e.g., [20],[26]); how 
to represent class predictions (class labels versus class-posterior probabilities [48]); 
and how to define meta-features ([3],[15]). 

 
Boosting 
A popular approach to combining base learners is called boosting ([22],[23],[30]). 
The basic idea is to generate a set of base learners by generating variants of the 
training set. Each variant is generated by sampling with replacement under a 
weighted distribution. This distribution is modified for every new variant by giving 
more attention to those examples incorrectly classified by the most recent hypothesis.  

Boosting is considered a form of meta-learning because it takes into 
consideration the predictions of each hypothesis over the original training set so as to 
progressively improve the classification of those examples where the last hypothesis 
failed.  
 
Meta-Decision Trees 
Another approach in the field of learning from base learners consists of combining 
several inductive models by means of induction of meta-decision trees [49]. The 
general idea is to build a decision tree where each internal node is a meta-feature and 
each leaf node corresponds to a predictive model. Given a new example, a meta-
decision tree indicates the model that appears most suitable in predicting its class 
label.  
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Composition of Inductive Applications 
The CAMLET system composes models using components with different biases [1]. 
CAMLET is based on a template that abstracts the process of inductive learning. For 
a given data set this template is instantiated using components that are organized 
according to different repositories. The final model is obtained through an iterative 
search for the best components attached to this template. 

 
Meta-learning for Pre-processing 
Another application of meta-learning is done before a learning algorithm is applied, 
as a form of data pre-processing. Leite & Brazdil [55] propose a meta-learning 
approach to reduce the number of samples during progressive sampling. The process 
stops when the learning curve has levelled off. The corresponding sample is referred 
to as the stopping point. The aim of the method is to predict the stopping point in the 
dataset under study. The method compares the first few points on the learning curve 
constructed for a given learning algorithm and the dataset under study. The datasets 
with most similar curves are selected and the corresponding stopping points are used 
to estimate the stopping point for the current dataset. This information can be used to 
skip investigation of some of the samples and hence leads to time savings. 

3.3  Inductive Transfer and Learning to Learn 
We have mentioned before that learning should not be viewed as an isolated task that 
starts from scratch on every new problem. As experience accumulates, the learning 
mechanism is expected to perform increasingly better. One approach to simulate the 
accumulation of experience is by transferring meta-knowledge across domains or 
tasks. This process is known as inductive transfer [41]. The goal here is not to match 
meta-features with a meta-knowledge base (Fig. 2), but simply to incorporate the 
meta-knowledge into the new learning task.  

A review of how neural networks can learn from related tasks is provided by 
Pratt & Jennings [42]. Caruana [16] shows the reasons explaining why learning 
works well in the context of neural networks using backpropagation. In essence, 
training with many domains in parallel on a single neural network induces 
information that accumulates in the training signals; a new domain can then benefit 
from such past experience. Thrun [47] proposes a learning algorithm that groups 
similar tasks into clusters. A new task is assigned to the most related cluster; 
inductive transfer takes place when generalization exploits information about the 
selected cluster.  

3.3.1 A Theoretical Framework of Learning-to-Learn 

Several studies have provided a theoretical analysis of the learning-to-learn paradigm 
within a Bayesian view [6], and within a Probably Approximately Correct (PAC) 
view [7]. In the PAC view, meta-learning takes place because the learner is not only 
looking for the right hypothesis in a hypothesis space, but in addition is searching for 
the right hypothesis space in a family of hypothesis spaces. Both the VC dimension 
and the size of the family of hypothesis spaces can be used to derive bounds on the 
number of tasks, and the number of examples on each task, required to ensure with 
high probability that we will find a solution having low error on new training tasks.  
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3.4 Dynamic Bias Selection 
A field related to the idea of learning-to-learn is that of dynamic bias selection. This 
can be understood as the search for the right hypothesis space or concept 
representation as the learning system encounters new tasks. The idea, however, 
departs slightly from our architecture; meta-learning is not divided into two modes 
(i.e., knowledge-acquisition and advisory), but rather occurs on a single step. In 
essence, the performance of a base learner (Fig. 1-E) can trigger the need to explore 
additional hypothesis spaces, normally through small variations of the current 
hypothesis space.  

As an example, DesJardins & Gordon [19] develop a framework for the study of 
dynamic bias as a search in different tiers. Whereas the first tier refers to a search 
over a hypothesis space, additional tiers search over families of hypothesis spaces. 
Other approaches to dynamic bias selection are based on changing the representation 
of the feature space by adding or removing features ([29],[50]). Alternatively, Baltes 
[5] describes a framework for dynamic selection of bias as a case-based meta-
learning system; concepts displaying some similarity to the target concept are 
retrieved from memory and used to define the hypothesis space.  

A slightly different approach is to look at dynamic-bias selection as a form of 
data variation, but as a time-dependent feature [53]. The idea is to perform online 
detection of concept drift with a single base-level classifier. The meta-learning task 
consists of identifying contextual clues, which are used to make the base-level 
classifier more selective with respect to training instances for prediction. Features 
that are characteristic of a specific context are identified and contextual features are 
used to focus on relevant examples (i.e., only those instances that match the context 
of the incoming training example are used as a basis for prediction). 

 

4 Meta-Learning for KDD and Data Mining: Tools and 
Applications 

The process of knowledge discovery from databases (KDD) includes several steps 
(e.g., [17]), such as understanding the problem domain, selecting data sources, data 
cleaning and pre-processing, data reduction and projection, task selection, algorithm 
or model selection, model evaluation and deployment. Until now our focus has been 
on the use of meta-learning for model selection. However, meta-learning can be 
instrumental to other steps as well. 

Here we describe some tools having industrial applications where meta-learning 
has served to provide useful recommendations. In addition, we describe two other 
approaches that support the development of solutions for data mining applications 
that can benefit from the use of meta-learning. 

4.1  METAL DM Assistant 
The METAL Data Mining Assistant (DMA) is the result of a large European 
Research and Development project broadly aimed at the development of methods and 
tools for providing support to users of machine learning and data mining technology 
[33]. DMA is a web-enabled prototype assistant system that supports users for model 
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selection. The project had as its main goal improving the use of data mining tools and 
in particular to provide savings in experimentation time. 
 
The k-NN Ranking Method 
DMA provides recommendations in the form of rankings (Section 3.1). Instead of 
delivering a single model candidate, it produces an ordered list of models, sorted 
from best to worst, according to a weighted combination of parameters such as 
accuracy and training time.  

Given a new dataset, DMA computes a set of statistical and information-theoretic 
measures (Section 3.1). Those measures define a space from which the most similar 
datasets in the Meta-Knowledge Base (Fig. 1-F) are retrieved using a k-NN method. 
For each of the selected datasets, a ranking of the candidate models is generated 
based on performance criteria (accuracy and learning time). The rankings obtained 
are aggregated to generate the final recommended ranking. DMA incorporates more 
than one ranking method. One method exploits a ratio of accuracies and times [12]. 
Another, referred to as DCRanker [11], is based on a technique known as Data 
Envelopment Analysis ([4],[37] etc.).  

The user determines the relative importance of the accuracy and time which is 
most appropriate for the current application. An example of a ranking of 10 well-
known algorithms, which is recommended for the letter dataset is presented in Table 
1. The table is quite similar to the information provided on-line by DMA. Column 2 
shows the recommended ranking1. The information shown in the other columns is 
discussed further on.  

 
Table 1. Example of ranking of 10 algorithms recommended for the letter dataset and the 
corresponding true ranking. 
 

Algorithm Recommended 
Rank 

Target 
Rank 

Accuracy 
% 

Time  
s 

Boosted C5.0 1 1 95.3 77 
IB1 2 2 93.6 163 

Linear Discriminant 3 8 70.2 2 
Ltree 4 4 86.9 397 

C5.0 (rules) 5 3 88.8 222 
C5.0 (tree) 6 5 87.9 8 

Naive Bayes 6 9 64.4 10 
RIPPER 8 6 86.2 1249 

Radial-Basis Function 
Network 

9 10 43.9 4946 

MultiLayer Perceptron 10 7 79.8 3998 
 

 
Evaluation of Rankings of Algorithms 

 
1  The results depend on the options used. Here more importance was given to accuracy than to 

time. The predicted ranking was generated on the basis of 3 similar datasets. All algorithms 
were used with default settings. 
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Different approaches exist to evaluate methods that predict rankings of learning 
algorithms [12]. One consists of calculating the resulting ranking accuracy. The 
accuracy is given by the similarity between the recommended ranking (column 2 of 
Table 1) and the target ranking on the corresponding dataset (column 3). The target 
ranking is based on estimates of the performance of the algorithms on the dataset 
(e.g., by cross-validation). The corresponding values of accuracy and time (the sum 
of train and run time) are shown in subsequent columns.  

The similarity between the rankings can be measured using the common rank 
correlation coefficients (e.g., Spearman’s), or weighted coefficients that assign more 
importance to higher ranks  [40]. 

An additional approach is based on an assumption that the top N algorithms in the 
ranking have been examined by the user (i.e. we assume that he carried out both 
training and testing). The objective is to identify the algorithm with the best 
performance (the highest accuracy). For the sake of argument, let us assume that N 
is, say, 3. We are interested to estimate also the corresponding computational effort. 
We can thus plot a point in a graph, showing the best accuracy achieved on one of the 
axes (say, Y) and the number of algorithms executed (or the corresponding time of 
using the 3 algorithms) on the other axis (i.e. X). This process can be repeated for 
different values of N. Different ranking approaches can thus be compared by looking 
at the resulting curves in this kind of graph [12].  

 
Applications of the DMA 
DMA is providing a practical and effective tool to users in need for assistance in 
model selection. In addition, the results obtained from a large number of controlled 
experiments on both synthetic and real-world datasets are readily available. Besides, 
DMA has been instrumental as a decision support tool within DaimlerChrysler and in 
the field of Automotive Industry [11]. 

As a publicly available tool, DMA’s success has surpassed the initial 
expectations, with a few hundred registered users and dozens of datasets that were 
uploaded since it was turned public. 

4.2 Ranking Processes with IDEA 
The Intelligent Discovery Electronic Assistant (IDEA) is an automated assistant for 
the KDD process elaborated by Bernstein & Provost [10]. The goal is to support 
several steps in the KDD process, from data cleaning and pre-processing to 
deployment. IDEA consists of two components. First, a plan generator uses an 
ontology to build a list of processes that are appropriate for a specific task. Here, a 
process is a chain of operations (e.g., a pre-processing method followed by a learning 
algorithm and a post-processing method). Next, a heuristic ranker orders the 
processes using heuristics. The heuristic rankings are knowledge-based and can take 
into account user’s preferences (e.g., speed vs. accuracy). In the current 
implementation of IDEA, rankings are fixed. However, IDEA is independent of the 
ranking method and, thus it could possibly be improved by incorporating meta-
learning to generate rankings based on past performance. 
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4.3 Support of Pre-Processing with MiningMart 
Another interesting problem has been addressed through the MiningMart project 
[35]. The goal is to reuse successful pre-processing steps, organized in the form of 
processes organized in the form of a partially ordered graph. The meta-data 
describing the data and the pre-processing steps used in different applications are 
organized into ontologies. The user searches through the meta-data base for the 
processes that seem most appropriate for the problem at hand. Next, the user 
describes the mapping between the user’s new problem and the previous ones, 
including the processes retrieved. The system then generates pre-processing steps for 
the new problem that can be executed automatically. Again, meta-learning could be 
used to help the user match the current problem with the most suitable one in the 
meta-data base. 
 

5 Conclusions 

In this paper, we have discussed a generic architecture of a meta-learning system and 
showed how different components interact. We have provided a survey of relevant 
research in the field, together with a description of available tools and applications. 

One important research direction in meta-learning consists of searching for 
alternative meta-features in the characterization of datasets (Section 3.1). A proper 
characterization of datasets can elucidate the interaction between the learning 
mechanism and the task under analysis. Current work has only started to unveil 
relevant meta-features; clearly much work lies ahead. For example, many statistical 
and information-theoretic measures adopt a global view of the dataset under analysis; 
meta-features are obtained by averaging results over the entire training set, implicitly 
smoothing the actual distribution (e.g., class-conditional entropy is estimated by 
projecting all training examples over a single feature dimension.). There is a need for 
alternative and more detailed descriptors of the example distribution in a form that 
highlights the relationship to the learner’s performance. 

Using data samples in conjunction with a principled method of carrying out tests 
seems another promising direction that should be explored in future.  

We conclude this paper by emphasizing the important role of meta-learning as 
an assistant tool in the tasks of model selection and combination (Section 4). 
Classification and regression tasks are common in daily business practice across a 
number of sectors. Hence, a decision support offered by a meta-learning assistant has 
the potential of bearing a strong impact in future applications. In particular, since 
prior expert knowledge is often expensive and not always readily available, and 
besides, subject to bias and personal preferences, meta-learning can serve as a useful 
complement through the automatic accumulation and exploitation of meta-
knowledge.  
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