
A PUF Design for Secure FPGA-Based Embedded Systems

Jason H. Anderson
Department of Electrical and Computer Engineering

University of Toronto

Toronto, Ontario, Canada

e-mail: janders@eecg.toronto.edu

Abstract— The concept of having an integrated circuit (IC)
generate its own unique digital signature has broad application
in areas such as embedded systems security, and IP/IC counter-
piracy. Physically unclonable functions (PUFs) are circuits that
compute a unique signature for a given IC based on the process
variations inherent in the IC manufacturing process. This pa-
per presents the first PUF design specifically targeted for field-
programmable gate arrays (FPGAs). Our novel design makes use
of the underlying FPGA architecture, and unlike prior publi shed
PUFs, the proposed PUF can be naturally embedded into a de-
sign’s HDL, consuming very little area, and does not requirethe
use of “hard macros” with fixed routing. Measured results on the
Xilinx Virtex-5 65 nm FPGA demonstrate PUF signatures to be
both unique and reliable under temperature variation.

I. I NTRODUCTION

The need to ascribe a unique binary signature to an inte-
grated circuit (IC) has applications in digital design and em-
bedded systems, ranging from digital rights management, IP
protection, cryptographic key generation, device authentica-
tion, and IC counterfeit detection/prevention. Counterfeit hard-
ware is a major concern that rose to prominence in 2008, when
the FBI announced that counterfeit Cisco networking products
had unknowingly been purchased and used by the U.S. gov-
ernment [1]. More recently, over the past few months cloned
cellphones and the industry that produces them have garnered
considerable media attention [2]. In addition to copies of spe-
cific products, a legitimate concern for fabless semiconductor
companies is that counterfeit versions of their chips can easily
be made and sold by malicious individuals in the same fabs to
which they outsource their fabrication. To counter such threats,
recent work has considered methodologies for ending IC piracy
that requires a fabricated chip to generate its own unique sig-
nature [3]. A physically unclonable function (PUF) is a new
concept in hardware security, and a promising candidate forIC
signature generation.

An artifact of state-of-the-art sub-100nm IC manufacturing
is that random variations in doping concentrations, line widths,
or other properties cause unpredictable variations in transistor
speed and interconnect. Most PUF designs compute unique
signatures by exploiting such delay differences. At a high level,
the approach taken in PUF design is to incorporate multiple
identical copies of a particular combinational path into anIC
design. The copies must be perfectly matched from the logic,
placement and routing perspectives, and ideally, also fromthe
perspective of their physical surroundings. Since the copies are

identical, delay differences between the copies are due to ran-
dom variations that are inherent to the manufacturing process,
and cannot be controlled or cloned. PUF circuitry measures the
delay differences between path copies to generate the unique
PUF signature. PUF circuits bring a useful purpose to the same
variations which have a deleterious effect on other IC metrics,
notably timing and yield.

Field-programmable gate arrays (FPGAs) are programmable
chips that can be configured by the end-user to implementany
digital circuit. FPGAs are used in a broad range of computing
and embedded applications because of their reconfigurability,
improving physical qualities (i.e. speed, area and power),and
their steadily decreasing cost. The economics of semiconduc-
tor scaling is such that as feature sizes shrink, the costs associ-
ated with building a custom ASIC escalate rapidly. This trend
has made FPGAs the technology of choice for many applica-
tions today, even those with tens to hundreds of thousands of
units in volume.

The pervasive use of FPGAs in embedded applications sug-
gests that it is desirable for PUFs to be realized on FPGAs.
Aside from the known applications of PUFs, there may ex-
ist FPGA-specific uses. For example, since the use of FPGA
vendor tools is mandatory, vendor software for FPGA config-
uration bitstream generation could be made to function cor-
rectly only for chips with specificpre-qualifiedsignatures cor-
responding to legitimate (non-counterfeit) chips. It is also
worth noting that PUF implementations on FPGAs is one fo-
cus of a recently founded start-up company [4].

This paper contributes the first PUF specifically designed
for FPGAs. The PUF offers improved ease-of-use over prior
designs. FPGAs contain arrays of identical logic and routing
circuitry. We leverage this underlying architectural regularity
to realize matched copies of combinational paths whose delay
differences stem from manufacturing variations. In our design,
each individual bit of the PUF signature is computed within a
single FPGA logic block. No matched routing external to the
logic block is required, easing its incorporation into a design.
The PUF is completely described in VHDL and unlike prior
PUF designs, it does not necessitate the use of hard macros with
fixed routing. The PUF is demonstrated with Xilinx Virtex-
5 65 nm FPGAs [5], though it can be easily ported to other
FPGA families. The remainder of this paper is organized as
follows: Section II describes prior work on PUF circuits. The
proposed PUF design is presented in Section III. An experi-
mental evaluation is described in Section IV. Conclusions and
suggestions for future work are offered in Section V.

II. RELATED WORK

We first review prior work on PUFs and then provide back-
ground on the FPGA architecture relevant to our PUF design.

A. Physically Unclonable Functions

Four main classes of PUF have appeared in recent liter-
ature: 1) Ring Oscillator (RO)-based PUFs [6], 2) arbiter
PUFs [7, 8, 9, 10], 3) memory-based PUFs [11, 12], and 4)
glitch count-based PUFs [13]. Of these, the RO-based and ar-
biter PUF are the most well-studied. Fig. 1(a) shows a simple
RO-based PUF with two oscillators. The oscillators (shown
in the dashed boxes) must have an identical layout on the IC,
such that any frequency differences between the two are owing
strictly to process variations. The two oscillators drive coun-
ters, and following a period of oscillation, the counter values
are compared, producing a single bit of the PUF signature.
RO-based PUFs contain many ROs and the pairs of ROs to
compare may either be pre-selected, or a multiplexer may be
added just before the comparators to allow user-selection of the
ROs to compare. In this way, the PUF can function in a chal-
lenge/response paradigm wherein user-supplied input vectors
are paired with PUF responses. The challenge input from the
user indicates the ROs to compare; the response is the0/1 in-
dication produced by the comparator. The challenge/response
notion is stronger from the security perspective than having one
unique signature. In challenge/response, a unique signature re-
sponse is produced for each unique user input challenge.

Fig. 1(b) shows an arbiter PUF, comprising two paralleln-
stage multiplexer chains feeding a flip-flop. A step input is
applied, along with challenge input bitsX(0 : n). At stagei of
the multiplexer chain, the step input signal is either fed forward
along the same chain, or it is interchanged with the opposite
chain, as controlled byX(i). Depending on the challenge bits
and the delay differences between the top and bottom MUX
chains, the step input will either arrive at the flip-flop’sD or
clock input first, causing either a logic-1 or a0 to be latched,
respectively. The latched value constitutes one bit of PUF sig-
nature. While Fig. 1 illustrates the basic design concepts,nu-
merous improvements have been proposed to strengthen their
resilience to attacks [7, 6, 14, 10]. The third type of PUF, a
memory-based PUF, uses the random initial state of memory
bits on device start-up as the PUF signature [11]. The fourth
and final type of PUF counts variability-dependent glitcheson
the output of a combinational multiplier [13].

The PUF designs described above are not specifically tar-
geted to FPGAs; they can equally be implemented within cus-
tom chips. Moreover, several challenges arise when they are
implemented on FPGAs. First, both types of PUFs in Fig. 1
require that identical logic and routing be used along certain
combinational paths, thereby guaranteeing that delay differ-
ences along such paths are due to process variations. In prac-
tice, identical implementation of paths requires the use ofhard
macros, which incorporate fixed placement and routing. The
use of hard macros complicates the design flow and requires
that a designer work at a lower-level of abstraction than RTL.
In fact, it may be necessary to manually route the above PUF
circuits to ensure that specific FPGA interconnect resources are
used along certain paths. Manual routing is tedious and error-

. . .

. . .

Counter

Counter

clk

clk

> 0 or 1

Ring oscillator

a) Basic ring oscillator PUF

0

0

1

1

0

0

1

1

0

0

1

1
D Q. . .

. . .

b) Basic arbiter PUF

X(0) X(1) X(n)

0 or 1

Fig. 1. Previous PUF designs.

SLICE

SLICE

a) CLB

FF

FF

FF

FF

LUT

LUT

LUT

LUT

b) SLICE

LUT

LUT

LUT

LUT

c) SLICE details

Fig. 2. Virtex-5 logic block architecture.

prone. Furthermore, the locked routing in the PUF presents
an “obstacle” to other design signals in the routing stage of
the flow, potentially increasing design congestion and reducing
circuit performance. Finally, the prior PUF designs consume
considerable silicon area per PUF bit. In contrast, ease-of-use
within the FPGA CAD flow and low silicon area are key bene-
fits offered by the proposed PUF design.

B. Xilinx Virtex-5 FPGAs

Fig. 2(a) depicts a Virtex-5 logic block, called a Config-
urable Logic Block (CLB). A CLB comprises two SLICEs,
as shown in Fig. 2(b). A SLICE contains four 6-input look-
up-tables (LUTs), four flip-flops, and other arithmetic circuitry
(not shown in Fig. 2(b)). 6-input LUTs are small memories
that are capable of implementingany logic function of up to 6
variables. In particular, each LUT contains static RAM cells
that hold the truth table of the logic function implemented by
the LUT. CLBs are arranged in a two-dimensional array on
the FPGA and can be connected to one another through a pro-
grammable interconnection matrix.

Fig. 2(c) shows additional SLICE details that are used in our
PUF design. Observe that each LUT output connects to the
select input of a 2-to-1 multiplexer. Each multiplexer receives
one of its data inputs from the multiplexer below it, and the
second data input can be received from outside the SLICE. The
dashed lines indicate that the LUT outputs also drive other cir-
cuitry, not shown in the figure. The vertical chain of multiplex-
ers is called thecarry chainand it is intended for implement-

ing fast arithmetic operations. We use the carry multiplexers in
our PUF design implementation. Note that the carry chain is
not unique to Virtex-5; similar structures are present in FPGAs
from other vendors, such as Altera’s Stratix-III [15].

C. LUTs as Memories and Shift Registers

In most applications, LUTs are used to implement combina-
tional logic functions, in which case the LUT’s SRAM cell con-
tents is programmed during device configuration and remains
unchanged thereafter. An alternative application of a LUT is
to use it as a memory. Each 6-LUT in Virtex-5 contains 64
SRAM cells and can therefore be used as a 64x1 RAM. More-
over, the LUTs in a SLICE can be combined with one another
to implement RAMs with different aspect ratios. Besides us-
ing LUTs as small RAMs, the Virtex-5 architecture allows the
internal SRAM cells within a LUT to be chained together seri-
ally, thereby allowing the LUT to function as a shift register.

As we illustrate in the next section, our PUF design con-
figures LUTs as shift registers. 25% of the LUTs in Virtex-5
can be used as memories/shift registers. Such LUTs reside in
SLICEM blocks, and are spread at regular intervals through-
out the array1. SLICEM blocks are variants of SLICE blocks,
where the “M” indicates the LUTs can be used as memories.
LUTs in Altera’s Stratix-III FPGAs can also be used as memo-
ries [16].

III. PROPOSEDDESIGN

We propose an FPGA PUF circuit that, based on random
process variations, will produce either a logic-0 or logic-1.
Multiple instances of our circuit will be instantiated to create
a multi-bit PUF sigunature. Fig. 3 shows the core of our PUF
design. Two LUTs,A and B, within a Virtex-5 SLICE are
used in 16-bit shift register mode. The shift register contents
are pre-initialized as follows:

• LUT A: 0101010101010101 (0x5555)

• LUT B: 1010101010101010 (0xAAAA)

Note that LUTA’s initialization bitstring is the complement
of LUT B’s bitstring. The shift register implemented in LUT
A will produce the sequence0101... and so on. Whereas,
the shift register implemented in LUTB will generate the se-
quence1010.... The shift register inputs,IN , are assigned
to allow the same sequences to continue beyond the initial 16
cycles. Importantly, the shift registerOUT pins drive the select
input pins on carry chain multiplexers. Both carry multiplex-
ers have their “0” data input tied to logic-0. The bottom carry
chain multiplexer has its “1” data input tied to logic-1. The
output of the bottom multiplexer drives the “1” data input of
the top multiplexer.

Consider the dynamic clocked behavior of the circuit in
Fig. 3. Initially, theOUT pin of LUT A is at logic-0, and there-
fore signalN2 is at logic-0. TheOUT pin of LUT B is logic-
1, setting signalN1 to be logic-1. At the rising clock edge, the
OUT pin of LUT A will transition from logic-0 to logic-1, and

1Every second CLB in Virtex-5 contains one SLICEM and one regular
SLICE.

logic-0

logic-0

N2

logic-1

clk

clk

Carry

chain

multiplexers

WE

WE

OUT

OUT

0

0 1

1

N1

clk

A

B

LUTs A,B in shift

register mode

Init: 0x5555

Init: 0xAAAA

IN

IN

0101…

1010…

logic-1

logic-1

Fig. 3. PUF circuit.

theOUT pin of LUT B will transition from logic-1 to logic-0.
Although LUT A and the multiplexer it drives should be iden-
tical to LUT B and its multiplexer, the two pieces of circuitry
in fact experience different delays due to random process vari-
ations. We exploit this property for PUF signature generation.

There are two cases worth highlighting. First, consider the
case wherein LUTB and the multiplexer it drives arefaster
than LUT A and its multiplexer. In this case, when LUTB
transitions from logic-1 to logic-0, signalN1 also transitions
from logic-1 to logic-0. Following that, theslower LUT A
transitions from logic-0 to logic-1, and signalN2 is held con-
stant at logic-0 throughout the process. The second case is the
opposite one where LUTA and its multiplexer are the faster
ones. In this case, LUTA’s OUT pin transitions from logic-0
to logic-1 and netN1 has not yet transitioned from logic-1 to
logic-0. A short positive spike (a glitch) will appear onN2 for
the period beforeN1 transitions to logic-0. The presense or
absense of a positive spike onN2, and the length of the spike
pulse, are due to process variations that impact the relative de-
lays of LUTsA andB and the carry chain multiplexers.

We use the presense/absense of a positive spike onN2 to
determine a PUF signature bit.N2 is connected to the asyn-
chronous preset input of a flip-flop, as shown in Fig. 4. The
flip-flop is initialized to logic-0 and has its outputQ fed back to
its D input. In the event that a glitch on signalN2 reaches the
preset, the flip-flop output becomes logic-1 and the PUF signa-
ture bit is logic-1. Otherwise, the PUF signature bit is logic-0.
The flip-flop of Fig. 4 can be located in the same SLICE as the
circuitry of Fig. 3 because they can use the same clock signal.
The Virtex-5 SLICE has an architectural restriction that only a
single clock signal may be used in any given SLICE. We used
relative location (RLOC) constraints (a Xilinx physical pack-
ing constraint) in our VHDL to locate the flip-flop in the same
SLICE as the circuitry of Fig. 3.

Although the delay differences due to process variations may
trigger a short pulse on signalN2 as shown in Fig. 3, the pulse
width may be so short that it is “filtered out” on its way along
the routing path to the flip-flop preset input. FPGA routing con-
tains buffered switches and metal wire segments. In essence,
the resistive and capacitive loading on the routing path canbe

D Q

FF initialized

to logic-0

PUF

signature

bit

clk

glitch?

PRE
N2

(from Fig. 3)

Fig. 4. PUF bit generation.

viewed as a low-pass filter, potentially damping out the high-
frequency pulse, thereby causing the PUF bit to be logic-0with
high probability. In fact, the RC nature of the routing is also im-
pacted by process variations. Conversely, if the pulse is always
generated and its width is too wide, it is more likely to reach
the flip-flop preset input, making PUF bits logic-1 with high
probability. Hence, it is desirable if the pulse “resolution” can
be tuned to maximize the PUF utility.

With the goal of managing pulse width in mind, we note that
the position of LUTB in the SLICE can be tailored to cre-
ate a meaningful PUF. As mentioned previously, each Virtex-5
SLICE contains four LUTs, shown in Fig 5. LUTA will reside
in LUT slot position 0. LUTB can be placed in any of slots
1, 2 or 3 to modulate the pulse width. Increasing the slot lo-
cation number of LUTB will tend to increase pulse width, as
transitions fromB’s output will take longer to propagate to the
top-most MUX in the carry chain. Furthermore, the bottom-
most carry chain multiplexer in the SLICE can be driven by the
top-most multiplexer in the SLICE immediately below. The
purpose of this connectivity is to enable the creation of longer
carry chains (i.e. longer than 4 bits). The carry connectivity
between SLICEs permits longer pulse widths to be produced
within the proposed PUF, with the PUF circuit spanning multi-
ple SLICEs arranged vertically in the placement.

For our experimental study, we found that the configuration
shown in Fig. 6 produced the best results in terms of achieving
a roughly equal balance of PUF bits being logic-0 and logic-1.
LUT A is in the top-most position of a first SLICE, and LUT
B is placed in the third position in a SLICE immediately be-
low. Note that the SLICE-to-SLICE carry connection is made
through a dedicated fast wire between SLICEs, and not through
general purpose interconnect. The intermediate multiplexers
along the carry chain between LUTsA andB have their se-
lect inputs tied to logic-1. Observe that the flip-flop receiving
the potentially “glitchy” signal (N2) is placed within the top
SLICE (utilizing an extra SLICE is not needed for this flip-
flop).

The key benefit of our PUF design is that it is described com-
pletely in VHDL and can be automatically handled by synthe-
sis, place and route tools, without manual intervention. Itcan
be incorporated naturally within a “push-button” FPGA design
flow. All of the matched circuitry lies within SLICEs and no
external matched routing or hard macros are required. Indeed,
the routing for signalN2 does not need to be matched with
that of any other signal.N2 is considered as a normal uncon-
strained design signal to be handled by the router. An addi-
tional advantage of our design is its small size – each PUF bit
is generated by two SLICEs.

0

0 1

1

0

0 1

1

logic-0

logic-0

logic-0

ASLOT 0

SLOT 1

SLOT 2

SLOT 3

B

?

?

?

Fig. 5. Glitch pulse width tuning through SLICE LUT positioning.

While the focus of this paper is on the design of a PUF
circuit to produce individual PUF bits, it should be apparent
that the PUF design can be integrated and used within a chal-
lenge/response framework, as done in other research on PUFs
(e.g. [8]). A simple approach is to have the challenge input
word drive the select inputs on wide multiplexers, as shown
in Fig. 7. The challenge selects two different PUF bits whose
values are exclusive-OR’ed to produce an output bit depending
on the challenge. Additional multiplexers can be added, each
wired differently, to produce a multi-bit output.

IV. EXPERIMENTAL VALIDATION

We instantiate 128 instances of the design described in Sec-
tion III to generate a 128-bit signature. We evaluate the design
using six Virtex-5 FPGAs on Xilinx XUPV5-LX110T develop-
ment boards. The Xilinx LX110 Virtex-5 FPGA on each board
has about 69,000 LUTs, of which about 18,000 may be used
as RAMs. Our 128-bit PUF uses less than 2% of such RAM
LUTs. The board has a serial RS-232 output which we use to
communicate the PUF signature to a connected PC. We clock
the PUF using the 27 MHz clock signal available on the board.

In addition to comparing PUF signatures across different
FPGA chips, we can also implement a PUF multiple times on
a single chip – each time in a different region of the chip. Nat-
urally, we expect that any two FPGA chips should differ more
(from the variations standpoint) than any two regions on asin-
gle chip. Consequently, if PUF signatures for different regions
on a single chip are substantially unique, we have strong evi-
dence that signatures between chips will beat leastas unique.
Following this reasoning, in addition to comparing PUF signa-
tures across six different Virtex-5 chips, for each Virtex-5 chip,
we investigated six PUF implementations, one implementation
in each of the six regions shown in Fig. 8. Each region spans
half the die horizontally and a third of the die vertically. PUF
placement was constrained to regions using range constraints
provided to the Xilinx synthesis tool. With six PUFs per chip
and six chips in total, we have 36 PUF implementations. The

A

B

S
LI

C
E

S
LI

C
E

PRE

N2

Fig. 6. Tuned PUF bit generator.

…P
U

F
 b

its

…
…

Input challenge

…

Fig. 7. PUF circuit in challenge/response framework.

methodology of using multiple unique implementations of the
same circuit on a single chip can only be applied for reconfig-
urable platforms such as FPGAs. We believe the same method-
ology may prove useful in researching other aspects of process
variations.

To analyze signature uniqueness, we consider the Hamming
distance between all PUF pairs, producing(36× 35)/2 = 630
data points2. A probability histogram of such distances is
shown in Fig. 9. If logic-0 and logic-1 were equally proba-

2The Hamming distance between a pair of 128-bit signatures isthe number
of bit positions in which the two signatures differ from one another.

region 1

region 2

region 3 region 6

region 5

region 4

Virtex-5 FPGA die

Fig. 8. FPGA regions corresponding to different PUF implementations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

[1
:5
]

[6
:1
0
]

[1
1
:1
5
]

[1
6
:2
0
]

[2
1
:2
5
]

[2
6
:3
0
]

[3
1
:3
5
]

[3
6
:4
0
]

[4
1
:4
5
]

[4
6
:5
0
]

[5
1
:5
5
]

[5
6
:6
0
]

[6
1
:6
5
]

[6
6
:7
0
]

[7
1
:7
5
]

[7
6
:8
0
]

[8
1
:8
5
]

[8
6
:9
0
]

[9
1
:9
5
]

[9
6
:1
0
0
]

[1
0
1
:1
0
5
]

[1
0
6
:1
1
0
]

[1
1
1
:1
1
5
]

[1
1
6
:1
2
0
]

[1
2
1
:1
2
5
]

D
e

n
si

ty

Hamming Distance

Fig. 9. Signature uniqueness: Hamming distance distribution (N = 630).

ble, one would expect the distribution to be clustered around
an expected value of 64 bits. For the data in Fig. 9, the average
distance between any two pairs was 61.8, which is relatively
close to the expected 64. We found a bit bias towards logic-1
across the signatures, which reduced average Hamming dis-
tance. The smallest distance between any two signatures was
43; the largest distance was 79. Surprisingly, the distribution in
Fig. 9 qualitatively resembles a Gaussian distribution.

An interesting question is whether the 128-bit PUFs in the
different regions on a single FPGA are “closer” to one another
compared to PUFs on different chips. As there are six PUFs on
each FPGA, we can compute(6 × 5)/2 = 15 data points for
each chip, yielding6 × 15 = 90 data points in total. A proba-
bility histogram of the within-die Hamming distances is shown
in Fig. 10. Observe that the histogram shape is quite similar
to that of Fig. 9. On average, the distance between signatures
was 59, which is again close to the expected value of 64. The
average in this case may be influenced the smaller sample size.
Nevertheless, the data suggests that for the proposed PUF de-
sign, the regions within a single die are roughly as dissimilar
as regions across dies.

Circuit speed is influenced by die temperature and therefore,
PUF signatures are sensitive to temperature. Ideally, signature
variation with temperature would be small or non-existent.For
the data given above, room temperature FPGAs were config-
ured and a PUF signature measurement was taken immedi-
ately. We compared those “cool” signatures with “hot” sig-
natures gathered at high temperature to gauge PUF reliability.
The Virtex-5 FPGA has a built-in system monitor that can mea-
sure die temperature within 4◦C [17]. Die temperature can be
monitored graphically using the Xilinx ChipScope tool. We
used a hair dryer to heat up the Virtex-5 FPGA chips to a die
temperature of 70◦C and then made “hot” PUF signature mea-
surements.

For each 128-bit PUF in each region on each chip, we com-
puted the Hamming distance between signatures at high and
low temperature. The6× 6 = 36 Hamming distances are plot-
ted as a histogram in Fig. 11. 72% of the signatures changed
by five or fewer bits at high temperature and no signature ex-
perienced more than 10 bit flips. Comparing the histogram in

0

0.05

0.1

0.15

0.2

0.25

[1
:5
]

[6
:1
0
]

[1
1
:1
5
]

[1
6
:2
0
]

[2
1
:2
5
]

[2
6
:3
0
]

[3
1
:3
5
]

[3
6
:4
0
]

[4
1
:4
5
]

[4
6
:5
0
]

[5
1
:5
5
]

[5
6
:6
0
]

[6
1
:6
5
]

[6
6
:7
0
]

[7
1
:7
5
]

[7
6
:8
0
]

[8
1
:8
5
]

[8
6
:9
0
]

[9
1
:9
5
]

[9
6
:1
0
0
]

[1
0
1
:1
0
5
]

[1
0
6
:1
1
0
]

[1
1
1
:1
1
5
]

[1
1
6
:1
2
0
]

[1
2
1
:1
2
5
]

D
e

n
si

ty

Hamming Distance

Fig. 10. Same-die signature uniqueness: Hamming distance distribution (N =
90).

Fig. 9 with that in Fig. 11, one can see a large gap in the dis-
tributions roughly between 10-45 bits, which demonstratesthat
the proposed PUF design can be effective for device authenti-
cation and anti-counterfeiting. On average, 3.6% of signature
bits flip under high temperature conditions, which is in line
with other published PUF circuits in their “raw” form. As in
other works, averaging and redundancy techniques can be ap-
plied to improve PUF reliability at the expense of area [8, 6].
For example, [8] suggests that BCH error correcting codes can
be used to correct bit flips in PUF signatures.

V. CONCLUSION

Physically unclonable functions are circuits that leverage
process variations to compute a unique signature for a fab-
ricated IC. PUFs have varied applications, including anti-
counterfeiting, hardware security, and cryptography. In this pa-
per, we proposed the first FPGA-specific PUF design – one that
takes advantage of the FPGA logic and routing architecture.
Compared with prior work, our design consumes little area and
is easy to implement and incorporate into a surrounding de-
sign. Measured results on 65nm Virtex-5 FPGAs demonstrate
the PUF signature uniqueness and its reliability at high tem-
perature. Future work will involve the development of FPGA
flows that employ PUF signatures for IP protection/licensing
and anti-counterfeiting.

The VHDL for the proposed PUF is available for free down-
load at the author’s website.

ACKNOWLEDGEMENTS

The author thanks Xilinx for providing the Virtex-5 FPGA
development boards. The author thanks Dr. Qiang Wang for
his helpful comments on the manuscript.

REFERENCES

[1] Cisco Statement on Counterfeit Goods, Cisco Corp., San Jose,
CA, 2008.

[2] In China, Knockoff Cellphones are a Hit, The New York Times,
New York, NY, April 2009.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[0
:5
]

[6
:1
0
]

[1
1
:1
5
]

[1
6
:2
0
]

[2
1
:2
5
]

[2
6
:3
0
]

[3
1
:3
5
]

[3
6
:4
0
]

[4
1
:4
5
]

[4
6
:5
0
]

[5
1
:5
5
]

[5
6
:6
0
]

[6
1
:6
5
]

[6
6
:7
0
]

[7
1
:7
5
]

[7
6
:8
0
]

[8
1
:8
5
]

[8
6
:9
0
]

[9
1
:9
5
]

[9
6
:1
0
0
]

[1
0
1
:1
0
5
]

[1
0
6
:1
1
0
]

[1
1
1
:1
1
5
]

[1
1
6
:1
2
0
]

[1
2
1
:1
2
5
]

D
e

n
si

ty

Hamming Distance

Fig. 11. Signature variability at high vs. low temperature (N = 36).

[3] J. Roy, F. Koushanfar, and I. Markov, “EPIC: ending piracy of
integrated circuits,” inIEEE/ACM Design Automation and Test
in Europe, 2008, pp. 1069–1074.

[4] http://www.verayo.com/product/softpuf.html, Verayo, Inc., San
Jose, CA, 2009.

[5] Virtex-5 FPGA Data Sheet, Xilinx, Inc., San Jose, CA, 2007.
[6] H. Yu, P. Leong, H. Kinkelmann, L. Moller, and M. Glesner,

“Towards a unique FPGA-based identification circuit using pro-
cess variations,” inIEEE Int’l Conf. on Field Programmable
Logic and Applications, 2009, pp. 397–402.

[7] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight
secure PUFs,” inIEEE Int’l Conf. on Computer Aided Design,
2008, pp. 670–673.

[8] G. Suh and S. Devadas, “Physical unclonable functions for de-
vice authentication and secret key generation,” inACM/IEEE
Design Automation Conf., 2007, pp. 9–14.

[9] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls,
“The butterfly PUF: protecting IP on every FPGA,”IEEE Int’l
Workshop on Hardware-Oriented Security and Trust, pp. 67–70,
2008.

[10] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques
for design and implementation of secure reconfigurable PUFs,”
ACM Trans. on Reconfigurable Technology and Systems, vol. 2,
no. 1, pp. 1–33, 2009.

[11] Y. Su, J. Holleman, and B. Otis, “A 1.6 pJ/bit 96% stable chip-ID
generating circuit using process variations,” inIEEE Int’l Solid
State Circuits Conf., 2007, pp. 15–17.

[12] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, “FPGA intrin-
sic PUFs and their use for IP protection,” inACM Int’l Workshop
on Cryptographic Hardware and Embedded Systems, 2007, pp.
63–80.

[13] H. Patel, Y. Kim, J. McDonald, and L. Starman, “Increasing sta-
bility and distinguishability of the digital fingerprint inFPGAs
through input word analysis,” inIEEE Int’l Conf. on Field Pro-
grammable Logic and Applications, 2009, pp. 391–396.

[14] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testingtech-
niques for hardware security,” inIEEE Int’l Test Conf., 2008,
pp. 1–10.

[15] Stratix-III FPGA Family Data Sheet, Altera, Corp., San Jose,
CA, 2008.

[16] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane,
A. Lee, and P. Pan, “Architectural enhancements in Stratix-III
and Stratix-IV,” inACM/SIGDA Int’l Symp. on FPGAs, 2009,
pp. 33–42.

[17] Virtex-5 FPGA System Monitor User Guide, Xilinx, Inc., San
Jose, CA, 2009.

