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Abstract In this article, we argue that the past of the Uni-
verse, extrapolated from standard physics and measured cos-
mological parameters, might be a non-singular bounce. We
also show that, in this framework, quite stringent constraints
can be put on the reheating temperature and number of infla-
tionary e-folds, basically fixing TRH ∼ TGUT and N ∼ 70.
We draw some conclusions about the shape of the inflaton
potential and raise the “naturalness” issue in this context.
Finally, we argue that this could open a very specific win-
dow on the “pre big bounce" universe.

1 Introduction

Cosmological studies often mix the search for the correct
theory required to described the World and the investigation
of contingent phenomena occurring within a well defined
paradigm. In many cases, it is indeed welcome and legit-
imate not to distinguish between both questions that are
somehow interconnected. In this article, however, we make a
clear choice: we assume the laws of physics to be known and
described by the standard models. We also take for granted
the usual ingredients of the cosmic scenario, in particular the
existence of an inflationary stage. As a less consensual ingre-
dient, although now supported by observations, we finally
add a positive curvature to the Friedmann equation. Although
still debated, the closedness of the Universe is quite strongly
favored by recent data and new analysis, as explained in the
next section.

The point of view adopted here is therefore the follow-
ing: we simply try to trace back the history of the Universe
to understand what has happened close to the Big Bang. We
work in the very same way than a paleontologist or a historian
would, trying to determine the correct past without focusing
on figuring out if the specific history observed can be consid-
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ered as probable or not. Trying to understand why things are
what they are is, in principle, a very different question than
trying to determine what things were. We try to focus on the
latter consideration even if we also address the naturalness
and fine-tuning issues.

Although it is in itself a well known solution to the Einstein
field equations in cosmology, it is in practice often forgot-
ten than the Big Bang singularity does not appear anymore
when taking into account the possible positive curvature of
the Universe mixed with an effective cosmological constant.
It is regularly argued – especially within the community of
quantum gravity – that new physics is unavoidably required
to avoid the dramatic breakdown of general relativity (unless
assuming very exotic contents) when going backward in time.
This is not true when including the spatial curvature currently
favored by observations. Several versions of this idea have
already been discussed, for example in [1,2]. Interestingly,
we will also show that this leads to original constraints of the
reheating temperature and fixes the number of inflationary
e-folds. Some considerations on the inflaton potential can
be derived when facing the fine-tuning issue. This, finally,
opens unique observational features through modifications
of the primordial power spectrum.

2 The curvature of the Universe

In full generality (and in Planck units), the Friedmann equa-
tion reads

H2 = 8π

3
ρ + �

3
− K

a2 , (1)

where H is the Hubble parameter, � is the cosmological
constant, and K is the curvature. When one chooses K =
−1, 0,+1 this implies that the scale factor a has dimension
length. To remain consistent with the usual dimensionless
choice for a, we assign to K the dimension (length)−2: it then
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measures the spatial curvature scale 3R0. Recent results from
the Planck collaboration [3] slightly suggest a closed Uni-
verse: −0.011 > �K ,0 > −0.078, using TT, TE, EE+lowE
data, at the 95% confidence level (�K ≡ −K/(a2H2) and
the subscript “0" denotes quantities evaluated in the contem-
porary Universe).

Those conclusions where reanalyzed in details in [4,5]
and [6], strengthening the evidence for a positive curvature.
Strikingly, it was shown that a positive curvature elegantly
explains the anomalous lensing amplitude and removes the
tension between the values of the cosmological parameters
evaluated at different scales. This raises some discordances
with baryonic acoustic oscillations, possibly revealing a cri-
sis in cosmology. Still, it is concluded in [6] that Planck
data do favor a closed universe with a probability of nearly
99.99%. In this work, we assume, as a hypothesis, that this
result is correct. Although counter-arguments where given in
[7], �K > 0 is unquestionably consistant with, if not truly
favored by, current observations. In addition, quite a lot of
theoretical constructions, especially in the quantum gravity
framework, do prefer a closed Universe. At this stage, it is
fair to conclude that there is no conclusive proof of a positive
curvature but this is a least an appealing possibility compat-
ible with data.

A trivial – but not so well-known – feature of positively
curved spaces is that they naturally bounce when the content
is a positive cosmological constant. One can easily show
that the Friedmann and Raychaudhuri equations admit an
hyperbolic cosine solution:

a =
√

3K

�i
cosh

(√
�i

3
t

)
, (2)

where �i = 8πρvac, with ρvac the vacuum-like density lead-
ing to inflation. Among the large number of bouncing models
[8–10], this one has the appealing feature of not requiring any
exotic physics. Pure general relativity (GR) with a positive
curvature and cosmological constant does bounce and the
past history of the universe is not singular, at least up to a
hypothetic second bounce.

We therefore stress the following point: if we take the
known laws of physics, start from the preferred values of the
contemporary cosmological parameters and impose that an
inflationary stage occurred in the past, we end up naturally
with a bouncing “origin" of the Universe. It is not useful
to recall in this article the countless arguments in favor of
inflation (the interested reader can, e.g., go through [11]).
We assume here that inflation indeed took place in the early
universe. The standard cosmological model, when evolved
backward in time, then leads to a bounce. This quite trivial
feature is not yet often considered seriously.

It is however fair to also underline that other scenarii are
hopefully being considered: strictly speaking inflation is not

mandatory. Several consistent alternatives to inflation can be
found in [9,12–17] and references therein.

The well-known singularity theorem of eternal inflation
[18], which generalizes the one of Hawking and Penrose
[19], holds strictly for open universes. A positive curvature
anyway challenges eternal inflation [20]. Still, it should be
mentioned that the probability of having no classical fluc-
tuations at the end of the inflationary phase is very small.
These fluctuations would become more and more important
when going backward in time. This is the main argument of
the Borde-Guth-Vilenkin singularity argument [21] and this
would make spatial curvature less and less important as the
universe contracts.

3 Duration of inflation and reheating temperature

The contemporary universe can be thought of as made of four
different cosmic “fluids": the cosmological constant, mat-
ter, curvature, and radiation with respective current densities
(ordered by decreasing value) ρ�,0, ρM,0, ρK ,0, and ρR,0.
The Friedmann equation then simply reads H2 = 8π

3

∑
i ρi ,

with a minus sign in front of the curvature term when one
deals with a positive curvature. When going backward in
time, those components grow at different rates:

ρ� ∝ a0, ρM ∝ a−3, ρK ∝ a−2, ρR ∝ a−4. (3)

The density of radiation at the end of inflation is

ρR,RH ≈ ρR,0(1 + zeq)
4
(
TRH
Teq

)4

, (4)

where zeq and Teq are respectively the redshift and tempera-
ture at the time of equilibrium between matter and radiation
and TRH is the temperature at the reheating that we assume
to be sudden for simplicity.1 At that time, the radiation den-
sity was dominant and ρtot,RH ≈ ρR,RH . The curvature den-
sity, although larger than the cosmological constant, was still
smaller than the matter density and given by:

ρK ,RH ≈ ρK ,0(1 + zeq)
2
(
TRH
Teq

)2

. (5)

When going further backward in the past, that is during the
inflationary quasi-de Sitter stage, matter and radiation no
longer exist anymore and the density of the scalar field (or
whatever plays this role) remains constant at ρvac ≈ ρR,RH .
But the curvature density continues to grow.

Let us call tB the time when ρvac = ρK . This defines the
precise moment when the Hubble parameter vanishes, that
is the bouncing time – this inevitably occurs. If there were
N inflationary e-folds between the bounce and the reheating

1 This is obviously a crude hypothesis, as demonstrated, e.g., in [22].
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(we assume here the transition between the bounce and the
inflationary stage to be sudden too as it can easily be numer-
ically shown that the associated number of e-folds is small),
the curvature density at the bounce was ρK ,B = ρK ,RHe2N .
Setting ρK ,B = ρvac and using the value of ρK ,0 favored by
data [6] leads to:

N ≈ 1

2
ln

(
ρR,0

ρK ,0

[
(1 + zeq)

TRH
Teq

]2
)

. (6)

For TRH ≈ 1016 GeV, this means N ≈ 65.
This is an interesting result because this number is of the

order of the smallest possible number of inflationary e-folds
required to account for observational data. In the usual cos-
mological approach, this number can be anything above 65.
Seen from this perspective, this approches sets a lower limit
on the reheating temperature around the grand unification
(GUT) scale: should TRH be smaller than this value, the infla-
tion could not, in this model, have last long enough to solve
the usual cosmological puzzles. This is 15 orders of magni-
tude above the experimental lower limit and quite close to the
Planck scale. If this scheme of thought is correct, this basi-
cally fixes the number of inflationnary e-folds at N ∼ 70, as
Eq. (6) leads, at most, to N ≈ 72 for TRH ≈ TPl (which is
anyway incompatible with observations). If ρK ,0 is smaller
than the value inferred from current CMB data, the number of
e-folds will grow but the dependance is extremely weak and
a variation of one order of magnitude on ρK ,0 will change the
number of e-folds by approximately �N ≈ 1. This basically
means that whatever the measurable positive curvature of the
Universe, our conclusions do hold, in agreement with [2].

In principle, this statement could be relaxed. If one simply
requires the number of inflationary e-folds to be equal to
the number of post-inflationnary e-folds, without requiring
N > 65, then any curvature density currently comparable to
the radiation density would work and a low-scale inflation
scenario could be conceivable. This, however, conflicts with
data for reasons that will be made explicit in the last section.

4 Fine-tuning and inflation potential

This study suggests that, taking into account the known laws
of physics, the measured contemporary cosmological param-
eters (including curvature), and forcing the history of the
Universe to go through “events" that we highly suspect to
have occurred (including inflation), a bounce should have
taken place and the reheating temperature should be around
the GUT scale. This way of reconstructing the past is the
one used by archeologists or historians and is perfectly legit-
imate. What this kind of thinking however does not say is
“why" this has occurred.

If the sequence is now considered with time flowing in
the usual direction, this scenario clearly raises questions. It
is well known that a massive scalar field will generally not
be, during the contraction phase, in the strongly potential
energy dominated regime required for the bounce to occur.
For the curvature term to dominate the dynamics and induce
the bounce, the equation of state parameter, w = p/ρ, has to
remain durably smaller than -1/3. This is a possible solution
of the equations of motion but this is not at all a dynamically
favored situation. Basically, one has to “choose" a trajectory
with w ≈ −1.

The latter statement is however intricate. Obviously, when
an astronomer deals with the collision of comet and a planet,
she does not care about the a priori low probability of this
event. She just studies what has happened and how it can
be used to understand better the World and its properties.
We are somehow in a comparable situation. Every single
trajectory is, by definition, of zero mesure in the continu-
ous parameter space [23]. The construction of a meaningful
bayesian estimator is a hard task that highly depends on the
chosen priors. For exemple, even within the narrow commu-
nity of loop quantum cosmology, there is a lively debate on
the “most probable" number of inflationary e-folds predicted
by the model after the bounce. The approach advocated in
[24,25] does not agree at all with the one pushed in [26–29].
Another known huge discrepancy is between the probability
for inflation estimated in [30] and the one calculated in [31].
The conclusions are clearly in strong opposition and it is safe
to conclude that evaluating the probability of a single situa-
tion is extremely difficult. General explanations are given in
[32]. This is, by the way, less due to the so-called “measure
problem in cosmology" than to the trivial fact that finding a
dynamical variable to which a known probability distribution
function (PDF) can be assigned is extremely difficult.

Evaluating the “naturalness" of this trajectory is beyond
the scope of this study and would require the existence of an
uncontroversial mesure or PDF, which is anyway missing.
This is, in many senses, an ill-defined question. We prefer,
here, to stress what the past was – knowing what we know –
and not why it was so.

If the issue of fine-tuning is however taken seriously, one
should consider two different ways of thinking. The first
one is the grounded in the Multiverse framework. In such
a view, the anthropic bias should be taken into account and
it could very well be that contracting branches where the
field does not lead to a bounce simply die, without devel-
oping observers. We therefore naturally find ourselves on a
very specific trajectory compatible with a bounce in the past,
as we would otherwise not exist. The subtle question of the
emergence of observers in the contracting branch is obvi-
ously beyond our curent knowledge. It is therefore very hard
at this stage to make clear predictions in this framework [33].
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It could also be argued that any amount of radiation or
cold matter in the contracting phase would prevent the spa-
tial curvature from being important at high densities. This is
correct unless a deflation stage occurs, which is anyway, in
itself, required by the model.

More interestingly, if one focuses on a single universe
and chooses a simple measure, e.g. based on the phase of the
scalar field in the contradicting blanch, then flat potentials
are favored [34]. In particular, potentials of the form

V (φ) =V0

(
tanh2

[
φ√
6α

]
+ β tanh

[
φ√
6α

]
+ γ

)
, (7)

with α > 0, −1 < β < 1, and −1 < γ ≤ 0 do lead to the
desired equation of state of the scalar field during contrac-
tion. Importantly, this could be compared with CMB mea-
surements as the shape of the potential begins to be quite well
constrained [35]. But this also opens a new indirect way to
determine acceptable potential shapes.

5 Consistency

First, it is worth noticing that many curvature bounces might
have occurred in the past, that is before the bounce which gave
rise to our expanding branch. Basically, a bounce takes place
each time the curvature density becomes equal to the sum of
the energy densities of all the other fluids in the Universe. In
the expanding branch, the curvature density inevitably domi-
nates at some point, unless the cosmological constant begins
to dominate before this happens. This is precisely the case
in our universe and this is why we are “protected" from a
curvature bounce that would otherwise have happened in a
quite near future. When going backward in time, before the
bounce, the same situation happens. Either we are on a trajec-
tory with a “long enough" deflation stage (a certain amount
of deflation is anyway required for the bounce to happen) and
the cosmological constant might make the bounce unique. Or
the deflation was quite brief – which is favored by naive mea-
sures – and another crossing took place in the past (unless
the universe was filled with an exotic content described by
an unusual equation of state). This does not lead to any phe-
nomenological difficulty. This, however, revives the singu-
larity issue.

As in all bouncing models one might raise entropic con-
cerns. Due to the complexity of the definition of the gravi-
tational entropy, this important consideration is highly non-
clear and should probably be addressed from a “relational"
point of view [36]. It even makes sense to question seriously
the direction of time in preceding the branch: in the “oriented
coarse graining" hypothesis [37], the thermodynamical time
might flow in the opposite direction.

A more important and obvious concern is about quantum
effects. One might argue that even if a purely classical bounce
– as the natural consequence of current observations – is
appealing, it could remain problematic that quantum gravity
is ignored. Although speculative and still under construction
[38], quantum gravity is anyway expected to play a crucial
role in the early universe. Avoiding the use of quantum grav-
ity is tantalizing, but how reliable would the predictions then
be ? The remarquable point that we make here is that when
going backward in time from what we know, the Universe
never approaches the Planck density. The bounce occurs at
the inflationary scale, which is experimentally known to be
much smaller than the Planck scale (thanks, e.g., to the upper
bound on the tensor-to-scalar ratio, r < 0.056 [39]). The
model is therefore consistent and never drives the Universe
into a “quantum cosmology" stage. It also seems safe to
ignore strong backreaction effects. Although there are many
excellent reasons to try building a quantum theory of grav-
itation, the statement that quantum gravity is necessary for
consistency reasons when studying the early universe might
be wrong.

Still, it is important to underline that although inflation
is part of the standard model of cosmology, it might itself
somehow “require" new physics. After all, the only known
fundamental scalar field cannot be the inflaton (at least with
usual couplings). In addition, the use of effective field theory
methods beyond the realm where they can be applied is haz-
ardous. There have recently been severe challenges to infla-
tion and doubts raised on its consistency with fundamental
physics (in particular by the “swampland” criteria [40–42]).
We adopt here the view that either requiring exotic physics or
not, inflation did happen (which is actually not mandatory –
see, e.g., [43] and references therein for some possible ways
to observe alternatives to inflation).

Finally, it is important to check that the number of e-folds

N =
∫

H

φ̇
dφ, (8)

calculated from the dynamics of the field in the quadratic
potential2 is compatible with the number of e-folds required
by the consistency of the model. It could, a priori, be that the
equations of motion do not lead to a long enough inflationary
stage for the proposal to be convincing. It is however easy to
check that an initial value of the field around φ ∼ 16.7 − 17
(depending on the precise value chosen for the curvature)
does work and satisfies all the constraints.

2 We leave for a future study the generalization to other potentials but
the main idea remains quite generic.
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6 Observational footprints

The main observational consequences of a positive curvature
are known. This leads to an infra-red suppression of the power
spectrum, around the curvature scale [44]. In particular, the
abnormally low power measured for very small �’s might be
explained by this effect, although the statistical significance is
too low to lead to any firm conclusion. Recently, this has been
readdressed in details [45]. One of the effects of the curvature
is to make the wavenumbers of the quantum perturbations
discrete, due to the spherical topology of the spatial sections.
This plays a role in the post-inflationary era. The other main
effect is obviously due to the modification of the Friedmann
equations which plays a role at the beginning of inflation.

However, the calculations of [45,46] were made within
a pure inflationary framework without any bounce. If the
scenario presented in this article is correct, it raises a very
exciting possibility for observations. The main problem with
experimental footprints of bouncing models including a stage
of inflation is that inflation generically lasts so long that the
portion of the primordial power spectrum which is probed by
observations is too far in the ultra-violet to be probed [47].
Otherwise stated, the interesting distorsions of the spectrum
induced by the bounce are usually not observable in the CMB
because inflation has “thrown them away" far beyond the
horizon.

The fact that the number of inflationary e-folds is, in the
approach advocated here, constrained to around 70 has the
very interesting consequence that it makes the effects of the
bounce potentially observable. The system to be solved is
well defined:

Ḣ = −4π (ρ + p) + K

a2 , (9)

φ̈ = −3H φ̇ − dV

dφ
, (10)

q̈ = b(n, t)q̇ + c(n, t)q, (11)

where the two first equations define the background evolu-
tion (the Raychaudhuri equation is usually numerically more
tractable than the Friedman one) and the last one refers to
gauge invariant perturbations q in hyperspherical topology,
b(n, t) and c(n, t) being functions of the wavenumber label
n and of the inflaton potential. The explicit calculation will
be performed elsewhere [48]. It is however clear that the lim-
ited number of inflationary e-folds will make footprints of the
bounce potentially visible. At variance with the simple power
suppression associated with the curvature, the bounce will
produce oscillations in the spectrum that could, in principle,
be disentangled. The usual consistency relation of inflation
will be violated.

This also raises an important point. Most of the usual cos-
mological puzzles can be solved by requiring the number of
inflationary e-folds to be at least equal to the number of post-

inflationary e-folds. Although quite unusual it is, in some
cases, possible to consider scenarios with N < 65. This is
why the argument given at the beginning of this work to set
the lower limit on TRH might seem weak: if one chooses
a lower value of TRH , both the number of e-folds of infla-
tion and after inflation will be decreased by the same amout
and the model will remain a priori correct. However, as the
“non-trivial" effects on the power spectrum appear for como-
bile numbers of the order of one (and less), a low value of
TRH , would inevitably shift the observational window to the
infrared part of the spectrum which is not scale-invariant. As
aCMB ∼ eN TRH/TCMB , for aB = 1, lowering TRH (and,
necessarily, N ) will shift the physical wavenumber3 to the
portion of the spectrum affected by the bounce. This is would
be inconsistent with data and this is why the model basically
fixes the duration of inflation and the reheating temperature.
Although we leave the accurate calculation for a future study,
the basic argument is simple and fixes the orders of magni-
tude.

Another quite specific feature of this model is the pos-
sibility to “see through" the bounce. Beyond indices that
could be seen in the CMB, it might also be possible to detect
gravitational waves from events taking place in the con-
tracting branch. This is plausible because of the low energy
scale at which the bounce occurs in this approach. The very
weak coupling of gravitational waves allow them to cross
the bounce when the density remains much small than the
Planck density. But, more importantly, this possibility might
be realistic because of a subtle behavior of the luminosity
distance [49]. In the contracting phase, between an event at
(negative) time te and the detection of the associated signal
at (negative) time tr , the luminosity distance reads

DL = c
(−tr )2n

n − 1

[
(−tr )1−n

(−te)n
− (−te)

1−2n
]

, (12)

where n is defined by the scale factor evolution: a(t) =
k(−t)n . For a dust-like content, the luminosity distance does
grow with cosmic time. Although counter-intuitive at first
sight, this behavior is due to the amplification associated
with the contraction which counter-balance the dilution of
the propagation. For a deflation stage, it reads

DL = c
eα(te−2tr )

α

[
eαtr − eαte

]
, (13)

where α = |H | is such that a(t) = ke−αt . Those consider-
ations have, up to know, been only considered for inflation-

3 Rigorously speaking, instead of expanding the equation of motion in
the Fourier space, one needs to expand the perturbations on the ten-
sor hyperspherical harmonics and the wavenumber mentioned here is
“effective" and discrete.
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less models (in the expanding branch following the bounce)
as the inflationary stage would dilute the signal. However,
in the framework considered here the unavoidable deflation
stage changes the game. If the duration of deflation was com-
parable to the one of inflation, it is easy to check that events
like the coalescence of massive black holes in the contracting
branch could still be measured today.

7 Conclusion

In this article, we have shown that evolving backward in time
the currently observed state of the Universe, and imposing a
hard-to-avoid inflationary stage, leads to a classical bounce
without the need for speculative physics. No new ingredi-
ent is required. The result depends crucially on the existence
of the now preferred positive curvature of the Universe but
not on its precise value. This trajectory might be “unstable"
but it remains possible and could be observationally favored.
In addition, the instability is basically due to the descrip-
tion of inflation by a scalar field which is not the only way
to produce a vacuum-energy dominate stage. We also show
that this somehow “fixes" the number of inflationary e-folds,
the inflation energy scale, and opens exciting possibilities for
observational tests, while being consistant with a purely clas-
sical treatment. The evolution is always classical and deter-
ministic.

Many questions however remain open at this stage. We
have considered here a purely isotropic case. This is not
realistic as anisotropies inevitable grow during the contrac-
tion phase. The subtle effects of the cosmic shear should be
accounted for.

Another important and interesting issue is the one of ini-
tial conditions for perturbations. This has been disregarded
when stating that the system to solve is well defined. A key
problem, especially for scalar perturbations known for being
associated with intricate potentials, is to define a natural ini-
tial state when a clear Bunch-Davies like vacuum does not
exist anymore. This is a substantial difficulty for bouncing
models [50] which has to be treated here.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
article, there are no data.]
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