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A PUF-based Data-Device Hash for Tampered

Image Detection and Source Camera Identification
Yue Zheng, Student Member, IEEE, Yuan Cao and Chip-Hong Chang, Fellow, IEEE

Abstract—With the increasing prevalent of digital devices and
their abuse for digital content creation, forgeries of digital images
and video footage are more rampant than ever. Digital forensics is
challenged into seeking advanced technologies for forgery content
detection and acquisition device identification. Unfortunately,
existing solutions that address image tampering problems fail
to identify the device that produces the images or footage while
techniques that can identify the camera is incapable of locating
the tampered content of its captured images. In this paper, a
new perceptual data-device hash is proposed to locate maliciously
tampered image regions and identify the source camera of the
received image data as a non-repudiable attestation in digital
forensics. The presented image may have been either tampered
or gone through benign content preserving geometric transforms
or image processing operations. The proposed image hash is
generated by projecting the invariant image features into a
physical unclonable function (PUF)-defined Bernoulli random
space. The tamper-resistant random PUF response is unique for
each camera and can only be generated upon triggered by a
challenge, which is provided by the image acquisition timestamp.
The proposed hash is evaluated on the modified CASIA database
and CMOS image sensor based PUF simulated using 180nm
TSMC technology. It achieves a high tamper detection rate
of 95.42% with the regions of tampered content successfully
located, a good authentication performance of above 98.5%

against standard content-preserving manipulations, and 96.25%

and 90.42%, respectively for the more challenging geometric
transformations of rotation (0 ∼ 360

◦) and scaling (scale factor
in each dimension: 0.5). It is demonstrated to be able to identify
the source camera with 100% accuracy and is secure against
attacks on PUF.

Index Terms—Camera Identification, Digital Image Forensics,
Perceptual Image Hash, Physical Unclonable Function.

I. INTRODUCTION

THanks to the advent of information technology, digital

images and videos have been increasingly exposed as

important information or art carriers in our daily life. Despite

easy and cheap to acquire, distribute and store, the threats

of abuse are high, which if not carefully solved, will lead to

great loss of property, fame, and even life. Images or videos

can be cloned illegally, imperceptibly modified using image

processing tools or even fabricated with the help of artificial

intelligence (AI) to distort the truth to mislead people or

Manuscript received on January 15, 2019, revised on March 26, 2019 and
accepted on June 28, 2019. This project was supported by the Singapore
Ministry of Education AcRF Tier 2 grant No. MOE2015-T2-013.

Y. Zheng and C.H. Chang are with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore 639798. (Emails:
yzheng015@e.ntu.edu.sg, echchang@ntu.edu.sg). Y. Cao is with the College
of Internet of Things Engineering, Hohai University, Changzhou 213022,
China. (Email: caoyuan0908@gmail.com) (corresponding author: C.H. Chang
and Y. Cao.)

clinch wrongful convictions in a court of law. In late 2017,

a software called “deep fakes” was anonymously released that

uses deep learning to swap the face of a person to create

a very realistic fake picture or video. The non-consensual

use of this tool to insert celebrity faces onto pornographic

videos caused the popular online forum Reddit to shut down

its /r/deepfakes subreddit discussion board [1]. This incident

raises a red flag, given the prevalent use of surveillance footage

to aid criminal investigation and civil litigation. As fraudsters

are more adept at using AI, it is imperative to enhance

digital (visual) evidences with technologies that can not only

detect forgeries (image tampering detection) but also identify

the digital device that captures the evidence (source camera

identification) to combat anti-forensics.

For image tampering detection problem, the solutions are

mainly provided by three types of schemes in the literature

[2]: image watermarking [3], [4], digital image forensics

[5]–[8] and perceptual image hashing [9]–[11]. The image

watermarking-based schemes can detect the distortion based

on the assumption that the imperceptibly embedded watermark

will also be distorted. However, such methods have funda-

mental trade-off between perceptual quality degradation and

watermark capacity, which limits their sensitivity and robust-

ness against different optimized attacks with a constrained

attack distortion [12]. Digital image forensic based schemes

aim at blind investigation of malicious tamper with no side

information (e.g., watermark or hash values) provided from

the original images. The method can be broadly categorized

as being visual and statistical. The former is mainly based

on visual clues such as inconsistencies in an image while

the latter focuses on analyzing the pixel values of the image

[13]. However, lacking original data information makes these

methods computationally intensive and very time consuming,

often with low accuracy of detection. Among all, perceptual

image hashing is most effective in tamper detection as it is

very sensitive to content-specific modifications but is otherwise

robust against normal content-preserving processing like noise,

filtering, rotation or scaling. Since such methods depend on a

shared secret key for authentication, the security of the whole

system will collapse if the secret key is compromised, lost or

stolen. It has been demonstrated that storing the secret key in a

non-volatile memory (NVM) is vulnerable to data remanence

and reverse engineering attacks [14]–[16]. Once the key is

cracked, the attacker can easily create a valid hash value for

a tampered image.

Source camera identification is mainly achieved using ma-

chine learning based methods, which basically follow three

steps: image feature extraction, classifier training and image



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X 2019 2

source class prediction. It is important to select appropriate

features that represent the unique characteristics of the un-

derlying devices. By analysing the structure and processing

stages of digital camera, such features can be algorithmically

extracted based on the knowledge of lens aberration, sensor

imperfection, color filter array interpolation and statistical

image features [17]. Most existing works focus on imaging

device brand identification [18], [19], which can achieve very

high accuracy but fail to distinguish individual devices from

the same model and the same brand. Identifying individ-

ual camera devices have been increasingly studied in recent

years based on photo response non-uniformity (PRNU) pattern

[20]–[24], but strict conditions in the acquisition process,

the number and content of training images as well as the

geometrical synchronization of testing images have to be met

in order to achieve high reliability and accuracy. Since those

methods require features to be extracted from the images

instead of the device, the device source detection accuracy is

strongly constrained by the image fidelity and quality. As the

image processing methods are transparent, the same approach

can also be used by a malicious user to extract the device

features from publicly available images. A newer and anti-

forensic resistant way of camera device identification uses

physical unclonable function (PUF) to directly extract the

“device signature” from the pixel array [25], [26]. The authors

proposed low-cost CMOS image sensor [26] and dynamic

vision sensor [25] based PUFs, which were designed based on

the fact that modern integrated circuit manufacturing process

will introduce inevitable random variations into individual

active pixel elements of identically designed image sensors.

Both works have been demonstrated to be able to differentiate

every single camera device regardless of model or brand with

high accuracy.

Though being widely researched in both directions indepen-

dently, to our best knowledge, very few works can effectively

detect image tampering while at the same time identifying

source cameras. This attribute is of particular significance in

digital forensics. This concept was proposed in our preliminary

works [27], [28], but there are deficiencies in these works. First

of all, they are not resilient to geometric transformations like

rotation and scaling, which are common content-preserving

manipulations in image processing. The experimental results

of [27] were obtained from a very small and simple database,

which is inadequate to demonstrate its robustness. Moreover,

the method proposed in [27] has little noise tolerance on the

input challenge due to its avalanche effect on PUF response

errors. The extracted features for the authentic regions from

the received image have to be exactly matched with the

enrolled features, which is very difficult to fulfill in practice.

Furthermore, tampered region identification is not considered

at all. In [28], physical layer watermarking is used to hide

the PUF-based data-dependent hash tag. That work focuses

mainly on the robustness of recovering the hidden hash tag

transmitted over additive white Gaussian noise channel instead

of any content-preserving image processing operations applied

directly on the image.

In this work, tamper detection and source camera identifi-

cation are achieved simultaneously by using perceptual image

hashing and PUF in a simple but effective way. The main

contributions can be summarized as follows:

1. The proposed perceptual data-device hash is able to imprint

an indelible birthmark of the camera for forgery detection

of its captured images. A CMOS image sensor based PUF is

utilized to generate a device-specific Bernoulli random ma-

trix for the projection of rotation-/scaling- invariant image

features to obtain the perceptual hash.

2 The proposed hash is time-, data- and device-dependent,

which greatly enhances the system security compared to the

existing perceptual hashing methods that are only dependent

on the data. The unique and innate device characteristics is

directly extracted from the hardware, which greatly sim-

plifies, speeds up and increases the accuracy of individual

source camera identification compared to costly, slower and

less accurate traditional machine learning based methods.

3. The proposed work solves the secure “key” storage and

transmission issues in existing perceptual image hashing

scheme for image forensics. Key leakage and hash forgery

are prevented as the proposed perceptual image hash is

“keyless”. Attestation is non-repudiable as the perceptual

image hash can only be generated by the timestamp of

the image captured through the camera’s tamper-resistant

image sensor PUF. The threat of server spoofing attacks is

eliminated as attestation of tagged image and its origin is

performed directly with the acquisition device without the

need to store the challenge-response pairs (CRPs) of PUF

in trusted server database.

4. An optimal selection of hash dimension and an adaptive

threshold is proposed for effective tampered region detec-

tion. These improvements maximally discriminate the mali-

cious tampering from content-preserving operations, leading

to excellent tamper detection rate and accurate identification

of the tampered regions on the tampered images.

The rest of the paper is organized as follows. Some back-

ground information on robust image features and PUFs are

provided in Section II. The proposed perceptual data-device

hash, its generation and how it is used to achieve image

tamper detection and source camera identification are detailed

in Section III. Section IV presents the experimental setting and

parameter optimization. The system performance and results

are analyzed in Section V. Section VI concludes the paper.

II. PRELIMINARIES

To keep the paper self-contained, this section briefly intro-

duces the basis of some image and device feature extraction

techniques we used for the computation of the proposed

perceptual data-device hash.

A. Speeded-up robust features

The speeded-up robust features (SURF) is a robust local

feature detector built upon the insight gained from the scale-

invariant feature transform (SIFT) descriptor. SURF feature

is highly invariant to scale, translation, lighting, contrast and

rotation [29], and outperforms SIFT and other popular feature

extractors in speed, accuracy, and robustness against different

image transformations.
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SURF adopts a detector-descriptor scheme, which relies on

integral images [30] for fast computation. The detection of

scale and orientation invariant interest points is based on the

determinant of Hessian (DoH) matrix. Box filter is utilized

to approximate the Gaussian second order derivatives, with

which the approximated DoH can be calculated as [29]:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (1)

where Dxx approximates the convolution of the Gaussian

second order derivative with an image I at point c = (x, y).
Similarly for Dyy and Dxy . The pre-computed integral image

accelerates the computation of Dxx, Dyy and Dxy by using

only three additions and four memory accesses, independent

of the box filter size. For simplicity, a constant relative weight

of 0.9 is used for the filter response to provide the necessary

energy conservation between the Gaussian and approximated

Gaussian kernels [29].

Such blob responses are calculated at each point of image I
over different scales by convolving the same input image with

larger filters to obtain a series of filter response maps. The

local maxima of the scale-normalized DoH across 3 × 3 × 3
neighborhood with different octaves is found and interpolated

both in scale and image space to compensate for the con-

struction error. After which, a predefined threshold is applied

to select the strongest feature points from this set of local

maxima [31].

The SURF descriptor summarizes pixel information within

a local neighborhood. First, the orientation for each feature

point is determined by convolving pixels in its neighborhood

with the Haar wavelet filter. A square neighborhood centered

around the interest point and along the detected orientation is

then divided into 4×4 sub-regions. The sum of values (
∑

di)
and of magnitudes (

∑ |di|) for both wavelet responses dx and

dy in the horizontal and vertical directions, respectively of

each sub-region are computed as the feature vector entries. By

concatenating the 4D feature vectors vk of all the sub-regions,

the ith interest point can be described as a 64-dimension

descriptor vector:

Di = [v1, v2, · · · , vk, · · · , v16] ∈ R
64 (2)

where

vk =
[

∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|
]

, k = 1, 2, · · · , 16
(3)

For an image I with m detected interest points, the SURF

feature representation can be denoted as

F = {D1,s1 , · · · , Di,si , · · · , Dm,sm} (4)

si = [σ, sL, O, L, |det(H)|] (5)

where si of the ith feature point contains the scale σ, sign

of Laplacian sL, orientation O, location L and the DoH

magnitude |det(H)|.
Finally, SURF exploits a nearest neighbor strategy to per-

form the image feature matching [32] based on the computed

descriptors. MSAC-based technique (described in Sec. II-B) is

used to check the geometric consistency.

B. M-estimator Sample Consensus

M-estimator SAmple Consensus (MSAC) algorithm is an

improved variant of the random sample consensus (RANSAC)

algorithm for effective transformation estimation. RANSAC

belongs to the framework of iterative hypothesize-and-verify

algorithms, which can be briefly described by the following

procedure [33].

First, a minimal sample set (MSS) containing minimal

sufficient data items for model parameter determination is

randomly selected from the input database. A model is then

hypothesized and the model parameters (the transformation)

are calculated based solely on the elements from MSS. Next,

a consensus set (CS) of inliers is found for this hypoth-

esized model by verifying which elements from the entire

database are consistent with the previously estimated model

parameters. This hypothesize-and-verify procedure is iterated

until the probability of finding a better model falls below a

predefined threshold. The best transformation is then estimated

by choosing the one with the largest CS ranked according to

its cardinality.

rank(CS)
def
= |CS| (6)

Let D = {D1, D2, · · · , DN} denotes a dataset of input

data, θ the estimated transformation and M the model space.

RANSAC identifies inliers and evaluates the quality of CS by

minimizing the loss function

CM (D, θ) =

N
∑

i=1

ρ(Di,M(θ)) (7)

Each data point Di is assigned a weight of zero or one by

comparing their error functions against a noise threshold δ:

ρ(Di,M(θ)) =

{

0, |eM (Di, θ)| 6 δ

1, otherwise
(8)

The error function eM (Di, θ) is defined as the distance from

Di to M(θ), i.e.,

eM (Di, θ)
def
= min

D′

i
∈M(θ)

dist(Di, D
′
i) (9)

where dist(a, b) is an appropriate distance function between

two points, a and b.
To reduce the sensitivity of estimated model parameters to

the choice of noise threshold, MSAC modifies ρ(Di,M(θ))
in Eq. (8) to

ρ(Di,M(θ)) =

{

eM (Di, θ), |eM (Di, θ)| 6 δ

δ, otherwise
(10)

MSAC improves the efficiency of RANSAC by redescend-

ing. It scores the inliers according to their fitness to the model

and assigns the outliers a constant weight. The number of

iterations τstop [33] can be set to:

τstop =

⌈

log ε

log(1− q)

⌉

(11)

where q represents the probability of sampling a MSS from D

that produces an accurate estimation of the model parameters,

and ε is a predefined probability threshold (a.k.a alarm rate)

such that the probability of no unbiased MSS is picked after

τstop iterations is at most ε.
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C. Physical Unclonable Function

Physical unclonable function (PUF) [34] is a unique

hardware-oriented security primitive that does not rely on key-

based algorithmic intractability or hard-to-solved mathematical

problems as the basis for trust establishment. PUF harnesses

the subtle mismatches or disorder in electrical properties of

identically designed circuits from inevitable and uncontrollable

physical parameter variations in nano-scale device manufac-

turing process. A PUF can be mathematically modelled as

an irreversible mapping of an input challenge to an output

response. The challenge-response pair (CRP) is unique for

different dies of the same wafer and across wafers, making

PUF an ideal “device fingerprint”. Besides, the response of the

PUF can only be generated upon request by an input challenge,

which avoids the need to hardcode the device identity or store

the secret key locally on NVM. Because of this, PUF possesses

tamper-aware or tamper-evident property as any modification

to the PUF circuit will change the original CRP mapping and

render a genuine device unable to be authenticated.

In this work, we make use of PUF to generate device-

specific random space for the projection of image features.

Strong PUF [34], such as arbiter PUF, has an exponential

number of challenges relative to its number of bit-slices.

While the practically inexhaustible number of challenges is

good to ensure freshness of CRPs against replay and man-in-

the-middle attacks in device authentication, the responses to

different challenges are not mutually independent as they are

generated based on the linear additive path delay of cascaded

bit-slices. As the number of CRPs are significantly larger than

the unknown device parameters that contribute to the one-

way function, strong PUFs are also potentially vulnerable to

cloning attack by machine learning. Memory-based PUF is a

typical weak PUF of limited number of challenges. As each

response bit is independently generated by a memory cell, its

number of challenges scales linearly instead of exponentially

with the number of addressable bit-cells. Such PUF that can be

intrinsically reused as another functional module in computer

system is particularly desirable to avoid the overhead of a

dedicated chip area reserved for chip-unique random response

generation. The CMOS image sensor used for digital imaging

has a similar array structure of independently accessible pixel

elements. Modern CMOS image sensors have great resolution.

By reusing the integrated CMOS image sensor of an image

acquisition device for PUF response generation, the number of

pixels is more than sufficient to provide the required random

mapping space.

III. PROPOSED PUF-BASED DATA-DEVICE HASH

To detect maliciously tampered, unscrupulously manipu-

lated and fabricated images without restricting benign image

processing and analysis, we proposed to tag the image with

a distinguished provenance to irreversibly and non-repudiable

bind the information integrity, source authenticity and acqui-

sition timestamp. The tag can be generated by integrating the

sensor-level device information with the perceptual invariant

image features at the time of capture. The extraction and

unification of the image features and “device fingerprint” are

detailed in this section.

A. Robust Feature Extraction

Salient features extracted from the captured image for the

generation of the proposed perceptual data-device hash should

satisfy the following requirements. First, distinguishable im-

age features and acquisition device characteristics should be

reliably and independently extracted before their fusion. To

reduce the computational burden and improve the accuracy,

unique device features are to be extracted directly at sensor-

level instead of by statistical processing or learning from

a large pool of images captured by the device. Secondly,

the extracted image features should be invariant to common

image processing operations like rotation, filtering and gamma

correction, and have good tolerance against inevitable noise

contamination during data processing or transmission. Last but

not least, as tampering tends to focus on dominant local instead

of global features, the tampered regions should be identifiable

from the change in dominant block features. To fulfill these

requirements, we extract the image features from rotation-

invariant SURF and adjoint block-based DCT concatenated

features, and the “device fingerprint” from the CMOS image

sensor based PUF.

1) Rotation-Invariant SURF Features: In order to achieve

efficient transmission, only a small constant number of the

strongest SURF features are kept. For images that have feature

points more than a predetermined threshold Tf (Tf = 100
in our experiment), it will be truncated directly from the

(Tf +1)th feature in descending order of salience. Assuming

t effective feature points are detected in an M × N source

image, the 64-D SURF features are denoted as:

F = {D1,s1 , · · · , Di,si , · · · , Dt,st} ∈ R
64×t, t ≤ Tf (12)

where si is the descriptive information for each SURF feature

point as denoted in Eq. (5).

2) Adjoint Block-based DCT Features: Discrete cosine

transform (DCT) (typically DCT-II) is a popular block-based

feature extraction method with strong “energy compaction”

property. It is not only robust against cropping, noising,

filtering and sharpening, but also has good computational effi-

ciency [35]. Adjoint block-based DCT concatenated feature is

proposed in [28] to increase the energy concentration on local

features. It can be easily obtained by concatenating the DCT-

II coefficients of small neighboring sub-blocks. An M × N
image is first divided into non-overlapping 8 × 8 elementary

blocks (eblocks) before applying the DCT-II transform on

each eblock. Since most of the signal information tend to be

concentrated on a few low-frequency components, only the

first 50% of the DCT coefficients are kept and zigzagged to

obtain the eblock feature vector f ∈ R
32. The cblock is then

formed by combining four neighboring eblocks, whose feature

vectors are concatenated together to form the cblock feature

F ∈ R
128 without compromising the resolution and energy of

localized features.

Fi,j = [f2i−1,2j−1, f2i−1,2j , f2i,2j−1, f2i,2j ] ∈ R
128

i ∈ {1, 2, · · ·M/2} , j ∈ {1, 2, · · ·N/2} (13)

where (i, j) is the row and column indexes of the cblock.

f2i−1,2j−1 denotes the eblock feature vector extracted from
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the eblock that resides in the (2i − 1)th row and (2j − 1)th

column of the original image I .

3) CMOS Image Sensor Based PUF: To avoid sophisti-

cated statistical image processing techniques, CMOS image

sensor based PUF [26] uses the innate fixed pattern noise

(FPN) of active pixel sensor array for camera or imaging

device identification. FPN as a whole refers to the random

variations of output pixel voltage values of an image sensor

under uniform illumination or even in complete darkness. This

phenomenon is induced by the small deviations in individual

pixel responsivity of the sensor array contributed by the

transistor size and interconnect mismatches as a consequence

of random lithography variations. In this work, the timestamp

Ct generated at the time of image capture is converted into a

digital word and applied as a challenge to the PUF. As shown

in Fig. 1, Ct is applied as a seed of a linear feedback shift

register (LFSR) to generate the internal challenges C ′
t and

C ′′
t at the control of a clock Clk. C ′

t and C ′′
t are applied to

the CMOS image sensor array to locate a pair of active pixel

sensors. Their corresponding reset voltages PC′

t
and PC′′

t
are

read out by disabling the correlation double sampling circuit

and then compared to generate a response bit Ri. Unreliable

response bits with absolute reset voltage difference less than

a given threshold are discarded. An LR-bit response R can

be obtained by clocking the LFSR at least 2LCLR cycles,

where LC is the bit length of challenge. This CRP mapping is

unique to each PUF instance, and its high uniqueness ensures

that individual camera can be distinguished with high accuracy

regardless of model type or brand.

B. Perceptual Data-Device Hash Generation

This section elucidates how the extracted image features

and “device fingerprint” are indivisibly fused into a compact

perceptual data-device hash. Several design objectives are to

be met. First, to prevent the key leakage problem, which is

a major weakness of conventional perceptual image hashing,

the hash should not rely on a persistently stored local secret

key for its generation. Secondly, the integration of both data

and device information should provide an acceptably strong

discriminative power for tamper detection and source camera

identification. Last but not least, the hash should be sufficiently

compact and can be computed efficiently.

To fulfill the above objectives, the proposed data-device

hash is generated by projecting the image features into a

device-unique random space. The latter is defined by the

response of the CMOS image sensor PUF, which can only

be generated when the PUF is stimulated by a timestamped

challenge Ct. Random projection (RP) is a widely used

efficient dimension-reduction technique. The key idea stems

from Johnson-Lindenstrauss (JL) Lemma [36], which can be

stipulated as: Given ǫ ∈ (0, 1), if m ≥ O(ǫ−2 logQ), then

every high-dimensional dataset X ∈ R
n of Q points can find

its Lipschitz mapping f : Rn → R
m such that

(1−ǫ) ‖ u−v ‖2≤‖ f(u)−f(v) ‖2≤ (1+ǫ) ‖ u−v ‖2 (14)

for any u, v ∈ X .

Three commonly used matrices Φ that have been proven to

be qualified for the implementation of f in Eq. (14) are listed

below [37]:

1. iid samples from N (0, 1/m);
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2. independent realizations of ±1 Bernoulli random vari-

ables:

Φi,j =

{

+1√
m
, probability = 0.5

−1√
m
, probability = 0.5

(15)

3. a related distribution that yields the matrix:

Φi,j =















+
√

3
m , probability = 1

6

0, probability = 2
3

−
√

3
m , probability = 1

6

(16)

Since PUF response is ideally a random vector of binary

bits with uniform distribution, we proposed to specify the

projection space by a PUF response driven Bernoulli random

matrix. The entries of Bernoulli random matrix are set to

+1/
√
m or −1/

√
m when the PUF response bit Ri is 0 or 1,

respectively, to produce the device-unique random space P .

Pi =

{

+1√
m
, Ri = 0

−1√
m
, Ri = 1

(17)

To generate an m-dimensional perceptual data-device hash,

a PUF response of length n×m is collected from the CMOS

image sensor, with n being the dimension of the raw image

feature vector. By projecting the SURF features F of Eq. (12)

and the adjoint DCT features Fi,j of Eq. (13) into this PUF-

specified Bernoulli random matrix, a data-device hash H can

be generated as follows:

H = [HSURF , HaDCT ]

= [PT
f1D1,s1 , · · · , PT

f1Di,si , · · · , PT
f1Dt,st ,

PT
f2F1,1, · · · , PT

f2FM/2,N/2], t ≤ Tf

(18)

where the superscript T is a matrix transpose operator. Pf1

and Pf2 correspond to the random matrix P generated for

SURF and adjoint DCT features, respectively, which may have

different feature dimensions.

Tagging the image with the calculated data-device hash

H directly is vulnerable to lunchtime attack. Due to the

linearity of random projection, a malicious user can invert

the projection by carefully crafting the image features into

a full rank matrix with the hashes collected from temporary

possession of the device. Once the random projection matrices,

Pf1 and Pf2, are recovered, they can be used to generate

valid hashes for other images even without the correct device.

To solve this problem, the hash H is randomly shuffled by a

modified Knuth Shuffle algorithm, which can be realized using

the PUF response as the seed to an unbiased random integer

generator (e.g., LFSR or irand() function in C program), as

shown in Algorithm 1. To ensure that its output is unbiased,

one bit of the seed is flipped in each round of the for loop to

initiate a new random cycle. Additionally, the seed Rs can be

generated by applying a new challenge derived from Ct. The

bit length of Rs has to be sufficiently long, e.g., at least 128

bits, to prevent brute force attack.

The output of Knuth Shuffle is tagged to the image for

transmission and storage. With the correct device held by

a legitimate user, the seed Rs can be regenerated by the

embedded PUF. With the correct seed, the direct hash H can

Algorithm 1 Knuth Shuffle

Input: PUF response Rs, direct hash H of length l
for i = l downto 2 do

j = (unbiasedRandIntGen(Rs) mod (i− 1)) +1;

swap H(i) and H(j)
end for

be recovered for further verification. As the seed is internally

generated by the PUF, it is impossible for the adversary

to recover a valid H for his/her tagged image to pass the

authentication.

C. Image Tampering Detection and Source identification

Fig. 1 shows the framework of the proposed PUF-based

perceptual data-device hash in a digital forensic application

scenario. As shown in Fig. 1, once an image of interest Io
is captured by a camera, its SURF and adjoint DCT features

F will be extracted. At the same time, a timestamp Ct is

generated and applied to the embedded CMOS image sensor

PUF to obtain a response R, which is further processed to

produce the Bernoulli random matrix P . A data-device hash

Ho is then calculated by projecting F into the P space.

A shuffle challenge Cs derived from Ct is then applied to

the PUF to extract a 128-bit Rs as the seed to the Knuth

Shuffle module. Finally, the descriptive information s of

the SURF feature, the shuffled data-device hash ho as well

as the timestamp Ct are tagged on the original image Io.

The proposed system is able to validate the received image

authenticity, locate any small tampering regions and identify

the source device based on the received image Ir, descriptive

information s, hash Ho and timestamp challenge Ct using

the claimed device. The authentication framework comprises

an image registration stage and a hash distance comparison

stage.

1) Image Registration: The received image may have previ-

ously undergone certain geometric deformation like rotation or

scaling that causes its coordinates to deviate from the original

one. Therefore, SURF feature projected hash HSURF is used

for image registration in order to reproduce HaDCT for hash

distance comparison.

To perform authentication, the verifier inputs the dubious

image Ir to the claimed device. The tagged hash ho, the

descriptive information s and the corresponding challenge Ct

are extracted from Ir. Firstly, the extracted challenge Ct will

be fed into a LFSR to generate a new shuffle challenge Cs,

which is applied to the embedded PUF to obtain the 128-

bit Knuth Shuffle seed Rs. With Rs, the verifier is able

to recover the unshuffled hash Ho(=[HSURF
o ,HaDCT

o ]) from

ho. Using the same pre-processing as the original image Io,

the SURF features Fr of Ir are also extracted. Meantime,

the challenge Ct stimulated PUF response R (divided into

Rf1 and Rf2) is applied for Bernoulli random space P
(Pf1 and Pf2, respectively) generation. By calculating PT

f1Fr,

HSURF
r is regenerated. Taking HSURF

r and the original hash

tag HSURF
o as inputs, matched points between the original

image and the received image are found. As it is also possible
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that the received image has not undergone any geometric

transformation, to prevent the loss of precision, the presence

of geometric transformation is first ascertained by comparing

the corresponding locations of the matched points of Io and Ir
recovered from HSURF

o and HSURF
r , respectively. They should

be identical ideally if there is no geometric transformation

between Io and Ir. However, standard image processing oper-

ations like denoising or filtering and SURF matching algorithm

accuracy can change the locations of those detected matched

points slightly. In the proposed method, Ir is said to be in the

same coordinate as Io if the matched point pairs with absolute

location deviation of less than 5 occupy more than 50% of the

total matched pairs, i.e.,

LIo = matchedPtsOriginal.Location;

LIr = matchedPtsReceived.Location;

#(abs(LIo − LIr ) ≤ 5)

#(All matchedPtsPairs)
≥ 0.5

(19)

where #(A) is the cardinality of dataset A. In this case, It in

Eq. 20 will be directly assigned Ir.

Once geometric transformation is detected in the received

image Ir, MSAC is performed to find the best affine transfor-

mation that maps the most matched points from Ir to Io. As

a result, the recovered image It can be calculated by:

It = θIr =







a1 a2 b1

a3 a4 b2

0 0 1













xr

yr

1






(20)

where θ denotes the general description of the returned trans-

formation matrix, in which [b1 b2]
T represents the translation

vector and the parameters ai(i = 1, 2, 3, 4) defines the trans-

formations like image rotation and scaling.

(a) (b) (c)

Fig. 2. An example of wrong matching: (a) original image Io; (b) received
image Ir ; (c) recovered image It.

There is one exceptional case of image registration failure

due to overtly-tampered, completely different images or the

use of a wrong device (see more details in Sec. V-C). This

situation may lead to limited or even no matched SURF

points found. Under this circumstance, even if the SURF

feature detection and matching are conducted as normal, the

recovered images are probably distorted as shown in Fig. 2.

This abnormality in feature matching can be detected by the

number of absolute black pixels. If the number of absolute

black pixels in It exceeds certain threshold (10% in our

experiments) of the total image pixels, it is deemed as an image

registration failure and the received image will be rejected

immediately.

2) Hash Distance Comparison: Other cases of maliciously

tampered images that pass image registration (usually small

tampering) can be detected in the hash distance comparison

phase. If the image registration is successful, the recovered

image It that has the same coordinate system as Io will be ob-

tained. By applying adjoint DCT feature extraction and PUF-

based random projection (projection space: Pf2), the hashed

adjoint DCT features HaDCT
t are obtained. The Euclidean

distance e between HaDCT
t and HaDCT

o is calculated over

each cblcok and compared with a tamper threshold τe to detect

the tampering:

ei,j =
√

((Ht)aDCT
i,j − (Ho)aDCT

i,j )2

i ∈ {1, 2, · · ·M/2} , j ∈ {1, 2, · · ·N/2}
(21)

The outcomes of these two stages are shown in Fig. 3.
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Fig. 3. Received image authentication of proposed data-device hashing.

Adaptive threshold: An adaptive threshold is proposed

to increase the robustness of tampered image detection. The

problem with using a fixed threshold for all the images in

conventional perceptual image hashing [10], [28] is the distri-

bution of distance e varies among different original-received

image pairs. To achieve better tamper detection performance,

the threshold τe is made adaptive to the image pair. Taking

into consideration that the Euclidean distance between the

received and original images is larger for the tampered cblocks
than the untampered cblocks, to extract the authentic cblock
information, the median Euclidean distance of the image

pair is calculated and denoted as ẽ(I). For simplicity and

ease of computation, the adaptive tamper threshold τe(I) is

determined by a linearly separable hyperplane by mapping the

median distance ẽ(I) and the maximum Euclidean distance

emax across all cblocks of an image pair I to the same space

for different original-content preserving and original-tampered

image pairs. Thus,

τe(I) = a× ẽ(I) + b (22)

where a and b are the coefficients that can be empirically

determined. The linearity assumption of separable hyperplane

was found to have no significant negative impact from the

results of our experiments. The tampered regions of I can be

more conspicuously identified by the cblocks with this image

pair dependent adaptive threshold τe(I) than a fixed threshold.

IV. EXPERIMENT SETTING AND KEY PARAMETER

OPTIMIZATION

A. Dataset Preparation

Modified CASIA database is used in this work for perfor-

mance testing. The ground truth images are taken from the
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CASIA image tampering detection evaluation (ITDE) v1.0

database [38], which contains images from eight categories

(animal, architecture, article, character, nature, plant, scene and

texture) of size 384×256 or 256×384. Instead of directly using

the tampered image set from CASIA ITDE v1.0, the tampered

versions of those authentic images are selected from CASIA

ITDE V2.0, which are more challenging and comprehensive

since it considers post-processing like blurring or filtering

over the tampered regions to make the tampered images

appear realistic to human eyes. For one authentic image, there

may be several tampered versions in the CASIA ITDE v2.0

dataset. To increase the diversity, only one tampered version

is kept for each authentic image. As a result, the modified

CASIA database contains 400 (8 categories × 50 per category)

authentic images and their corresponding tampered versions.

According to CASIA ITDE v2.0, the tampered images

are generated using crop-and-paste operation under Adobe

Photoshop on the authentic images, and the tampered regions

may have random shapes and different sizes, rotations or dis-

tortions. In order to evaluate the proposed system performance

over content-preserving manipulations, we enrich the modified

CASIA dataset by adding content-preserving manipulations

to the authentic images using Matlab and ImageJ. Common

image processing techniques like rotation, scaling, filtering

and JPEG compression, and unavoidable process/transmission

noises like Gaussian, Salt&Pepper and speckle noise are con-

sidered. Furthermore, the abovementioned content-preserving

manipulations are also applied to the tampered dataset to

evaluate if their combination can evade detection. As a result,

the modified CASIA database D contains:

1) Dau: 400 authentic images in 8 categories, each with 50

images;

2) Dtampered: 400 tampered images corresponding to the

authentic ones from Dau;

3) Dau cp: 3600 (400 × 9) images generated by adding a

single content-preserving manipulation (9 types: Gaus-

sian noise, salt&pepper noise, speckle noise, Gaussian

filter, motion blur, JPEG compression, gamma correction,

rotation and scaling) to every image of Dau;

4) Dtampered cp: 3600 (400×9) tampered images by apply-

ing those 9 content-preserving manipulations listed in 3)
to the images of Dtampered.

Fig. 4 shows Dau, Dtampered and Dau cp with their cor-

responding parameters and tools used. Since the experiment

setting has to be defined before the system is deployed, 160

authentic images and their corresponding manipulations from

Dtampered, Dau cp and Dtampered cp are used as training

dataset Dtrain in this section to extract the optimal param-

eters, while the remaining 240 authentic images and their

corresponding manipulations are used as the testing dataset

Dtest for performance evaluation in Sec. V.

For the authorized cameras used in our experiment, their

CRPs were simulated by eight PUF instances for 128×128

CMOS image sensor array using 180nm TSMC CMOS tech-

nology process design kit in Cadence environment. The design

of CMOS image sensor PUF of [26] is adopted. The PUF

challenge is 16 bits while the response bit length will be deter-

mined after the optimal hash dimension has been determined

in Sec. IV-B. Monte-Carlo simulated results of PUF designed

for 64×64 CMOS image sensor array were first validated

by the real silicon data measured from five 64×64 CMOS

image sensor array PUF chips fabricated also in the 180nm

CMOS technology [26]. More instances of PUF designed for

the larger 128×128 CMOS image sensor array were then

simulated to evaluate the PUF quality. The fractional Hamming

distance distribution from responses generated by 42 simulated

PUF instances is Gaussian distributed with mean and standard

deviation of 0.5002 and 0.0039, respectively. The 20 blocks

of 35k response bits each also passed the NIST randomness

tests. The reliability after discarding 5.5% of total pixel pairs

by thresholding is > 98.17% over a temperature range of −45

to 95◦C and 100% with ±11% supply voltage variations.

B. Hash Dimension Selection

As introduced in Sec. III-B, the hash dimension m is

determined by the PUF-based Bernoulli random matrix P ,

which has a size of n×m, with n being the original feature

dimension. Let n1 and n2 be the dimensions of SURF fea-

ture and adjoint-DCT feature, respectively per adjoint block,

and p be the projection rate (projection rate refers to the

ratio of projected feature dimension to the original feature

dimension), the final hash dimension can be calculated by

m = m1+m2 = round(p×n1)+ round(p×n2). According

to JL Lemma, lower ǫ means better preservation of Eq. (14),

which can be ensured by increasing m (or equivalently p).

However, increasing m will reduce the hash compactness and

require larger PUF size. Since n1 = 64 and n2 = 128, to avoid

a large random projection matrix (n1 × m1 and n2 × m2),

the upper bound of the projection rate is set to 0.3 to keep

the size of random matrix P below 6080 bits. In order to

select an optimal hash dimension, we tested the maximum

Euclidean distance emax across cblocks for each image pair

in both content-preserving and tampered cases with p of 0.05,

0.1, 0.2 and 0.3.

emax = max
i∈[1,M/2],j∈[1,N/2]

ei,j (23)

To obtain the optimal hash dimension, emax of the original-

received image pairs, Dau-Dau cp and Dau-Dtampered, in

Dtrain are tested. Fig. 5 is the notched boxplot that shows

the emax distribution of 9 content-preserving cases and the

tampered case, where different colors are used to indicate

the different projection ratios of p. Each colored box with

a notch around the central mark represents the interquartile

range (IQR). The notch represents the 95% confidence interval

for the median (the central mark). If the notches between two

random distributions in the boxplot do not overlap, it can be

concluded that, with 95% confidence, their true medians differ.

For a better separability between the content-preserving cases

and the tampered case, p should be optimally selected to en-

sure that there is enough margin to determine a threshold τe(I)
of an original-received image pair to discriminate between

different content-preserving cases and the tampered case. If

emax of an image pair exceeds τe(I), the received image will

be rejected and those cblocks of the received image of I that



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X 2019 9

Gamma Correction

‘strectchlim’
(Matlab)

Gaussian Filter

σ =0.5

(Matlab)

Gaussian Noise

µ=0, σ=0.1

(Matlab)

JPEG

QF=50

(ImageJ)

Motion Blur

len=5, theta=30

(Matlab)

Rotation (Matlab)

ra: 0-360
o 

Salt&Pepper Noise

d=0.05

(Matlab)

Speckle

σ =0.2

(Matlab)

Tampered

(Photoshop)

Genuine Image
Scaling

Sx=Sy=0.5

(ImageJ)

Content-preserving Manipulations:

Fig. 4. An example image in the dataset. Genuine image (in blue font) with its 9 content-preserving manipulations (in black font) and 1 tampered version
(in red font). The format of the label: manipulation technique, parameters, and the tool used are annotated in brackets. The notations used for the parameters
are − µ: mean; σ2: variance; d: noise density; ra: rotation angle; QF : quality factor; Sx, Sy : scaling factor in x and y dimensions; ‘stretchlim’: a Matlab
function that can automatically achieve the optimal gamma correction.

have e > τe(I) are identified as the tampered regions. The

discriminability between each content-preserving case and the

tampered case can be observed by comparing the IQRs and

medians of the emax distributions for the original-received

image pairs in different cases. The experimental results in

Fig. 5 show that when p = 0.05 (m1 = 3, m2 = 6),

geometric transformations including scaling (scale factor in

each dimension: 0.5) and rotation (factor: 0 ∼ 360◦) lead to

large emax in content-preserving cases. The IQRs of their

emax distributions even overlap with that of the tampered

case, which leave insufficient margin for thresholding. When

the hash dimension is too small, there are insufficient image

features to substantiate Eq. (14). The emax distributions for

p = 0.1, 0.2 and 0.3 have comparable IQRs and medians in

the tampered case as well as in each of the content-preserving

cases. More importantly, for each of these projection ratios,

there is sufficient gap between the notches of the tempered

distribution and any of the content-preserving distributions. As

the device key length will increase proportionally from 960 to

2048, 4160 and 6080, respectively as p increases from 0.05 to

0.1, 0.2 and 0.3, to keep the hash compact, p = 0.1 is selected.

C. Adaptive Threshold Setting

Once the optimal hash dimension has been set by p = 0.1,

the tamper detection threshold τe can be determined by finding

a linearly separable hyperplane in ẽ(I) and emax of image I
for all cases of original-received image pairs mentioned in

Sec.IV-B. Fig. 6 shows that the emax values of the tampered

case mainly cluster in the top of the inclined plane of those

content-preserving cases. It is evident that any horizontal line

(i.e., a fixed threshold) is incapable of satisfactorily separating

the benign cases from the malicious case. A simple adaptive

threshold can be derived from a linearly separable hyperplane

to distinguish these two classes by any linear classification

method such as Bayesian Linear Classifier (BLC). The green

line y = 3.3 × ẽ(I) + 1030 shown in Fig. 6 denotes the

threshold found using the BLC-based classification method.

Under rare circumstances where the tampered regions of

the received image are exceptionally large or the received

image is a completely different image of the original, ẽ(I)
can be too large to cause the calculated threshold τe to exceed

emax, resulting in false acceptance as the Euclidean distance

of all cblocks of the malicious image pair will fall below the

threshold. It is observed that ẽ(I) of content-preserving cases

mainly cluster around the range below 500. This problem can

be easily resolved by putting a limit on the adaptive threshold

value once the ẽ(I) exceeds 500. As emax corresponds to the

worst tampered region in the received image, the separation

line y can be moved downwards to detect more tampered

cblocks. Lowering line y too much can also lead to higher false

rejection rate (FRR) of content-preserving cases. A balance is

struck by setting an offset boundary (confined by the magenta

dash lines y1 and y2 in Fig. 6) for the separation line. By

keeping the gradient and varying the intercept of line y with

a step size of 100, the false acceptance rate (FAR) in the

tampered case and the FRR in the content-preserving cases

are measured and presented in Fig. 7. The experimental results

show that the error rates increase rapidly for the tampered

cases but decrease modestly for the geometric transformation

(rotation and scaling) with the rise of line intercept. The error

rates remain relatively constant for other content-preserving

manipulations. To maximally detect all tampered regions with

minimal negative impact on the error rates in all cases, the

adaptive threshold in Eq. (22) is set to:

τe(I) =

{

3.3× ẽ(I) + 730, ẽ(I) ≤ 500

2380, ẽ(I) > 500
(24)

V. PERFORMANCE AND DISCUSSION

In this section, the proposed system performances are eval-

uated using the testing dataset Dtest.
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Fig. 5. (a) emax distribution for various cases of manipulations with different projection rates; (b) Enlarged details for the Y axis (emax) range between
0 ∼ 700.

Fig. 6. Adaptive threshold determination.

Fig. 7. The error rates (FAR in the tampered case and FRR in the content-
preserving cases) with adaptive threshold obtained by varying the intercept of
the BLC separation line.

A. Perceptual Robustness

Perceptual robustness tests the tolerance of the perceptual

image hash to content-preserving manipulations such as nois-

TABLE I
PERCEPTUAL ROBUSTNESS TEST.

Manipulations Parameters FRR

Gaussian noise µ = 0, σ = 0.1 0.0042
Salt&Pepper noise d = 0.05 0.0083
Speckle noise σ = 0.2 0.0042
Gaussian Filter σ = 0.5 0.0000
Motion Blur len = 5, θ = 30 0.0083
JPEG compression QF = 50 0.0125
Gamma Correction ‘stretchlim’ 0.0083
Rotation ra = 0 ∼ 360◦ 0.0375
Scaling Sx = Sy = 0.5 0.0958

ing, blurring, JPEG compression and so on. The received im-

ages that have undergone those content-preserving operations

listed in Fig. 4 should be classified as authentic. The FRR

of each content-preserving case is measured to evaluate the

perceptual robustness. Lower FRR indicates a better perceptual

robustness. Table I shows that with τe(I) of Eq. (24) for

p = 0.1, the proposed method achieves a very low FRR

of < 1.5% for most of the content-preserving cases except

rotation and scaling, which have slightly higher FRRs of

3.75% and 9.58%, respectively. For the use case of image

forensics, the authentication result can be supplemented by a

score, which could be obtained by relating di,j = |ei,j−τe| to

a pre-defined confidence level table, to indicate the confidence

of the accept or reject decision. For an authentic or a tampered

image with the confidence level score lower than an acceptable

threshold, further evidences are needed to support the decision.
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B. Tamper Detection and Location

Tamper detection rate (TDR) measures the ability of an

image hash in detecting the malicious manipulations of the

received image. A good perceptual hash should have not

only higher TDR, but also capable of correctly locating the

tampered regions. Since the tampered image may also undergo

normal image processing, such manipulations should have

negligible effect on the TDR. These desirable properties are

evaluated for the proposed perceptual image hash.

TABLE II
TAMPER DETECTION TESTS.

Manipulations Parameters TDR

Tampered only −− 0.9542
+ Gaussian noise µ = 0, σ = 0.1 0.9125
+ Salt&Pepper noise d = 0.05 0.9250
+ Speckle noise σ = 0.2 0.9125
+ Gaussian Filter σ = 0.5 0.9542
+ Motion Blur len = 5, θ = 30 0.9250
+ JPEG compression QF = 50 0.9500
+ Gamma Correction ‘stretchlim’ 0.9542
+ Rotation ra = 0 ∼ 360◦ 0.9250
+ Scaling Sx = Sy = 0.5 0.9042

Table II shows a high TDR of 95.42% over 240 test image

pairs. With content-preserving manipulations on tampered

image, the TDR is still > 90% though slightly lower than

the “tampered only” case. The minor reduction in TDR is

ascribed to the increased difficulty in image registration phase

as these manipulations may introduce more deviations in hash

distance comparison. The examples in Fig. 8 illustrate the lo-

cations of tampered regions in all eight categories of tampered

images with content-preserving manipulations (Dtampered cp).

All tampered regions are correctly located.

C. Source Camera Identification

The proposed method is able to extract the source device

(camera) information from the received hash data, hence the

name “data-device hash”. The receiver is able to validate

that the received image is captured using a trusted device

while detecting possible tampering and locate the modified

content in the tampered image. Three cases are considered

in order to prove the source camera identification capability.

Case 1: for the same device, the distinguishability of the hash

data produced by applying different PUF challenges. Case

2: for different devices, the distinguishability of hash data

generated by applying the same challenge. These requirements

are expected to be readily fulfilled by the hash generated

through random PUF responses due to the inter-die variations

of nano-scale CMOS device fabrication process. Last but

not least, since the hash is dependent on both device and

data information, it should have good anti-collision capability,

which leads to Case 3: for the same device and same challenge,

the distinguishability of the hash data produced by different

images.

These desiderata are tested using eight CMOS image sensor

based PUF instances and the test database of 240 authentic

images. 10 Challenges are randomly selected and labelled

as c1 ∼ c10, while the eight PUF instances are labelled as

d1 ∼ d8. c1 and d1 are selected as the original challenge and

device, respectively, to calculate the benchmarks hash values

(hash bm) for the authentic images. In Case 1, a different

challenge is applied to the same device to generate a new

hash (hash 1) for the same authentic image; For Case 2, the

responses are collected from a different device using the same

challenge set. The hash value (hash 2) is then generated from

these responses for the same authentic image; For Case 3, the

240 authentic images are re-ordered to make different original-

received image pairs. This way, a different image is applied to

generate a new hash (hash 3) while the challenge and device

remain unchanged. The authentication performance of each

case is analyzed.

Each device and challenge combination is iterated on each

image pair, there are altogether 8 × 10 × 240 = 19200 tests

for each case. Fig. 9(a) shows that changing the device key

by either changing the challenge (Case 1) or the device (Case

2) will lead to 0 FAR in all malicious (device, challenge)

pairs. The probability of collision of the hash generated by

the same device key for two different images (Case 3) is

very low, as evinced by the average FAR of only 0.000208

in Fig. 9(b). Though not ideal, the 0.000208 FAR for Case

3 is inconsequential. This is because those falsely accepted

image pairs have irrelevant perceptual content with apparent

semantic gap. For the use case of image forensics, they would

have been rejected by visual inspection before being able

to be presented as an evidence in a court of law. This is

different from the use case of scanning large image databases

for potential manipulations. The results show that the proposed

method has good source camera identification performance for

all three cases. Besides, it is noted that device fingerprint

contributes more to differentiating the hash than the data

(image). Therefore, introducing the device information into

the hash increases the inter-class distance.

D. PUF Reliability Discussion

Albeit highly reliable, 100% correct regeneration of R and

Rs is not guaranteed by the PUF. Since Rs is used as the

seed of Knuth Shuffle algorithm, one bit flip can result in

a completely different shuffle order. Bit errors of Rs can be

corrected by Bose-Chaudhuri-Hocquenghen (BCH) [39] error

correction code, which is highly flexible and hardware effi-

cient. The reliability requirement of the much longer response

R used for the random projection is fortunately not as strict

as the short 128-bit Rs. To analyze the tolerance to bit errors

of R, the unreliable R is created by randomly flipping some

bits in the authentic responses while keeping Rs fully reliable

by BCH error correction. The authentication performance is

evaluated by injecting these unreliable responses into the

proposed system. To minimize bias in the experimental results,

the average acceptance rate is calculated for the unreliable R.

Table III shows that an error rate of R in excess of 20% will

definitely lead to an authentication failure even if a genuine

image is presented. However, if the error rate of R is kept

within 2%, the system can still maintain a very high correct

detection rate of 99.8%. Fortunately, this 2% error rate is well
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Fig. 8. Examples of tamper detection and location for all manipulations shown in Table II. (a)∼(h): Tampered image + content preserving manipulations
including filtering, JPEG compression, scaling, Gamma correction and noising in all eight categories; (i)∼(l): Tampered image + rotation.

satisfied by the CMOS image sensor PUF over the industrial

grade of operating temperature variation and typical regulated

supply with no more 10% voltage variation. Moreover, the

reliability of R can also be further enhanced by simpler

majority voting technique.

TABLE III
SYSTEM PERFORMANCE UNDER UNRELIABLE R

error rate f 0.01 0.02 0.03 0.1 0.2 0.3∼1.0

accept rate 0.999 0.998 0.949 0.194 0 0

E. Security Analysis

A typical verification process of the proposed system in-

volves (at least) an image to be validated, (at least) a claimed

device and a verifier. The verifier determines if the image is

captured by the claimed device without any malicious tam-

pering. The trust model and the assumptions of the proposed

system are given as follows:

Image: The received testing image may be either a genuine

or maliciously tampered/replaced/fabricated version. It may

have also gone through normal image processing including

noising, filtering or geometrical transformations like rotation

and scaling.

Device: The device has a monolithically integrated PUF,

and data-device hash tag generation and comparison modules.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, X 2019 13

TABLE IV
COMPARISON WITH EXISTING WORKS.

Scheme
Perceptual robustness (parameters) Tamper Tamper Device

Rotation Scaling Detection Location Authentication

TIFS2012 [9] 0.9075 (2o ∼ 30o) 0.8818 (0.5 ∼ 1.5) Yes Yes No

TIFS2013 [40] N/S (5o) N/S (0.5, 1.5) Yes Yes No

TIFS2015 [10] 0.8609 (25◦) 0.8477 (0.5) Yes Yes No

TIFS2016 [11] 0.9926 (±1◦ ∼ ±90◦) 1 (0.5 ∼ 2) Yes No No

Springer2016 [2] 0.8002 (6 5◦) 1 (0.5 ∼ 1.5) Yes Yes No

AsianHOST2016 [27] No No Yes No Yes

ISCAS2018 [28] No No Yes Yes Yes

This work 0.9625 (0 ∼ 360◦) 0.9042 (0.5) Yes (0.9542) Yes Yes

Noted that if several algorithms are proposed (e.g. [2], [9]), the one with best performance is chosen for comparison.

Fig. 9. Source camera identification performance.

It is the claimed source camera of the image in question.

The device may be either a genuine or maliciously tam-

pered/replaced/fabricated version. Noted that any test circuit

that has direct access to the challenge and response ports of

the embedded PUF will be disabled or removed after testing so

that the unobfuscated internal CRPs are inaccessible externally

upon device deployment.

Verifier: The verifier is entrusted to verify the image content

integrity and its claimed acquisition device. The verifier is

assumed to be granted permission to use the device for this

verification.

Attacker: The attacker is assumed to know all about the

system except the CRPs of the trusted device. The adversary

may try to deceive the verifier by sending fake images captured

using an untrusted device or claiming the ownership of a stolen

image. A common assumption is the adversary does not have

the authorized device, and is unable to obtain the temporary

data (such as intermediate results of the computations) stored

in the volatile memory within the device while the latter is

participating in an authentication process. In order to make

the fake image/copyright pass the authentication, the adversary

needs to recover the CRP mapping in order to generate a

valid hash, which may possibly be achieved by device cloning,

probing and random guessing.

Cloning attack refers to the duplication of another device

that shares the same brand/type/function as the authenticated

device in order to generate the device-dependent hash. How-

ever, PUF makes such attack infeasible even if the schematic,

operation and other details of the camera and CMOS image

sensor are made known to the attacker. Due to the uncontrol-

lable manufacturing process variations, every device is unique

and distinguishable even if the same mask set is used to re-

fabricate the image sensor. As only the hash but not the native

response bits are externally accessible, and the number of

challenges is linearly proportional to the number of pixels (that

make up the independent response bit-cells), it is impossible

to machine learn the CRP mapping of the PUF by collecting

the hashes from different input challenges. The PUF response

is well obfuscated by the uniformly random shuffle, making

its recovery from the hash data intractable.

Memory probing is an effective attack on traditional “secret-

dependent” image hashes, where their secret keys are locally

stored in a NVM. If the secret key has been successfully

retrieved, the adversary can easily generate a valid hash for

any image he/she has stolen or forged. Storing secret key in

NVM has been found to be vulnerable to invasive attacks like

reverse-engineering. In our case, the secret used to generate

the hash is not stored but directly built into the device structure

(CMOS image sensor array) as an integral property of the hash

function, and can only be generated upon request when the

device is powered on. Any invasive or semi-invasive attacks

on the CMOS image sensor chip will easily damage the device

structure and erase the secret permanently. Hence, probing

attacks are unlikely to succeed.

Random guessing is another common attack. For an adver-

sary who wants a forged image to be authenticated without

the correct device, he/she may try to create an effective hash

by trial and error. Noted that an effective hash generation

requires both valid random projection response R and shuffle

response Rs, among which Rs is of paramount importance.

After correctly cracking Rs, the attacker may generate a valid

internal hash Ho for the forged image using the same challenge

either by performing the lunch time attack as mentioned in

the last two paragraphs of Sec. III-B or directly guessing R.

However, the probability of successfully cracking a 128-bit

Rs is only 2−128, which can be made even more negligible

by increasing the bit-length of Rs. Without the correct Rs, the

original hash Ho cannot be correctly recovered, which makes

conducting further lunch time attack impossible. As for the

random guessing of R, Table III shows that on the premise

of correctly regenerated Rs, the acceptance rate for a genuine
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image is merely 19.4% even if the adversary makes only 10%
of errors in guessing R. Assume that 0 and 1 bits are equally

probable to occur in the PUF response, the probability Pr of

making at most f fraction of bit errors in an N -bit response

by random guessing is given by:

Pr =
N
∑

i=⌈Nf ′⌉

(

N

i

)

(
1

2
)i(

1

2
)N−i = 2−N

N
∑

i=⌈Nf ′⌉

(

N

i

)

(25)

where f ′ = 1 − f . When N = 2048 and f = 0.1, Pr <
2.45× 10−558. This implies that it is close to impossible for

an adversary to gain even 19.4% authentication accuracy by

random guessing, even with the knowledge of Rs, let alone it

is also nearly impossible to recover Rs.

F. Comparison

In this section, the proposed work is compared with the ex-

isting perceptual image hashing methods in recent years. The

comparison is made from four main perspectives: perceptual

robustness and the capabilities of tamper detection, tamper

region location and device authentication. For perceptual ro-

bustness, different non-uniform content-preserving manipula-

tions as well as their parameters were used in different works,

which make the comparison difficult and possibly unfair. It is

noticed that for content-preserving manipulations like noising,

filtering, JPEG compression and gamma correction, most of

the perceptual hashing methods can achieve good performance

(> 0.95). However, perceptual robustness against geometric

transformations like rotation and scaling is a widely discussed

key challenge in perceptual hashing research. Based on these

observations, only “Rotation” and “Scaling” are listed under

perceptual robustness in Table IV for comparison. Table IV

compares the performance of our proposed work based on

a single manipulation of the operations in Table I against

the state-of-the-art perceptual image hashing methods. The

experiment results show that our proposed work is the only

work that can achieve tamper detection, tamper region location

and device authentication while maintaining a high perceptual

robustness against rotation and scaling. Noted that though the

true positive rates for “Rotation” and “Scaling” are not as

high as those of [11], the proposed method achieves a TDR

of 0.9542 while the TDR of [11] is not given. The trade-off

between perceptual robustness and TDR is inevitable. Since

this work targets digital image forensics, the parameters are

skewed in favor of tamper detection. It is acceptable to have

a small sacrifice on perceptual robustness to trade for better

tamper detection performance.

VI. CONCLUSION

As the first robust rotation-/scaling-invariant PUF-based

perceptual image hash, the proposed data-device hash has

introduced an added attribute of birth certification, which is

essential in digital forensics to prove the authenticity of a

visual evidence conveyed by the image content. This is made

possible using the idea of random projection, i.e., projecting

the content-based image features into a CMOS image sensor

PUF defined Bernoulli random matrix. The proposed hash

carries both time, data and device information. Not only can

it detect and precisely locate image forgeries, but also identify

the camera of the source image with high accuracy. Besides,

the proposed hash is robust against normal content-preserving

manipulations such as noising, filtering, JPEG compression,

Gamma correction, rotation, scaling, etc. The proposed work

is more secure than existing image hashes that rely on a locally

stored secret key for the generation and validation, as the

random space used for mapping the feature points is generated

only on demand by a tamper-resistant PUF. Invasive or semi-

invasive attacks on the device to recover the CRP mapping will

produce unpredictable fault in the hash generation. Forging a

hash by random guessing of PUF response has been calculated

to be almost impossible.
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