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We construct a nondecreasing pure jump Markov process, whose jump
measure heavily depends on the values taken by the process. We determine
the singularity spectrum of this process, which turns out to be random and
to depend locally on the values taken by the process. The result relies on
fine properties of the distribution of Poisson point processes and on ubiquity
theorems.

1. Introduction. Up to the mid-1970s, the study of the Hölder regularity of
the sample paths of stochastic processes was focused on two main issues: the deter-
mination of their uniform modulus of continuity, and the existence of an almost-
everywhere pointwise modulus of continuity. However, the first indications that
their pointwise regularity could vary from point to point in a subtle way appeared
in the works of Orey and Taylor [19] and Perkins [20], who showed that the fast
and slow points of Brownian motion are located on random fractal sets. Further-
more, they determined the Hausdorff dimensions of these sets. Brownian motion,
however, only displays very slight changes in its modulus of continuity (which
is modified only by logarithmic corrections). This is in sharp contrast with other
types of processes, such as Lévy processes, for instance, whose modulus of conti-
nuity changes completely from point to point. Let us recall the relevant definitions
related with pointwise Hölder regularity in this context.

DEFINITION 1. Let f : R+ → R be a locally bounded function, t0 ∈ R+ and
let α > 0. The function f belongs to Cα(t0) if there exist C > 0 and a polynomial
Pt0 of degree less than α such that, for all t in a neighborhood of t0,

|f (t) − Pt0(t)| ≤ C|t − t0|
α.

The Hölder exponent of f at t0 is (here sup ∅ = 0)

hf (t0) = sup{α > 0 :f ∈ Cα(t0)}.
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The level sets of the pointwise exponent of the Hölder exponent are called the
iso-Hölder sets of f , and defined, for h ≥ 0, by

Ef (h) = {t ≥ 0 :hf (t) = h}.

The corresponding notion of “multifractal function” was put into light by Frisch
and Parisi [14], who introduced the definition of the spectrum of singularities of a
function f .

DEFINITION 2. Let f : R+ → R be a locally bounded function. The spectrum
of singularities of f is the function Df defined, for h ≥ 0, by

Df (h) = dimH (Ef (h)).

We also define, for any open set A ⊂ R+, Df (A,h) = dimH (Ef (h) ∩ A).

The definition of the Hausdorff dimension can be found in Falconer [12] for
instance (by convention dimH ∅ = −∞). The singularity spectrum of f describes
the geometric repartition of its Hölder singularities, and encapsulates a geometric
information which is usually more meaningful than the Hölder exponent.

Following the way opened by Frisch and Parisi, the spectrum of singularities
of large classes of stochastic processes (or random measures, in which case an
appropriate notion of Hölder pointwise regularity for measures is used) have been
determined. Most examples of stochastic processes f which have been studied
display the following remarkable features:

• Though the iso-Hölder sets are random, the spectrum of singularities is deter-
ministic: for some deterministic function �, a.s., for all h ≥ 0, Df (h) = �(h).

• The spectrum of singularities of f is homogeneous: a.s., for any nonempty open
subset A ⊂ R+, for all h ≥ 0, Df (A,h) = �(h).

Though it is easy to construct artificial ad hoc processes that do not satisfy
these properties, it is remarkable that many “natural” processes of a very different
kind follow this rule: Lévy processes [17], Lévy processes in multifractal time
[5], fractional Brownian motions, random self-similar measures and random Gibbs
measures [9], Mandelbrot cascades [2], Poisson cascades [3], among many other
examples. See, however, [10] where Durand constructed a counterexample whose
(random) wavelet coefficients are defined using Markov trees.

In this paper we will investigate the regularity properties of some Markov
processes. Our purpose at this stage is not to obtain results in the most general
form, but rather to consider some specific examples, and check that such processes
indeed display a random spectrum, which is not homogeneous. Some regularity
properties of the sample paths of Markov processes (including Lévy processes)
have been investigated, for instance, by Xiao in [22]. Nevertheless, until now, the
only Markov processes which have been analyzed from the multifractal standpoint
are the Lévy processes.
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We now introduce a new notion, the local spectrum, which is tailored to the
study of functions with nonhomogeneous spectra.

DEFINITION 3. Let f : R+ → R be a locally bounded function, t0 ∈ R+, and
let (Vn)n≥1 be a basis of neighborhoods of t0. The local spectrum of f at t0 is the
function

for all h ≥ 0 Df (t0, h) = lim
n→∞

Df (Vn, h).

By monotonicity [if A ⊂ B , then Df (A,h) ≤ Df (B,h)], the limit exists and
it is independent of the particular basis chosen. Clearly, a function has a homoge-
neous spectrum if and only if, for all h ≥ 0, Df (t, h) is independent of t ≥ 0. The
local spectrum allows one to recover the spectrum of all possible restrictions of f

on an open interval.

LEMMA 4. Let f : R+ 	→ R be a locally bounded function. Then for any open

interval I = (a, b) ⊂ R+, for any h ≥ 0, we have Df (I, h) = supt∈I Df (t, h).

PROOF. Let thus h ≥ 0 be fixed. First, it is obvious that, for any t ∈ I ,
Df (t, h) ≤ Df (I, h), since for (Vn)n≥1 a basis of neighborhoods of t , Vn ⊂ I for
n large enough. Next, set δ = Df (I, h), and consider ε > 0. We want to find t ∈ I

such that, for all neighborhood V of t , Df (V ,h) ≥ δ−ε. Assume by contradiction
that, for any t ∈ I , there is a neighborhood Vt of t such that Df (Vt , h) < δ − ε.
One easily deduces that, for any compact K ⊂ I , Df (K,h) ≤ δ − ε (use a finite
covering of K by the Vt ’s). This would of course imply that Df (I, h) ≤ δ − ε < δ.

�

Let us now recall the multifractal nature of Lévy processes without Brownian
component. In that case, the spectrum of singularities only depends on one para-
meter, the lower index of Blumenthal and Getoor, which quantifies the “density”
of small jumps, and is defined, for any nonnegative measure ν on R satisfying∫ 1
−1 u2ν(du) < ∞, by

βν := inf
{
α ≥ 0 :

∫ 1

−1
|u|αν(du) < ∞

}
.

Note that the integrability condition implies that βν ∈ [0,2]. The following result
of [17] yields the spectrum of singularities of such Lévy processes.

THEOREM 5. Let (Xt )t≥0 be a Lévy process without Brownian component,
with Lévy measure ν. If βν ∈ (0,2), then the singularity spectrum of X is homoge-

neous and deterministic: a.s., for all t ≥ 0, for all h ≥ 0,

DX(t, h) = DX(h) =

{
h · βν, if 0 ≤ h ≤ 1/βν ,
−∞, if h > 1/βν .
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Let us make a few observations. It is not stated explicitly in [17] that the spec-
trum of a Lévy process is homogeneous, but it is a direct consequence of the proof.
Indeed, the spectrum is computed on an arbitrary interval, and the stationarity of
the increments implies that it does not depend on the particular location of this
interval. Although a Lévy process is random, its spectrum is almost surely deter-
ministic. As explained above, this is the situation usually met when performing
the multifractal analysis of random processes or random measures possessing ei-
ther stationarity or scaling invariance properties.

The purpose of this paper is to investigate how these results are modified when
the stationarity assumption is dropped. We will give examples of Markov processes
whose singularity spectra are nonhomogeneous and random.

2. Statement of the main result. A quite general class of one-dimensional
Markov processes consists of stochastic differential equations (SDE) with jumps;
see Ethier and Kurtz [11] and Ikeda and Watanabe [15]. Since the Brownian mo-
tion is mono-fractal, the Brownian part of such a process will not be very relevant.
Thus, in order to avoid technical difficulties, we consider a jumping SDE with-
out Brownian and drift part, starting, for example, from 0, and with jump mea-
sure ν(y, du) [meaning that when located at y, the process jumps to y + u at rate
ν(y, du)]. Again, to make the study as simple as possible, we will assume that the
process has finite variations, and even that it is increasing [i.e., ν(y, (−∞,0)) = 0
for all y ∈ R]. Classically, a necessary condition for the process to be well defined
is that

∫ ∞
0 uν(y, du) < ∞.

If ν is chosen so that the index βν(y,·) is constant with respect to y, then we
expect that DM(t, h) will be deterministic and independent of t . We thus impose
that the index of the jump measure depends on the value y of the process. The
most natural example of such a situation consists in choosing

νγ (y, du) := γ (y)u−1−γ (y)1[0,1](u) du

for some function γ : R 	→ (0,1). The lower exponent of this family of measures
is

∀y ≥ 0 βνγ (y,·) = γ (y).

We will make the following assumption:

(H)

{
there exists ε > 0 such that γ : [0,∞) 	−→ [ε,1 − ε]

is a Lipschitz-continuous strictly increasing function.

We impose a monotonicity condition for simplicity, it could be dropped under
additional technicalities. The global Lipschitz condition could also be slightly re-
laxed, as well as the uniform bounds.
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PROPOSITION 6. Assume that (H) holds. There exists a strong Markov

process M = (Mt )t≥0 starting from 0, increasing and càdlàg, and with genera-

tor L defined for all y ∈ [0,∞) and for any function φ : [0,∞) 	→ R Lipschitz-

continuous by

Lφ(y) =

∫ 1

0
[φ(y + u) − φ(y)]νγ (y, du).(2.1)

Almost surely, this process is continuous except on a countable number of jump

times. We denote by J the set of its jump times, that is, J = {t > 0 :�M(t) �= 0}.
Finally, J is dense in [0,∞).

Here and below, �Mt = Mt −Mt−, where Mt− = lims→t,s<t Ms . Proposition 6
will be checked in Section 3, by using a Poisson SDE. This representation of M

will be useful for its local regularity analysis in the next sections.
The following theorem summarizes multifractal features of M .

THEOREM 7. Assume (H) and consider the process M constructed in Propo-

sition 6. Then, the following properties hold almost surely:

(i) For every t ∈ (0,∞) \ J , the local spectrum of M at t is given by

DM(t, h) =

{
h · γ (Mt ), if 0 ≤ h ≤ 1/γ (Mt ),
−∞, if h > 1/γ (Mt ),

(2.2)

while for t ∈ J ,

DM(t, h) =

⎧
⎨
⎩

h · γ (Mt ), if 0 ≤ h < 1/γ (Mt ),
h · γ (Mt−), if h ∈ [1/γ (Mt ),1/γ (Mt−)],
−∞, if h > 1/γ (Mt−).

(2.3)

(ii) The spectrum of M on any interval I = (a, b) ⊂ (0,+∞) is, for all h ≥ 0,

DM(I, h) = sup{h · γ (Mt ) : t ∈ I, h · γ (Mt ) < 1}(2.4)

= sup{h · γ (Ms−) : s ∈ J ∩ I, h · γ (Ms−) < 1}.(2.5)

In (2.4) and (2.5), we adopt the convention that sup ∅ = −∞.

In view of Theorem 5, Theorem 7 seems very natural, since the process M looks
locally like a Lévy subordinator (a precise meaning will be given to this assertion
later). However, the results can clearly not be inferred from Theorem 5.

REMARK 8. To prove Theorem 7, it is enough to show (2.5).

PROOF OF THEOREM 7. The equality between (2.4) and (2.5) follows from
the fact that J is dense in R+, and that t 	→ γ (Mt ) is càdlàg on I .

Next, point (i) follows from (2.4) applied to In = (t − 1/n, t + 1/n) by taking
the limit n → ∞ (recall Definition 3). Let us, for example, assume that t ∈ J .



A JUMP MARKOV PROCESS WITH A RANDOM SPECTRUM 1929

• If h > 1/γ (Mt−), then for n large enough, h · γ (Ms) ≥ h · γ (Mt−1/n) ≥ 1 for
all s ∈ In, whence DM(In, h) = −∞ [we use here that s 	→ γ (Ms−) is nonde-
creasing]. Thus, DM(t, h) = −∞.

• If h < 1/γ (Mt ), we get from (2.4) that h · γ (Mt ) ≤ DM(In, h) ≤ h ×

sup[t−1/n,t+1/n] γ (Ms) = h · γ (Mt+1/n). Since s 	→ γ (Ms) is right continuous,
DM(t, h) = limn DM(In, h) = h · γ (Mt ).

• If h ∈ [1/γ (Mt ),1/γ (Mt−)], then for all s ≥ t , h · γ (Ms) ≥ 1, while clearly h ·

γ (Mt−1/n) < 1. Hence, we deduce from (2.4) that h ·γ (Mt−1/n) ≤ DM(In, h) ≤

h · sup[t−1/n,t) γ (Ms) = h · γ (Mt−).

Finally, DM(t, h) = limn DM(In, h) = h · γ (Mt−). �

Formula (2.5) is better understood when plotted: for every s ∈ I ∩ J , plot a seg-
ment whose endpoints are (0,0) and (1/γ (Ms−),1) (open on the right), and take
the supremum to get DM(I, ·). Sample paths of the process M and their associated
spectra are given in Figure 1.

FIG. 1. Two sample paths of the stochastic process M built using the function γ (y) :=

min(1/2 + y/4,0.9). On the right-hand side are plotted the theoretical spectra DM ([0,3], ·).
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The formulae giving the local and global spectra are based on the computation
of the pointwise Hölder exponents at all times t . We will, in particular, prove (see
Theorem 19 and Proposition 23) the following properties: a.s.,

for every t ≥ 0 hM(t) ≤ 1/γ (Mt ),

for Lebesgue-almost every t hM(t) = 1/γ (Mt ),

for every κ ∈ (0,1) dimH {t ≥ 0 :hM(t) = κ/γ (Mt )} = κ.

It is worth emphasizing that, as expected from the construction of the process
M , the local spectrum (2.2) at any point t > 0 essentially coincides with that of a
stable Lévy subordinator of index γ (Mt ). This local comparison will be strength-
ened in Section 7, where we prove the existence of tangent processes for M (which
are Lévy stable subordinators).

The estimation of the pointwise Hölder exponents is based on a local compari-
son between the Markov process M and some Lévy subordinators associated with
M . But of course, such a method cannot be applied to compute the singularity
spectrum of M , since Hausdorff dimensions are not preserved under limits. The
proof of Theorem 7 requires a so-called ubiquity theorem. Ubiquity theory deals
with the search for lower bounds for the Hausdorff dimensions of limsup sets,
and is classically required when performing the multifractal analysis of stochastic
processes or (random or deterministic) measures with jumps [5, 6, 17, 18]. For our
Markov process M , the ubiquity theorem needed here is the “localized ubiquity”
theorem recently proved in [7]. In order to apply this result, we need to establish
fine properties on the distribution of Poisson point processes (see Section 6).

REMARK 9. It follows from Theorem 7 that, for all s ∈ J , all h ∈ (1/γ (Ms),

1/γ (Ms−)], DM(h) = h · γ (Ms−). Thus, the spectrum DM is a straight line on
all segments of the form (1/γ (Ms),1/γ (Ms−)], s ∈ J . Nonetheless, observe that
the spectrum we obtain, when viewed as a map from R+ to R+, is very irregular,
and certainly multifractal itself. This is in sharp contrast with the spectra usually
obtained, which are most of the time concave or (piecewise) real-analytic.

REMARK 10. Random processes with random singularity exponents of the
most general form have already been constructed in [1], but there is no direct re-
lationship with having a random singularity spectrum. An example of stochastic
process X (built using wavelet coefficients) with a random singularity spectrum is
provided by [10], but there DX(h) is random for at most two values of h.

REMARK 11. Of course we hope that Theorem 7, which concerns a specific
and simple process, might have extensions to more general Markov processes
M = (Mt )t∈[0,1]. In particular, this is certainly the case if we keep the same mea-
sures νγ and if we drop the monotonicity assumption on the Lipschitz-continuous
function γ .
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The organization of the paper is the following. In Section 3 Proposition 6
is proved. We also introduce a suitable coupling of M with a family of Lévy
processes. In Section 4 we introduce a family of (random) subsets of [0,1] on
which we control the regularity of M . We conclude the proof of Theorem 7 in
Sections 5 and 6. Finally, in Section 7, we show the existence of tangent processes
for M .

In the whole paper we assume that (H) is satisfied. We will restrict our study to

the time interval [0,1], which of course suffices.

3. Poisson representation of the process. First of all, we observe that using
the substitution u = (1 + z)−1/γ (y) in (2.1) (for each fixed y), we may rewrite, for
any y ∈ [0,∞), for any φ : [0,∞) 	→ R Lipschitz-continuous,

Lφ(y) =

∫ ∞

0

[
φ

(
y + G(γ (y), z)

)
− φ(y)

]
dz,(3.1)

where

G(β, z) := (1 + z)−1/β .

We recall the following representation of the Poisson measures we are going to
use.

REMARK 12. Let (Yn)n≥1 be a sequence of independent exponential random
variables with parameter 1. Let (Tn)n≥1 be a sequence of independent [0,1]-valued
uniformly-distributed random variables, and assume that (Yn)n≥1 and (Tn)n≥1 are
independent. For each n ≥ 1, set Zn = Y1 + · · · + Yn. Then the random measure

N(dt, dz) =
∑

n≥1

δ(Tn,Zn)(dt, dz)

is a Poisson measure on [0,1] × [0,∞) with intensity measure dt dz. We denote
by Ft := σ({N(A),A ∈ B([0, t] × [0,∞))}) the associated filtration.

The law of large numbers ensures us that a.s. limn Zn/n = 1.

This leads us to the following representation of the process M .

PROPOSITION 13. Let N be as in Remark 12. Then there exists a unique

càdlàg (Ft )t∈[0,1]-adapted process M = (Mt )t∈[0,1] solution to

Mt =

∫ t

0

∫ ∞

0
G(γ (Ms−), z)N(ds, dz).(3.2)

Furthermore, M is a strong Markov process with generator L [see (2.1) or (3.1)],
and is a.s. increasing. Finally, J = {t ∈ [0,1] :�Mt �= 0} = {Tn :n ≥ 1}.
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Proposition 6 is a consequence of this result.

PROOF OF PROPOSITION 13. Owing to classical arguments (see, e.g., Ikeda
and Watanabe [15]), the (pathwise) existence and uniqueness of the solution to
(3.2) follow from the two following properties, which are easily checked under
(H):

• for all y ∈ [0,∞), for all z ∈ [0,∞), G(γ (y), z) ≤ (1+z)−1/(1−ε) ∈ L1([0,∞),

dz),
• for all x, y ∈ [0,∞),

∫ ∞
0 |G(γ (x), z) − G(γ (y), z)|dz = |

γ (x)
1−γ (x)

−
γ (y)

1−γ (y)
| ≤

C|x − y| [here we use that G(β, z) is nondecreasing as a function of β].

Indeed, it suffices to use the Gronwall Lemma and a Picard iteration (for the
norm ‖X −Y‖ = E[sup[0,1] |Xt −Yt |]). The strong Markov property follows from
the pathwise uniqueness, and the monotonicity of M is obvious since G is non-
negative. Finally, for φ : [0,∞) 	→ R Lipschitz-continuous, we have

φ(Mt ) = φ(0) +
∑

s≤t

[φ(Ms− + �Ms) − φ(Ms−)]

= φ(0) +

∫ t

0

∫ ∞

0

[
φ

(
Ms− + G(γ (Ms−), z)

)
− φ(Ms−)

]
N(ds, dz).

Taking expectations and using (3.1), we get

E[φ(Mt )] = φ(0) +

∫ t

0
E[Lφ(Ms)]ds,

so that the generator of M is indeed L. �

We also introduce a one-parameter family of Lévy processes, and check some
regularity comparisons with M .

PROPOSITION 14. Consider the Poisson measure N and the process M intro-

duced in Remark 12 and Proposition 13. For each fixed α ∈ (0,1), we define

Xα
t =

∫ t

0

∫ ∞

0
G(α, z)N(ds, dz).(3.3)

Then (Xα
t )t∈[0,1] is a pure-jump (Ft )t∈[0,1]-adapted Lévy process. Its Lévy measure

is να(du) = αu−1−α1[0,1](u) du, for which βνα = α. Almost surely:

(i) for all 0 < α < α′ < 1, for all 0 ≤ s ≤ t ≤ 1,

0 ≤ Xα
t − Xα

s ≤ Xα′

t − Xα′

s ;

(ii) for all 0 ≤ s ≤ t ≤ 1,

0 ≤ X
γ (Ms)
t − Xγ (Ms)

s ≤ Mt − Ms ≤ X
γ (Mt−)
t − Xγ (Mt−)

s .
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PROOF. For each α ∈ (0,1), Xα is classically a Lévy process, and its Lévy
measure is the image measure of dz by G(α, ·), which is nothing but να . Next,
point (i) is not hard since for 0 < α < α′, we have G(α, z) < G(α′, z) for all z ∈

(0,∞). Point (ii) is also immediate: since u 	→ γ (Mu−) is nondecreasing, and
since G(·, z) is nondecreasing for all z ∈ (0,∞), we have a.s., for 0 ≤ s ≤ t ≤ 1,

Mt − Ms =

∫

(s,t]
G(γ (Mu−), z)N(du, dz)

≤

∫

(s,t]
G(γ (Mt−), z)N(du, dz) = X

γ (Mt−)
t − Xγ (Mt−)

s .

Similarly, we obtain Mt − Ms ≥ X
γ (Ms)
t − X

γ (Ms)
s , which ends the proof. �

4. Local regularity. We consider a Poisson measure N as in Remark 12, and
the associated processes M , Xα as in Propositions 13 and 14. We start with a
simple observation.

LEMMA 15. Almost surely, for all α ∈ (0,1),

J = {t ∈ [0,1] :�Mt �= 0} = {t ∈ [0,1] :�Xα
t �= 0} =

⋃

n≥1

{Tn},(4.1)

and for all n ≥ 1, all α ∈ (0,1),

(�MTn)
γ (MTn−) = (�Xα

Tn
)α = (1 + Zn)

−1.

PROOF. By construction, we have Mt =
∑

n≥1 G(γ (MTn−),Zn)1{t≥Tn} and
Xα

t =
∑

n≥1 G(α,Zn)1{t≥Tn} for all α ∈ (0,1) and all t ∈ [0,1]. All these series
converge simultaneously on the set {limn→+∞

Zn

n
= 1}, which has probability 1 as

seen in Remark 12. Thus, a.s., all these processes jump at the same time, and (4.1)
holds. Next, for n ≥ 1, �MTn = G(γ (MTn−),Zn) = (1 + Zn)

−1/γ (MTn−) and for
every α ∈ (0,1), we have �Xα

Tn
= G(α,Zn) = (1 + Zn)

−1/α . �

REMARK 16. It might seem surprising that the previous result holds a.s. si-
multaneously for all α ∈ (0,1). But for all 0 ≤ s ≤ t , the map α 	→ Xα

t − Xα
s

is continuous (and actually C∞) on (0,1). Indeed, we can write Xα
t − Xα

s =∑
n≥1 G(α,Zn)1{s<Tn≤t}, and this series converges a.s. normally for α ∈ [ε,1 −

ε] for any ε ∈ (0,1/2). To prove this last assertion, it suffices to note that
supα∈[ε,1−ε] |G(α,Zn)| = G(1 − ε,Zn).

Next, we introduce some (random) sets of times, more or less well-approxi-
mated by the times of jumps of our process M . The main idea is that at times
well-approximated by the jump times of M , the pointwise regularity of M will be
poor, while at times which are far from the jump times of M , M will have greater
pointwise exponents.
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We thus set, for all δ ≥ 1,

Aδ =
⋂

p≥1

⋃

n≥p

B
(
Tn, (�MTn)

δγ (MTn−)) =
⋂

p≥1

⋃

n≥p

B(Tn, (�Xα
Tn

)δα)(4.2)

=
⋂

p≥1

⋃

n≥p

B
(
Tn, (1 + Zn)

−δ).(4.3)

Here, B(t, r) = (t − r, t + r). Let us observe at once that

for all δ1 ≤ δ2 Aδ2 ⊂ Aδ1 .

PROPOSITION 17. Almost surely, A1 ⊃ [0,1].

PROOF. Observe that
∑

n≥1 δ(Tn,(1+Zn)−1) is a Poisson measure on [0,1] ×

(0,1) with intensity measure dt μ(du) where μ(du) = du/u2 [because μ(du) is
the image measure of 1{z>0} dz by the application (1 + z)−1]. Due to Shepp’s
Theorem [21] (we use here the version used in the papers of Bertoin [8] and Jaffard
[17], Lemma 3), it suffices to prove that

S =

∫ 1

0
exp

(
2

∫ 1

t
μ((u,1)) du

)
dt = ∞.

But μ((u,1)) = u−1 − 1, so that S =
∫ 1

0 e2(t−1−log t) dt ≥ e−2 ∫ 1
0 dt/t2 = ∞. �

In order to characterize the pointwise exponent of M at every time t , we need
to introduce the notion of approximation rate by a Poisson process.

DEFINITION 18. Recall that a.s. δ 	→ Aδ is nonincreasing and A1 = [0,1].
We introduce, for any t ∈ [0,1], the (random) index of approximation of t ,

δt := sup{δ ≥ 1 : t ∈ Aδ} ≥ 1.(4.4)

We now are able to give the value of hM(t).

THEOREM 19. Almost surely, for all t ∈ [0,1] \ J ,

hM(t) =
1

δt · γ (Mt )
.(4.5)

In particular, this implies that, for every t ∈ [0,1], hM(t) ≤ 1/γ (Mt ).

We introduce, for f : R+ 	→ R a locally bounded function and t0 ∈ R+,

h̃f (t0) := sup{α > 0 :∃C, |f (t) − f (t0)| ≤ C|t − t0|
α in a neighborhood of t0}.

This notion of the Hölder exponent of f at t0 is slightly different of that intro-
duced in Definition 1 (which may involve a polynomial). Note that we always
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have h̃f (t0) ≤ hf (t0). In the case where f is purely discontinuous and increasing,
one might expect that hf (t0) = h̃f (t0) in many cases. This is the case when f is
a Lévy subordinator without drift. Indeed, from [17], Lemma 4 and Proposition 2,
we have a.s.

for all t ∈ [0,1] \ J , for all α ∈ (0,1) h̃Xα (t) = hXα (t) = (δt · α)−1

(here we use that Xα is a pure jump Lévy process without drift with Lévy measure
να satisfying βνα = α).

PROOF OF THEOREM 19 (Lower bound). Let t ∈ [0,1] \ J and ε > 0 small
enough be fixed. By construction, M is continuous at t . Since γ is also continuous,
there exists η > 0 such that, for all s ∈ (t −η, t +η), γ (Ms) ∈ (γ (Mt )−ε, γ (Mt )+

ε). We deduce from Proposition 14(ii) that, for all s ∈ (t − η, t),

0 ≤ Mt − Ms ≤ X
α+

ε
t − X

α+
ε

s ,

where α+
ε := γ (Mt ) + ε. Similarly, when s ∈ (t, t + η),

0 ≤ Ms − Mt ≤ X
α+

ε
s − X

α+
ε

t .

Thus, applying the definition of h̃, we conclude that hM(t) ≥ h̃M(t) ≥ h̃
Xα

+
ε
(t) =

(δt .α
+
ε )−1.

Letting ε go to zero, we deduce that hM(t) ≥ (δt .γ (Mt ))
−1. �

To prove an upper bound for hM(t), we use the following result of [16],
Lemma 1.

LEMMA 20. Let f : R 	→ R be a function discontinuous on a dense set of

points, and let t ∈ R. Let (tn)n≥1 be a real sequence converging to t such that, at

each tn, f has right and left limits at tn and |f (tn+) − f (tn−)| = sn. Then

hf (t) ≤ lim inf
n→+∞

log sn

log |tn − t |
.

PROOF OF THEOREM 19 (Upper bound). By (4.2) and (4.4), for every ε > 0,
t ∈ Aδt−ε , so that there exists a sequence of jump instants (Tnk

)k≥1 converging to

t such that |t − Tnk
| ≤ (�MTnk

)
(δt−ε)γ (MTnk

−). Hence, by Lemma 20, we get

hM(t) ≤ lim inf
k→+∞

log�MTnk

log |Tnk
− t |

≤ lim inf
k→+∞

log�MTnk

log(�MTnk
)
(δt−ε)γ (MTnk

−)

≤ lim inf
k→+∞

1

(δt − ε)γ (MTnk
−)

=
1

(δt − ε)γ (Mt )
.
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The last point comes from the fact that M is continuous at t . Letting ε tend to zero
yields that hM(t) ≤ (δt .γ (Mt ))

−1.
To finish the proof of Theorem 19, it is clear from (4.5) and (4.4) that, for all

t ∈ [0,1] \ J , hM(t) ≤ 1/γ (Mt ). Finally, hM(t) = 0 for all t ∈ J , since M jumps
at t . �

5. Computation of the spectrum: A localized ubiquity theorem. We are
now in a position to prove Theorem 7. Recall that the Poisson measure N =∑

n δ(Tn,Zn) has been introduced in Remark 12, that the process M has been built
in Proposition 13, and that δt has been introduced in Definition 18.

We will use here the localized Jarnik–Besicovitch theorem of [7], that we ex-
plain now. We introduced in (4.2) and (4.4) the approximation rate of any real
number t ∈ [0,1] by our Poisson point process. In fact, such an approximation rate
can be defined for any system of points.

DEFINITION 21. (i) A system of points S = {(tn, ln)}n≥1 is a [0,1] × (0,∞)-
valued sequence such that ln decreases to 0 when n tends to infinity.

(ii) S = {(tn, ln)}n≥1 is said to satisfy the covering property if
⋂

p≥1

⋃

n≥p

B(tn, ln) ⊃ [0,1].(5.1)

(iii) For t ∈ [0,1], the approximation rate of t by S is defined as

δt = sup{δ ≥ 1 : t belongs to an infinite number of balls B(tn, l
δ
n)}.(5.2)

Set λn := (1 +Zn)
−1. Then P = {(Tn, λn)}n≥1 is a system of points. Of course,

formula (5.2) coincides with formula (4.4) when the system of points is P . This
system P is a Poisson point process with intensity measure

�(s,λ) = 1[0,1]×(0,1)(s, λ) ds
dλ

λ2 .(5.3)

Let us state the result of [7], Theorem 1.3. The definitions of a weakly redundant

system and the condition (C) are recalled in next section. There, the Poisson system
P is shown to enjoy these properties almost surely.

THEOREM 22. Consider a weakly redundant system S satisfying the covering

property (5.1) and condition (C). Let I = (a, b) ⊂ [0,1] and f : I → [1,+∞) be

continuous at every t ∈ I \ Z , for some countable Z ⊂ [0,1]. Consider

S(I, f ) = {t ∈ I : δt ≥ f (t)} and S̃(I, f ) = {t ∈ I : δt = f (t)}.

Then

dimH S(I, f ) = dimH S̃(I, f ) = sup{1/f (t) : t ∈ I \ Z}.
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Observe that P satisfies the covering property due to Proposition 17. We assume
for a while that a.s. the Poisson system P is weakly redundant and fulfills (C).

PROPOSITION 23. Consider the process M built in Proposition 13. Almost

surely:

(i) for all I = (a, b) ⊂ [0,1], all κ ∈ (0,1),

dimH {t ∈ I :hM(t) = κ/γ (Mt )} = dimH {t ∈ I :hM(t) ≤ κ/γ (Mt )} = κ;

(ii) for Lebesgue-almost every t ∈ [0,1], hM(t) = 1/γ (Mt ).

PROOF. By Theorem 19 and since J is countable, we observe that, for I =

(a, b) ⊂ [0,1],

dimH {t ∈ I :hM(t) = κ/γ (Mt )} = dimH {t ∈ I : δt = 1/κ}.

Let κ ∈ (0,1). Since the Poisson system P = {(Tn, λn)}n≥1 satisfies all the
required conditions, we may apply Theorem 22 with the constant function f ≡

1/κ and get dimH {t ∈ I :hM(t) = κ/γ (Mt )} = κ . The same arguments hold for
dimH {t ∈ I :hM(t) ≤ κ/γ (Mt )}, which concludes the proof of (i). Next, we write,
for I = (a, b) ⊂ [0,1],

I = {t ∈ I :hM(t) = 1/γ (M(t))} ∪

(⋃

n≥1

Sn

)
,(5.4)

where Sn := {t ∈ I :hM(t) ≤ (1 − 1/n)/γ (M(t))}. By (i), for every n ≥ 1,
the Lebesgue measure of the set Sn is zero since it is of Hausdorff dimen-
sion strictly less than 1. We deduce from (5.4) that, for Lebesgue-a.e. t ∈ I ,
hM(t) = 1/γ (M(t)). Since this holds for any I = (a, b) ⊂ [0,1], the conclusion
follows. �

PROOF OF THEOREM 7. By Remark 8, it suffices to prove (2.5). Let I =

(a, b) ⊂ [0,1]. By Theorem 19, for all h ≥ 0,

DM(I, h) = dimH {t ∈ (a, b) :hM(t) = h}

= dimH

{
t ∈ (a, b) : δt =

(
h · γ (Mt )

)−1}
.

The jump times J are countable and of exponents zero for M , so they do not
interfere in the computation of Hausdorff dimensions.

For s ∈ J ∩ (a, b) a jump time of M and h ∈ (0,1/γ (Ms−)), consider the func-
tion fs defined on the interval Is = (a, s) by fs(t) = (h · γ (Mt ))

−1. This function
is continuous on Is \ J , and satisfies, for every t ∈ Is , fs(t) ≥ (h ·γ (Ms−))−1 ≥ 1.

Applying Theorem 22 to the Poisson system P = {(Tn, λn)}n≥1 (which satisfies all
the required conditions), we obtain

dimH

{
t ∈ Is : δt =

(
h · γ (Mt )

)−1}
= sup{h · γ (Mt ) : t ∈ Is \ J } = h · γ (Ms−),
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since γ (Mt ) increases to γ (Ms−) as t increases to s. Hence, for every s ∈ J ∩

(a, b), for every h such that 0 < h ≤ 1/γ (Ms−), we have

dimH {EM(h) ∩ Is} = h · γ (Ms−).

Furthermore, for s ∈ J ∩ (a, b), when h ≥ 1/γ (Ms−), we have EM(h) ∩ [s, b] =

∅. Indeed, by Theorem 19, for t ≥ s, hM(t) ≤ 1/γ (Mt ) ≤ 1/γ (Ms) < 1/γ (Ms−).
Let now h ≥ 0 be fixed. Then using the density of J ,

EM(h) ∩ I =

( ⋃

s∈J ∩(a,b),γ (Ms−)<1/h

(
EM(h) ∩ (a, s)

))

∪

( ⋃

s∈J ∩(a,b),γ (Ms−)≥1/h

(
EM(h) ∩ [s, b)

))
.

As noted previously, the second term of the right-hand side is empty. Thus, we get,
since J is countable,

DM(I, h) = sup
{
dimH

(
EM(h) ∩ Is

)
: s ∈ J ∩ I, γ (Ms−) < 1/h

}

= sup{h · γ (Ms−) : s ∈ J ∩ I and h · γ (Ms−) < 1},

which was our aim.
Observe that if h ≥ 1/γ (Ma), this formula gives DM(I, h) = −∞. �

6. Study of the distribution of the Poisson point process. To conclude the
proof, we only have to check that P is a weakly redundant system satisfying (C).
Recall that P = {(Tn, λn)}n≥1 is a Poisson point process with intensity measure
(5.3).

6.1. Weak redundancy and condition (C). The weak redundancy property as-
serts that the balls B(tn, ln) naturally associated with a system of points S do not
overlap excessively. The precise definition is the following.

DEFINITION 24. Let S = {(tn, ln)}n≥1 be a system of points. For any integer
j ≥ 0, we set

Tj =
{
n : 2−(j+1) < ln ≤ 2−j }

.

Then S is said to be weakly redundant if tn �= tn′ for all n �= n′ and if there exists
a nondecreasing sequence of positive integers (Nj )j≥0 such that:

(i) limj→∞(log2 Nj )/j = 0.
(ii) for every j ≥ 1, Tj can be decomposed into Nj pairwise disjoint subsets

(denoted Tj,1, . . . , Tj,Nj
) such that, for each 1 ≤ i ≤ Nj , the balls B(tn, ln), n ∈

Tj,i , are pairwise disjoint.
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In other words, for every x ∈ [0,1], x cannot belong to more than Nj balls B(tn, ln)

with 2−j−1 < ln ≤ 2j .
As shown in [4], Proposition 6.2, P is weakly redundant.
A weak redundant system does not necessarily satisfy the conclusion of Theo-

rem 22. This is the reason why condition (C), which imposes finer properties on
the distribution of the system S , has to be introduced.

We denote by � the set of functions ϕ : R+ → R+ such that:

• ϕ is increasing, continuous and ϕ(0) = 0,
• r−ϕ(r) is decreasing and tends to ∞ as r tends to 0,
• rα−βϕ(r) is increasing near 0 for all α,β > 0.

For example, the function ϕ(r) =
log |log(r)|

| log r|
, defined for r ≥ 0 close enough to 0,

has the required behavior around 0.

DEFINITION 25. Suppose that a system of points S = {(tn, ln)}n≥1 is weakly
redundant and adopt the notation of Definition 24. For every ϕ ∈ � and for any
j ≥ 1, we define

ψ(j,ϕ) = max
{
m ∈ N :Nm · 2m ≤ 2j (1−ϕ(2−j ))}.

Of course, the sequence of integers (Nj )j≥1 is the one appearing in Definition 24
of the weak redundancy.

Obviously ψ(j,ϕ) ≤ j , for every ϕ, (Nj ) and j .
For any dyadic interval U = [k2−j , (k + 1)2−j ), we set g(U) = j , that is, g(U)

is the dyadic generation of U . We denote by Gj the set of all dyadic intervals of
generation j . Finally, we denote by G∗ :=

⋃
j≥0 Gj the set of all dyadic intervals.

DEFINITION 26. Suppose that a system of points S = {(tn, ln)}n≥1 is weakly
redundant and adopt the notation of Definitions 24 and 25. Let ϕ ∈ �. For every
dyadic interval V ∈ Gj and every δ > 1, the property P(V , δ) is satisfied when
there exists an integer n ∈ Tj such that tn ∈ V and

B(tn, (ln)
δ) ∩

{
tp :

p ∈ Tk, where k satisfies
ψ(j,ϕ) ≤ k ≤ − log2(ln)

δ + 4

}
= {tn}.

Let us try to give an intuition of the meaning of P(V , δ) for a dyadic inter-
val V . P(V , δ) holds true when, except tn, the family of points (tp)p≥1 “avoids”
the ball B(tn, (ln)

δ) when p describes all the sets Tk , for k ranging between
g(V ) and − log2(ln)

δ + 4, that is, between the dyadic generations of B(tn, ln) and
B(tn, (ln)

δ).
This condition seems to be reasonable, maybe not for all dyadic intervals, but at

least for a large number among them. Condition (C) is meant to ensure the validity
of P(V , δ) for a sufficient set of intervals V and approximation degrees δ.
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DEFINITION 27. Suppose that a system of points S = {(tn, ln)}n≥1 is weakly
redundant and adopt the notation of Definitions 24 and 25. The system S is said to
satisfy condition (C) if there exist:

• a function ϕ ∈ �,
• a continuous function κ : (1,+∞) → (0,1],
• a dense subset � of (1,∞),

such that for every δ ∈ �, for every dyadic interval U ∈ G∗, there are infinitely
many integers j ≥ g(U) satisfying

#Q(U, j, δ) ≥ κ(δ) · 2j−g(U),

where

Q(U, j, δ) = {V ∈ Gj :V ⊂ U and P(V , δ) holds}.

6.2. Proof of (C) for the Poisson process P . We only need to find a function
ϕ ∈ � and a continuous function κ : (1,+∞) → (0,1] such that for every δ > 1,
with probability 1, for every U ∈ G∗, there are infinitely many integers j ≥ g(U)

satisfying #Q(U, j, δ) ≥ κ(δ) · 2j−g(U). Then, for any countable and dense subset
� of (1,∞), with probability 1, for every δ ∈ �, for every U ∈ G∗, there are
infinitely many integers j ≥ g(U) satisfying #Q(U, j, δ) ≥ κ(δ) · 2j−g(U).

In fact, any ϕ ∈ � is suitable.
Let ϕ ∈ � and δ > 1. For U ∈ G∗ and V ⊂ U such that V ∈

⋃
j>g(U) Gj , let us

introduce the event

A(U,V, δ) =

⎧
⎪⎨
⎪⎩

∃n ∈ Tg(V ) such that Tn ∈ V and

B(Tn, (λn)
δ) ∩

( ⋃

ψ(g(V ),ϕ)≤k≤h(V )

Tj

)
= {Tn}

⎫
⎪⎬
⎪⎭

,

where h(V ) = [δ(g(V ) + 1)] + 4. Recall that n ∈ Tg(V ) means that 2−g(V )−1 <

λn ≤ 2−g(V ). By construction, the inclusion A(U,V, δ) ⊂ {P(V , δ) holds} is sat-
isfied.

For every j ≥ 1, let G̃j = {[2k · 2−j , (2k + 1) · 2−j ] : 0 ≤ 2k ≤ 2j − 1}. The
restrictions of the Poisson point process to the strips V × (0,1), where V describes
G̃j , are independent. Moreover, the events A(U,V, δ), when V ∈ G̃j and V ⊂ U ,
are independent [we must separate the intervals in G̃j because if V ∈ Gj , Tn ∈ V

and λn ≤ 2−j , then B(Tn, (λn)
δ) may overlap with the neighbors of V ].

We denote by X(U,V, δ) the random variable 1A(U,V,δ). For a given generation
j > g(U), the random variables (X(U,V, δ))V ∈G̃j

are i.i.d. Bernoulli variables,
whose common parameter is denoted by pj (δ). The following lemma holds.

LEMMA 28. There exists a continuous function κ1 : (1,+∞) → (0,1) such

that, for every j ≥ 1, pj (δ) ≥ κ1(δ).
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Let us assume Lemma 28 for the moment. By definition, we have

#Q(U, j, δ) ≥
∑

V ∈G̃j :V ⊂U

X(U,V, δ).

The right-hand side of this inequality is a binomial variable of parameters
(2j−g(U),pj (δ)), with pj (δ) ≥ κ1(δ) > 0. Consequently, choosing κ(δ) = κ1(δ)/

2 > 0, we have

P

( ∑

V ∈Gj ,V ⊂U

X(U,V, δ) ≥ κ(δ) · 2j−g(U)

)
≥ 1/2,(6.1)

provided that j is large enough (depending on δ). Indeed, for θ fixed in (0,1), if
Xn ∼ B(n, θ) (a binomial distribution), one easily checks that P(Xn > nθ/2) tends
to 1 when n tends to infinity.

Let (jn)n≥1 be the sequence defined inductively by j1 = g(U) + 1 and jn+1 =

(jn + 1)δ + 5. We notice that the events En defined for n ≥ 1 by

En =
{
#Q(U, jn, δ) ≥ κ(δ) · 2jn−g(U)}

are independent. Moreover, (6.1) implies that
∑

n≥1 P(En) = +∞. The Borel–
Cantelli Lemma yields that, with probability 1, there is an infinite number of gener-
ations jn satisfying #Q(U, jn, δ) ≥ κ(δ) ·2j−g(U). This holds true for every U ∈ G∗

almost surely, hence almost surely for every U ∈ G∗. Condition (C) is proved.
We prove Lemma 28. For every V ∈ G∗, let us introduce the sets

SV = V ×
[
2−(g(V )+1),2−g(V )] and S̃V = V ×

[
2−h(V ),2−ψ(g(V ),ϕ)].

We denote by NV and ÑV , respectively, the cardinality of P ∩ SV and P ∩ (S̃V \

SV ). These random variables NV and ÑV are independent. We set lV = �(SV ) and
l̃V = �(S̃V ) [� is the intensity of the Poisson point process (5.3)]. Due to the form
of the intensity �, NV and ÑV are Poisson random variables of parameter lV = 1
and l̃V = 2−g(V )(2h(V ) − 2g(V )+1 + 2g(V ) − 2ψ(g(V ),ϕ)), respectively. Observe that
l̃V ≤ 2h(V )−g(V ) since, by definition, ψ(g(V ),ϕ) ≤ g(V ).

We also consider two sequences of random variables in R
2 (ξp = (Xp, Yp))p≥1

and (̃ξq = (X̃q , Ỹq))q≥1 such that

P ∩ SV = {ξp : 1 ≤ p ≤ NV },

P ∩ (S̃V \ SV ) = {̃ξq : 1 ≤ q ≤ ÑV }.

The event A(U,V, δ) contains the event Ã(U,V, δ) defined as
{
NV = 1 and B

(
X1, Y

δ)
1

)
∩ {X̃q : 1 ≤ q ≤ ÑV } = {X1}

}
,

where ξ1 = (X1, Y1). The difference between A(U,V, δ) and Ã(U,V, δ) is that
the latter one imposes that there is one, and only one, Poisson point in SV . We
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have

P(Ã(U,V, δ))

= P
({

B(X1, Y
δ
1 ) ∩ {X̃q : 1 ≤ q ≤ ÑV } = ∅

}
|{NV = 1}

)

× P({NV = 1})

= P
(
{∀1 ≤ q ≤ ÑV , X̃q /∈ B(X1, Y

δ
1 )}|{NV = 1}

)
× e−1,

where P({NV = 1}) = e−1 since NV is a Poisson random variable of parameter 1.
The random variables X̃q are independent and uniformly distributed in V . Thus,

P
(
{∀1 ≤ q ≤ ÑV , X̃q /∈ B(X1, Y

δ
1 )}|{NV = 1}

)

≥ E

([
1 −

ℓ(B(X1, Y
δ
1 ))

2−g(V )

]ÑV
)
.

Observe that, since δ > 1, provided that g(V ) is large enough, conditionally on
{NV ≥ 1}, ℓ(B(X1, Y

δ
1 )) ≤ 2−g(V )δ . This implies that

P(Ã(U,V, δ)) ≥ e−1 × E
([

1 − 2−g(V )(δ−1))]ÑV
)
.(6.2)

Let us define ηg(V ) = 2−g(V )(δ−1). Using that ÑV is a Poisson random variable
of parameter l̃V , a classical calculus shows that (6.2) can be rewritten as

P(Ã(U,V, δ)) ≥ e−1e−l̃V ·ηg(V ) .

By using the definition of h(V ) = [(g(V ) + 1)δ] + 4, we can get

l̃V · ηg(V ) ≤ 2h(V )−g(V ))2−g(V )(δ−1) ≤ 16 · 2δ.

Thus, l̃V ηg(V ) is bounded from above independently of V by a continuous function
of δ. Consequently, P(Ã(U,V, δ)) and, thus, P(A(U,V, δ)), is bounded from be-
low by some quantity κ1(δ) which is strictly positive and continuously dependent
on δ > 1. Lemma 28 is proved.

7. Some tangent stable Lévy processes. Let t0 ≥ 0 be fixed. Then one ob-
serves (recall Theorems 5 and 7) that the local multifractal spectrum DM(t0, ·) of
our process M essentially coincides with the multifractal spectrum of a stable Lévy
process with Lévy measure γ (Mt0)u

−1−γ (Mt0 ) du. A possible explanation for this
is that such a stable Lévy process is tangent to our process. The notion of tangent
processes was, for instance, studied in [13].

PROPOSITION 29. Let t0 ≥ 0 be fixed. Conditionally on Ft0 , the family of

processes (
Mt0+αt−Mt0

α
1/γ (Mt0 ) )t∈[0,1] converges in law, as α → 0+, to a stable Lévy sub-

ordinator with Lévy measure γ (Mt0)u
−1−γ (Mt0 ) du. Here the Skorokhod space

of càdlàg functions on [0,1] is endowed with the uniform convergence topology

(which is stronger than the Skorokhod topology).
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One might conjecture that under many restrictive conditions, a result of the
following type might hold: if a process (Mt )t∈[0,1] has a tangent process (Y

t0
t )t∈[0,1]

at time t0, then DM(t0, ·) coincides with the multifractal spectrum of Y t0 . This
would allow, for example, to generalize our results to the study of the multifractal
spectrum of any reasonable jumping SDE (which is always tangent, in some sense,
to a Lévy process).

PROOF OF PROPOSITION 29. Using the Markov property, it suffices to treat
the case t0 = 0. Let thus N(ds, dz) be a Poisson measure on [0,1] × [0,∞) with
intensity measure ds dz. Recall that

Mt =

∫ t

0

∫ ∞

0
(1 + z)−1/γ (Ms−)N(ds, dz)

and introduce the Lévy processes

Lt =

∫ t

0

∫ ∞

0
(1 + z)−1/γ (0)N(ds, dz), L̃t =

∫ t

0

∫ ∞

1
z−1/γ (0)N(ds, dz),

St =

∫ t

0

∫ ∞

0
z−1/γ (0)N(ds, dz).

One immediately checks that (Lt )t∈[0,1] and (L̃t )t∈[0,1] have the same law, and that
(St )t∈[0,1] is a stable Lévy process with Lévy measure γ (0)u−1−γ (0) du. Thus,
our aim is to prove that (α−1/γ (0)Mαt )t∈[0,1] tends in law to (St )t∈[0,1]. First,
(α−1/γ (0)Sαt )t∈[0,1] has the same law as (St )t∈[0,1] for each α > 0. Next, it is clear
that

P
[(

α−1/γ (0)L̃αt

)
t∈[0,1] =

(
α−1/γ (0)Sαt

)
t∈[0,1]

]
≥ P

[
N([0, α] × [0,1]) = 0

]
= e−α,

which tends to 1 as α tends to 0.
We will now show that α−1/γ (0)�α tends to 0 in probability, where

�t := sup
[0,t]

|Ms − Ls | =

∫ t

0

∫ ∞

0

[
(1 + z)−1/γ (Ms−) − (1 + z)−1/γ (0)]N(ds, dz),

and this will conclude the proof. A first computation, using that γ (y) ≤ 1 − ε < 1
by assumption, shows that, for all t ≥ 0,

E[Mt ] =

∫ t

0

∫ ∞

0
E

[
(1 + z)−1/γ (Ms)

]
dzds ≤

∫ t

0

∫ ∞

0
(1 + z)−1/(1−ε) dzds ≤ Ct

for some constant C. Next, we introduce, for η > 0, the stopping time τη = inf{t ≥

0 :γ (Mt ) > γ (0) + η}. Denoting by A the Lipschitz constant of γ , one easily gets

P[τη < α] ≤ P[Mα ≥ η/A] ≤ (A/η)E[Mα] ≤ CAα/η = Cηα.
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Now for β ∈ (γ (0) + η,1], by subadditivity, one obtains, for all t ≥ 0,

E[M
β
t∧τη

] ≤ E

[∫ t∧τη

0

∫ ∞

0
(1 + z)−β/γ (Ms−)N(ds, dz)

]

= E

[∫ t∧τη

0

∫ ∞

0
(1 + z)−β/γ (Ms) dzds

]

≤ E

[∫ t∧τη

0

∫ ∞

0
(1 + z)−β/(γ (0)+η) dzds

]
≤ Cη,β t.

Let us introduce for m ≥ 0 the quantity κ(m) := 1/γ (0) − 1/γ (m) ≥ 0. Still by
subadditivity, for β ∈ (γ (0) + η,1], for t ≥ 0, we have

E[�
β
t∧τη

] ≤ E

[∫ t∧τη

0

∫ ∞

0

[
(1 + z)−1/γ (Ms) − (1 + z)−1/γ (0)]β dzds

]

≤ E

[∫ t∧τη

0

∫ 21/κ(Ms)−1

0
(1 + z)−β/γ (0)[(1 + z)κ(Ms) − 1

]β
dzds

]

+ E

[∫ t∧τη

0

∫ ∞

21/κ(Ms)−1
(1 + z)−β/γ (Ms) dzds

]
=: I

β,η
t + J

β,η
t .

But for z ≤ 21/κ(m) − 1, there holds (1 + z)κ(m) − 1 ≤ Cκ(m) log(1 + z) ≤

Cm log(1 + z), the last inequality following from the facts that κ(0) = 0 and κ

is Lipschitz-continuous. Hence,

I
β,η
t ≤ E

[∫ t∧τη

0
CMβ

s

∫ ∞

0
(1 + z)−β/γ (0)(log(1 + z)

)β
dzds

]

≤ CβE

[∫ t∧τη

0
Mβ

s ds

]
≤ Cβ

∫ t

0
E[M

β
s∧τη

]ds ≤ Cη,β t2.

Next, β/γ (Ms) ≥ β/(γ (0) + η) > 1 on [0, τη), whence (since 2−ax ≤ Cax for all
x > 0),

J
β,η
t ≤ Cη,βE

[∫ t∧τη

0
2[1−β/(γ (0)+η)]/κ(Ms) ds

]
≤ Cη,βE

[∫ t∧τη

0
κ(Ms) ds

]

≤ Cη,βE

[∫ t∧τη

0
Ms ds

]
≤ Cη,β

∫ t

0
E[Ms∧τη ]ds ≤ Cη,β t2.

Again, we used here that κ(0) = 0 and that κ is Lipschitz-continuous. As a con-
clusion, E[�

β
t∧τη

] ≤ Cη,β t2.
We may now conclude that, for all δ > 0, all α > 0, all η > 0, all β ∈ (γ (0) +

η,1],

P
[
α−1/γ (0)�α ≥ δ

]
≤ P[τη ≥ α] + P

[
�α∧τη ≥ δα1/γ (0)]

≤ Cηα +
(
δα1/γ (0))−β

E[�
β
α∧τη

] ≤ Cηα + Cη,δ,βα2−β/γ (0).
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Choosing η = min(γ (0),1 − γ (0))/2 and then β ∈ (γ (0) + η,1 ∧ 2γ (0)), we
deduce that 2 − β/γ (0) > 0, so that α−1/γ (0)�αT tends to 0 in probability when
α goes to 0, which was our aim. �

REFERENCES

[1] AYACHE, A., JAFFARD, S. and TAQQU, M. S. (2007). Wavelet construction of generalized
multifractional processes. Rev. Mat. Iberoamericana 23 327–370. MR2351137

[2] BARRAL, J. (2000). Continuity of the multifractal spectrum of a random statistically self-
similar measure. J. Theoret. Probab. 13 1027–1060. MR1820501

[3] BARRAL, J. and MANDELBROT, B. B. (2004). Random multiplicative multifractal measures.
In Fractal Geometry and Applications. Proc. Symp. Pure Math. AMS, Providence, RI.

[4] BARRAL, J. and SEURET, S. (2007). Continuity of the multifractal spectrum of a random
statistically self-similar measure. Bull. Braz. Math. Soc. 38 467–515.

[5] BARRAL, J. and SEURET, S. (2007). The singularity spectrum of Lévy processes in multifractal
time. Adv. Math. 214 437–468. MR2348038

[6] BARRAL, J. and SEURET, S. (2008). The multifractal nature of heterogeneous sums of Dirac
masses. Math. Proc. Cambridge Philos. Soc. 144 707–727. MR2418713

[7] BARRAL, J. and SEURET, S. (2008). A localized Jarnik–Besicovitch theorem. Preprint. Avail-
able at arXiv:0903.2215v1.

[8] BERTOIN, J. (1994). On nowhere differentiability for Lévy processes. Stochastics Stochastics

Rep. 50 205–210. MR1786116
[9] BROWN, G., MICHON, G. and PEYRIÈRE, J. (1992). On the multifractal analysis of measures.

J. Statist. Phys. 66 775–790. MR1151978
[10] DURAND, A. (2008). Random wavelet series based on a tree-indexed Markov chain. Comm.

Math. Phys. 283 451–477. MR2430640
[11] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes. Characterization and Conver-

gence. Wiley, New York. MR838085
[12] FALCONER, K. (2003). Fractal Geometry. Mathematical Foundations and Applications, 2nd

ed. Wiley, Hoboken, NJ. MR2118797
[13] FALCONER, K. J. (2003). The local structure of random processes. J. London Math. Soc. 67

657–672.
[14] FRISCH, U. and PARISI, G. (1985). Fully developped turbulence and intermittency. In Proc.

International Summer School Phys., Enrico Fermi 84–88. North Holland, Amsterdam.
[15] IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffu-

sion Processes. North-Holland Mathematical Library 24. North-Holland, Amsterdam.
MR637061

[16] JAFFARD, S. (1997). Old friends revisited: The multifractal nature of some classical functions.
J. Fourier Anal. Appl. 3 1–22. MR1428813

[17] JAFFARD, S. (1999). The multifractal nature of Lévy processes. Probab. Theory Related Fields

114 207–227. MR1701520
[18] JAFFARD, S. (2000). On lacunary wavelet series. Ann. Appl. Probab. 10 313–329. MR1765214
[19] OREY, S. and TAYLOR, S. J. (1974). How often on a Brownian path does the law of iterated

logarithm fail? Proc. London Math. Soc. (3) 28 174–192. MR0359031
[20] PERKINS, E. (1983). On the Hausdorff dimension of the Brownian slow points. Z. Wahrsch.

Verw. Gebiete 64 369–399. MR716493
[21] SHEPP, L. A. (1972). Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete 23

163–170. MR0322923

http://www.ams.org/mathscinet-getitem?mr=2351137
http://www.ams.org/mathscinet-getitem?mr=1820501
http://www.ams.org/mathscinet-getitem?mr=2348038
http://www.ams.org/mathscinet-getitem?mr=2418713
http://arxiv.org/abs/0903.2215v1
http://www.ams.org/mathscinet-getitem?mr=1786116
http://www.ams.org/mathscinet-getitem?mr=1151978
http://www.ams.org/mathscinet-getitem?mr=2430640
http://www.ams.org/mathscinet-getitem?mr=838085
http://www.ams.org/mathscinet-getitem?mr=2118797
http://www.ams.org/mathscinet-getitem?mr=637061
http://www.ams.org/mathscinet-getitem?mr=1428813
http://www.ams.org/mathscinet-getitem?mr=1701520
http://www.ams.org/mathscinet-getitem?mr=1765214
http://www.ams.org/mathscinet-getitem?mr=0359031
http://www.ams.org/mathscinet-getitem?mr=716493
http://www.ams.org/mathscinet-getitem?mr=0322923


1946 BARRAL, FOURNIER, JAFFARD AND SEURET

[22] XIAO, Y. (2004). Random fractals and Markov processes. In Fractal Geometry and Applica-

tions: A Jubilee of Benoît Mandelbrot, Part 2. Proc. Sympos. Pure Math. 72 261–338.
Amer. Math. Soc., Providence, RI. MR2112126

J. BARRAL

INSTITUT GALILÉE

UNIVERSITÉ PARIS 13
99 AVENUE J. B. CLÉMENT

93430 VILLETANEUSE

FRANCE

E-MAIL: barral@math.univ-paris13.fr

N. FOURNIER

S. JAFFARD

S. SEURET

LABORATOIRE D’ANALYSE ET DE MATHÉMATIQUES

APPLIQUÉES – CNRS UMR 8050
UFR SCIENCES ET TECHNOLOGIE

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

61, AVENUE DU GÉNÉRAL DE GAULLE

94010 CRÉTEIL CEDEX

FRANCE

E-MAIL: nicolas.fournier@univ-paris12.fr
jaffard@univ-paris12.fr
seuret@univ-paris12.fr

http://www.ams.org/mathscinet-getitem?mr=2112126
mailto:barral@math.univ-paris13.fr
mailto:nicolas.fournier@univ-paris12.fr
mailto:jaffard@univ-paris12.fr
mailto:seuret@univ-paris12.fr

	Introduction
	Statement of the main result
	Poisson representation of the process
	Local regularity
	Computation of the spectrum: A localized ubiquity theorem
	Study of the distribution of the Poisson point process
	Weak redundancy and condition (C)
	Proof of (C) for the Poisson process P

	Some tangent stable Lévy processes
	References
	Author's Addresses

