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The goal of this paper is to do for the production side the exact analog of the consumption-based

asset pricing paradigm. In a consumption-based model we use the consumers’ first order conditions to

recover a discount factor for asset returns from the equilibrium marginal rates of substitution. The goal

of a pure production-based model is to use the producers’ first order conditions to recover a discount

factor from the equilibrium marginal rates of transformation, the rate at which a producer can transform

output in one state of nature into output in another state. As we need a utility function to measure

marginal rates of substitution from consumption data, in this approach we need to specify a production

function to obtain marginal rates of transformation from production data.

Alas, standard representations of the technology of a firm that operates in an uncertain environment

don’t let us do that. In standard representations, there is nothing the producer can do to transform

output across states of nature and thus the marginal rates of transformation are not well defined. To see

this, consider a typical production function of the form

Y (s) = (s)F (Kt) (1)

whereKt is the input (chosen today), Y (s) is the output and (s) is an exogenous productivity level, which

are a function of the state of nature s (tomorrow). The producer can only transform output today into

output tomorrow in fixed proportions across states of nature. In order to produce more in one state (by

increasing the use of the input Kt), it must produce more in all the other states as well. Thus standard

representations of the technology are Leontief across states of nature, as illustrated in the left panel of

Figure 1. The bold lines in this figure represent the production possibilities frontier generated by this

standard technology for a given amount of inputs Kt. By definition, the marginal rate of transformation

is given by the slope of the production possibilities frontier at a given point such as A. Since there is a

kink in the production possibilities frontier, the marginal rate of transformation is not well defined.1

[Insert Figure 1 here]

To address this issue, I consider an alternative representation for the firm’s technology, first proposed

in Cochrane (1993), in which the producer can transform output across states of nature. In this rep-

resentation, the producer has access to a standard technology such as (1) but is allowed to choose the

state-contingent productivity level (s) in order to produce more in high-value states and less in low-value

states, subject to a constraint set. This technology has a smooth (differentiable) production possibilities

frontier across states of nature and thus well defined marginal rates of transformation, as illustrated in

the right panel of Figure 1.

I consider the production decision problem of a producer that has access to the smooth production

technology described above and maximizes the contingent-claim value of the firm. The producer is

competitive and takes as given a market-determined stochastic discount factor M(s) to value the cash-

flows produced by the firm. The first order conditions with respect to the state-contingent productivity

level (s) imply

M(s) =MRT (production data; θ(s), s, b) , (2)

1This result also holds in more general representations of the technology in which some inputs such as capital or labor
utilization are allowed to be adjusted after the state of nature is realized. Naturally, once a state of nature is realized, no
transformation of output across states is possible by definition.
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where MRT is the marginal rate of transformation in state of nature s. The marginal rate of transforma-

tion is a function of production variables such as the productivity level and GDP, and is parameterized

by θ(s), a random variable that specifies how difficult it is to produce in the state of nature s, and by

b, the vector of parameters of the smooth production technology. Equation (2) is the crucial condition

for all the empirical work in this paper. It states that in order to maximize the contingent claim value,

the producer equates its marginal rate of transformation to the stochastic discount factor. It therefore

allows us to recover a stochastic discount factor from the producers’ first order conditions without any

information about consumers’ preferences, in strict analogy to a consumption-based model.

The hypothesis that the producer has some control over its state-contingent productivity level (s),

and hence its state-contingent output, is plausible. According to the evidence provided in Sheffi (2005)

and, more generally, in the literature on operational risk management (e.g. Apgar (2006)), firms respond

to uncertainty by adjusting their production practices. For example, Federal Express Corporation puts

two empty planes in the air each night in order to be able to reach any airport with a grounded plane

if an unexpected delivery service occurs. This production procedure effectively transforms output across

states of nature by decreasing output in one state (no delivery service occurs) into increased output in

another state (unexpected delivery service occurs). Likewise, several firms (e.g. Compaq) have multiple

production units in several regions of the world in order to, among other reasons, control the exposure of

its aggregate output (the sum of the output in all its production units) to local shocks. In this case, by

shifting inputs such as labor and capital across the different production units, the producer can effectively

control the distribution of its aggregate output across states of nature. More formally, Cochrane (1993)

shows that smooth production sets across states of nature can occur when one aggregates standard

production functions that are not smooth. Appendix A-I explains this construction in detail.

In the empirical section, I test whether the standard moment condition E[MtR
e
t ] = 0 holds for the

excess returns Re
t of several portfolio sorts, using the marginal rate of transformation (2) as the stochastic

discount factor Mt. Since the estimated vector of parameters b is related to the parameters of the

technology of the firm, I provide an economic interpretation of the estimates and check whether the

model fits the data with theoretically plausible parameter values. This is a desirable feature of any asset

pricing model as emphasized by Lewellen et al (2006) and many others, and is a characteristic that

distinguishes the production-based model from other macro-factor models where the factor loadings are

usually free parameters.

The main empirical findings in this paper can be easily summarized. The marginal rate of transfor-

mation captures well the risk and return trade-off of many portfolio sorts. The returns on small stocks

and value stocks have a large negative covariance with the marginal rate of transformation, which ex-

plains their high average returns relative to big stocks and growth stocks. The model explains about

75% of the cross-sectional variation in the returns of the 25 Fama-French size and book-to-market port-

folios (the standard benchmark portfolios used in the empirical asset pricing literature) and about 88%

of the cross-sectional variation in the returns of 9 risk-sorted portfolios. Finally, the performance of

the production-based model also compares favorably with the standard consumption-based asset pricing

model and the empirical Fama-French (1993) three factor model, on the 25 Fama-French portfolios sorted

on size and book-to-market.

The paper proceeds as follows. Section I discusses the related literature. Section II presents the
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production-based model, derives the asset pricing implications and proposes a procedure to measure the

marginal rates of transformation in the data. Section III tests the production-based model on the cross-

section of expected stock returns of several portfolio sorts under two alternative empirical specifications

and compares the performance of the production-based model with that from other asset pricing models.

Section IV concludes.

I. Related literature

This paper is related to a growing literature on production-based asset pricing. The goal of this approach

is to link stock returns to production variables thus providing an alternative framework for interpreting

the well documented relationship between stock returns and macroeconomic events. Standard work in

asset pricing has analyzed this relationship by watching the consumption decisions of the consumers and

focusing on the properties of utility functions. Campbell (2003) and Cochrane (2005) provides a review

of the consumption-based asset pricing literature. In contrast, the production-based approach interprets

the relationship between stock returns and macroeconomic events by watching the production decisions

of the firms and focusing on the properties of production functions. Cochrane (1991, 1993 and 2005) and

Jermann (2007) provide a detailed motivation for the production-based asset pricing approach.

The central novel contribution of this paper is to estimate an asset pricing model based on operating

marginal rates of transformation. Many successful macro-factor models of the form of (2) have been

evaluated, including Chen Roll and Ross (1986), Li, Vassalou and Xing (2003), Cochrane (1996), and

Jagannathan and Wang (1996). However, the theoretical motivation in these papers relied on consumers’

first order conditions and the estimated parameters b (the factor risk prices) are estimated as free para-

meters. One can view the contribution of the paper as providing a theory behind successful empirical

work, as well as in extending that empirical work to the precise specification of (2). In turn, the strategies

for identifying the unobserved random variable θ(s) in the data are the central innovation that let this

empirical work go through.

The work most closely related to mine is Cochrane (1993) and Jermann (2007). Cochrane (1993)

proposes the smooth production technology that I use in this paper. Cochrane does not provide an

empirical evaluation of the ability of a marginal rate of transformation (2) to price assets since this

requires data on the unobserved random variable θ(s), an important variable that controls the ability

of the producer to produce in each state of nature. In this paper, I solve this identification problem

by assuming a factor structure for this variable. As I show in this paper, if the unobserved random

variable θ(s) is a function of a small number of common factors, I am able to identify this variable from

the optimal production decisions of at least two producers in the economy. Jermann (2007) calibrates

a two-sector economy with two states of nature exploiting the disaggregated description of technology

described in Appendix A-I rather than the aggregated smooth technology I use. With only two states of

nature in the economy, Jermann recovers the contingent-claim prices from the investment returns in the

two sectors and is able to replicate some interesting stylized facts. In contrast to the approach I follow in

this paper, Jermann (2007) focus on the evaluation of the model through simulation and does not provide

an empirical test of the model in the data. My work thus differs from Jermann’s in that I directly model

the marginal rates of transformation, allow for an arbitrary number of states of nature in the economy

and I provide a set of moment conditions for the cross section of expected stock returns which I test in
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the data.

Most of the existing production-based asset pricing literature focus on studying the firms’ optimal

investment decisions. With linearly homogenous production functions (average q equals marginal q) the

investment return should be equal to the market return on a claim to the firm’s capital stock. Cochrane

(1991) finds that investment returns, a function of investment and output data, are highly correlated

with stock returns. Cochrane (1996) and Li, Vassalou and Xing (2003) extend this approach to the study

of the cross section of equity returns and Gomes, Yaron and Zhang (2006) incorporate costly external

finance into this framework. But the individual production functions used in these studies have no cross

sectional asset pricing implications since there is nothing the producer can do to transform output across

states of nature. Therefore, these studies study the hypothesis that the investment returns are factors

for asset returns, but this is not a direct prediction of these models.

Balvers and Huang (2006) extend Cochrane (1991) approach and show that under the standard

neoclassical assumptions about preferences and production functions, the equilibrium stochastic discount

factor in the economy is a function of the investment return. Balvers and Huang model is not pure

production-based since it imposes restrictions on the preference side by ruling out features such as durable

goods, habit formation or preference shocks. In addition, Balvers and Huang are able to recover a

stochastic discount factor in their model due to the ability of the consumers, not the firms, to substitute

consumption across states.

This paper is also related to the literature that studies the asset pricing implications of nontrivial

production functions in general equilibrium models. These papers establish an endogenous link between

returns and production variables. Examples of this approach include Brock (1982), Rouwenhorst (1995),

Jermann (1998), Berk, Green and Naik (1999), Boldrin, Christiano and Fisher (2001), Gomes, Kogan and

Zhang (2003), Gourio (2005), Gala (2005), Gomes, Kogan and Yogo (2006), Panageas and Yu (2006) and

Papanikolaou (2007). These studies are also not pure production-based since the production functions in

these models do not have well defined marginal rates of transformation of output across states. Therefore,

these models still rely on the consumer’ first order conditions to find marginal rates of substitution or a

discount factor across states of nature to obtain the equilibrium conditions.

Finally, this paper is also related to a vast literature on production under uncertainty. One example

of this literature is Chambers and Quiggin (2000) (and references therein) who argue that a state-

contingent production approach is a realistic description of the production process of firms that operate

in an uncertain environment. According to these authors, if the different inputs used in the production

process are subject to different productivity shocks, the choice of the mix of inputs is equivalent to

a state-contingent choice of output. This approach is not operational since we don’t observe all the

different inputs used by the firm in the data, but it provides theoretical support for the aggregate smooth

technology that I use in this paper.

II. A Pure Production-Based Model

A. Technology

Each producer in the economy has access to a production technology that is smooth (differentiable)

both across time and across states of nature. I use the analytically tractable specification of a smooth
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technology proposed in Cochrane (1993). In this specification, a producer, indexed by the subscript i,

produces output Yit using a standard technology of the form

Yit = itF
i (Kit)

where F i(.) is an increasing and concave function of the inputs Kit, but is also allowed to choose the state-

contingent productivity level it, subject to a constraint set. In defining this constraint set, Cochrane

(1993) proposes a standard CES aggregator

E
∙µ

it

θit

¶αi¸ 1
αi

≤ 1 (3)

where αi > 1 is a parameter and θit > 0 is an exogenously given random variable that makes it easier

to produce in some states of nature relative to others. In this technology, the ability of the producer to

transform output across states of nature is captured by the curvature parameter αi. This parameter is

related to the elasticity of substitution of output across states which is defined as σi = (αi− 1)−1. When
αi → ∞, the firm has effectively no ability to transform output across states of nature (as in standard

representations) since the chosen productivity level it must converge to θit state-by-state in order to

satisfy the restriction (3). The choice it = θit is always feasible and as αi decreases, it becomes easier

for the firm to transform output across states. Thus this restriction can be interpreted as follows: nature

hands the firm an underlying state-contingent productivity level θit, which the firm distorts into a new

state-contingent productivity level it in order to produce more in some states at the expense of producing

less in other states. As an example, consider αi = 2 and θit = θ (constant). According to restriction (3) ,

the producer can choose any state-contingent productivity level whose second moment is less than θ2,

including it = θ. Appendix A-II explains the derivation of the constraint set (3) in detail.

B. The Producers’ Maximization Problem

Each producer i = 1, ...N in the economy has access to one technology to produce one differentiated

good. In what follows, I take the good produced with technology i = 1 to be the numeraire and I consider

the maximization problem of producer i. The producer is competitive and takes as given the market-

determined stochastic discount factor Mt, measured in units of good 1, to value the cash-flows arriving

at the end of period t. I assume markets are complete, in which case the (unique) stochastic discount

factor is the contingent-claim price divided by the probability of the corresponding state of nature. The

existence of a strictly positive stochastic discount factor is guaranteed by a well-known existence theorem

if there are no arbitrage opportunities in the market (see for example, Cochrane (2001), chapter 4.2).

The producer makes its production decisions in order to maximize the contingent claim value of the

firm. Output is realized at the end of each period. The producer then chooses the current period invest-

ment Iit−1, the next period state-contingent productivity level it in each technology i and distributes

the total realized output minus investment costs as dividends Dit−1 to the owners of the firm.

To derive the first order conditions, it is useful to state the problem recursively. Define the vector of

state variables as xt−1 = (Kit−1, it−1, pit−1, M̃t, θ̃it)
2
i=1 where Kit−1 is the current period stock of capital,

it−1 is the current period productivity level, Pit−1 = pit−1/p1t−1 is the current period relative price of
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good i with respect to good 1, M̃t is the next period distribution of the stochastic discount factor in units

of the first good and θ̃it is the next period distribution of the underlying productivity level. Let V (xt−1)

be the contingent claim value of the firm at the end of period t − 1 given the vector of state variables
xt−1. The Bellman equation of the firm is

V (xt−1) = max
{Iit−1, it}

{Dit−1 + Et−1 [MtV (xt)]}

subject to the constraints,

Dit−1 = Pit−1 (Yit−1 − Iit−1) (Dividend)

Yit−1 = it−1F
i (Kit−1) (Output)

1 ≥ Et−1
∙µ

it

θit

¶αi¸ 1
αi

(Productivity Level)

Kit = (1− δi)Kit−1 + Iit−1 (Capital Stock)

for all dates t. Et−1[.] is the expectation operator conditional on the firms’ information set at the end of
period t−1 and δi is the depreciation rate of the capital stock in technology i. I ignore capital adjustment
costs and the choice of labor inputs since, under some assumptions and as I discuss below, these features

do not affect the equilibrium marginal rate of transformation across states of nature.

C. First-Order Conditions

The first order condition for the state-contingent productivity level it is given by (all the algebra is in

Appendix B)

it = φ
1

1−αi
it−1 M

1
αi−1
t P

1
αi−1
it θ

αi
αi−1
it (4)

where φit−1 is a variable pre-determined at time t.2 Intuitively, this condition states that the firms’

optimal choice of the productivity level is determined by prices and technological constraints. Since

αi > 1, the firm chooses a higher productivity level in states of nature in which output is more valuable,

high Mt states, and in states of nature in which it is easier to produce, high θit states.

We can invert the first order condition (4) to recover the stochastic discount factor from the firms’

optimal choice of the productivity level. Rearraging terms, we have

Mt = φit−1P
−1
it

αi−1
it θ−αiit (5)

This condition states that in order to maximize the contingent claim value of the firm, the producer

equates the stochastic discount factor Mt to the marginal rate of transformation in each state of nature.

Thus with this condition we can recover the stochastic discount factor from the producers’ decisions

without any information about preferences in the same way that we recover a discount factor in the

2This variable is φit−1 = Et−1 [MtPit] /Et−1 αi−1
it θ−αiit . I don’t solve for this variable since this variable only affects the

mean of the stochastic discount factor. Since in this paper I only look at the implications of the model for excess returns,
the mean of the stochastic discount factor is not identified since it does not affect the pricing errors in the estimation of the
model.
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consumption-based model from the consumers’ first order conditions without any information about the

technologies.

For empirical purposes, it is convenient to express the stochastic discount factor in terms of stationary

and directly observed variables (up to the underlying productivity level θit which is discussed below).

Using the fact that output is given by Yit = itF
i(Kit) and that F i(Kit) is pre-determined at time t, we

can express the stochastic discount factor in (5) as

Mt = φ̄it−1

µ
Pit
Pit−1

¶−1µ Yit
Yit−1

¶αi−1
θ−αiit (6)

where φ̄it−1 is again a variable pre-determined at time t.
3 Representing the stochastic discount factor in

terms of output instead of the unobserved productivity level it simplifies the empirical implementation of

the model. Although the productivity level it can be measured in the usual way as a Solow residual, this

procedure is subject to possible misspecification errors in the functional form of the production function

F (.), as discussed in Burnside, Eichenbaum and Rebelo (1996), for example.

The first order condition for physical investment is given by

Et−1[MtR
I
it] = 1, (7)

where

RI
it = (1− δi) + Pit itF

i
k (Kit) (8)

is the (stochastic) investment return. This is the standard condition that the investment return is

correctly priced. According to this condition, the firm removes arbitrage opportunities from the physical

investment and whatever assets the firm has access to.

I abstract from capital adjustment costs since, these costs only affect the investment returns and

not the across-states predictions in (6) that I explore. For the same reason, I also abstract from the

choice of labor inputs by the firm. If labor is included, the marginal rate of transformation is still given

by (6) provided that labor inputs are chosen before the state of nature is realized. In this case, the

production function with labor, F i(Kit, Lit), is still pre-determined at time t and thus the algebra step

from (5) to (6) is unchanged. This is no longer true if the firm is allowed to adjust labor in response to

the realized productivity shock. In this case, labor is another source of variation across states of nature

and, to recover the marginal rate of transformation, it would be necessary to identify the movements in

output across states that are due to variation in the productivity level across states or due to variation

in the use of labor inputs across states. This is an interesting generalization that I don’t pursue in this

paper in order to keep the model simple and transparent and to emphasize the role of the choice of the

productivity level in the results. It should be pointed out however, that allowing labor to adjust is not a

substitute mechanism to transform output across states of nature. Once a state of nature is realized, it is

not possible to transfer output across states by definition. To measure a marginal rate of transformation

it is necessary to have a decision in which more in one state costs less in another. The mere option to

adjust something ex-post does not tell us anything about the rate at which a producer give up one thing

in one state to get it in another.

3This variable is φ̄it−1 = Et−1 [MtPit/Pit−1] /Et−1 (Yit/Yit−1)αi−1 θ−αiit .
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D. Identification

In order to take the model to the data we need to measure the unobserved underlying productivity level

θit in (6). The simplest approach to this identification problem would be to assume that θit =constant

across states of nature. In economic terms, this assumption specifies that it is not easier to produce

in one state of nature relative to another state. This assumption makes the estimation of the model

particularly easy since, for excess returns, any variable that is constant across states can be ignored since

these variables affect the level of all returns. This is the approach suggested in Cochrane (1993). However,

this assumption leads the model to produce wrong predictions. If the underlying productivity level θit
was constant, the first order condition (4) implies that firm chooses a higher productivity level, and hence

produce more, in states of nature with high values of the stochastic discount factor Mt. However, it is

well known that states with high values of the stochastic discount factor are associated with less output,

not more. Thus to match the real world it must be true that the underlying productivity level θit does

vary across states of nature and it is higher in states with low values of the stochastic discount factor.

This follows naturally from general equilibrium and it is not an assumption about the stochastic discount

factor. Consumers who eat the output would place an higher value for the stochastic discount factor Mt

in states of nature with low output.

To solve the identification problem, I assume the underlying productivity level is related across tech-

nologies. I specify a factor structure for the underlying productivity level in each technology as stated

in Assumption 1. This assumption imposes a strong restriction on the performance of the model thus

providing testable empirical content to it.

Assumption 1 (Identification):
The underlying productivity level in each technology i = 1, .., N has the following factor structure

αiθ̄it =
JX

j=1

λij θ̄
c
jt i = 1, ..,N

where θ̄it = log(θit) and θ̄
c
jt is the j

th common productivity factor, with j = 1, .., J and λij are the loadings

of the underlying productivity level of technology i on the common productivity factor j. The loadings for

technology 1 are normalized to λ1j = 1 ∀j.

This assumption is motivated by the well documented existence of common factors in production

technologies. Aggregate production possibilities are higher for one firm when they are higher for another;

that is, business cycles have common components. However, some industries are more cyclically-sensitive

than others and thus the loadings of each firms’ underlying productivity level on the common components,

here captured by the loadings λij , may vary across firms.

Technically, Assumption 1 provides one additional condition which, combined with the producers’

first order conditions (6), allows me to infer the underlying productivity level θit in each technology from

output and price data and without any information about the stochastic discount factorMt. For example,

for the case of one common factor (J = 1), we can use the first order conditions for any two technologies

(here technologies 1 and 2) and use the condition in Assumption 1 to solve the log common productivity

factor θ̄c1t and obtain
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θ̄
c
1t =

¡
λ21 − 1

¢−1 £
log
¡
φ̄2t−1/φ̄1t−1

¢
−∆p2t + (1− α1)∆y1t + (α2 − 1)∆y2t

¤
(9)

where lowercase variables are the log of the corresponding uppercase variables and ∆ is the first difference

operator. In turn, the previous equation allows me to infer the equilibrium marginal rate of transformation

from observed output and price data. This conclusion is stated in Proposition 1.

Proposition 1 Under Assumption 1 and with J ≥ 1 common productivity factors, the equilibrium mar-

ginal rate of transformation can be identified from output and price data in J + 1 technologies. The

marginal rate of transformation is given by

Mt = ςt−1

JY
i=1

µ
Pit
Pit−1

¶bpi J+1Y
i=1

µ
Yit
Yit−1

¶byi
, (10)

where Yit is the output in technology i, Pit is the relative price of good i with respect to good 1, ςt−1 is

a variable pre-determined at time t and the factor risk prices byi and bpi are related to the parameters of

the production technologies (see Appendix C for exact formula). For the one common productivity factor

case (J = 1), the factor risk prices are⎡⎢⎣ bp2
by1
by2

⎤⎥⎦ =
⎡⎢⎣ 1/(λ21 − 1)
(α1 − 1)λ21/(λ21 − 1)
(1− α2)/(1− λ21)

⎤⎥⎦
Proof. See Appendix C.

This Proposition shows that a macro-factor asset pricing model follows from a pure production-based

asset pricing setup.

The factor risk prices b in (10) are related to the technology of the firms in this economy. This fact

allows me to address some puzzling findings in the empirical macro-factor asset pricing literature. For

example, Li, Vassalou and Xing (2003) and Cochrane (1996) find that the factor risk prices in their

models have typically opposing signs, even for factors that are strongly positively correlated. Cochrane

(1996, table 9) obtains this result when domestic and non-domestic investment growth are used as pricing

factors. The estimated pattern of the risk prices is not explained in these models since the factor loadings

are free parameters. In contrast, for the output factor and with one common productivity factor, this

finding is a prediction of the production-based model provided that λ21 is positive but smaller than one,

which turns out to be the empirically relevant case in the specification used in the paper.

E. Asset Pricing Implications

In this paper, I focus on excess returns, which allows me to consider a simplified version of the marginal

rate of transformation defined in Proposition 1. Since for a vector of excess returns (Re
t ) of tradable

assets any valid discount factor Mt satisfies

Et−1 [MtR
e
t ] = 0, (11)
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the conditional mean of the discount factor is not identified from data on excess returns. Therefore,

we can set ςt−1 = 1 in the marginal rate of transformation defined in Proposition 1 without affecting

the pricing errors of the model. This implies that a valid discount factor for excess returns from the

production-based model is given by

M∗
t =

JY
i=1

µ
Pit
Pit−1

¶bpj J+1Y
i=1

µ
Yit
Yit−1

¶byj
, (12)

where the factor risk prices b0s are specified in Proposition 1. This discount factor is proportional to

the true marginal rate of transformation in the model: it measures the component of the marginal rate

of transformation that varies across states of nature and therefore has pricing implications for excess

returns. Substituting this discount factor into an unconditional version of the moment condition (11)

and some algebra, yields the standard asset pricing condition

E[Re
t ] = −

Cov(M∗
t , R

e
t )

E[M∗
t ]

.

This equation tells us that cross sectional variation in stock returns is explained by cross-sectional varia-

tion in the level of risk. The main proposition of the production-based model is that the risk of any asset

can be measured by the covariance of its returns with the marginal rate of transformation. An asset is

risky if it delivers low returns in states of nature in which the marginal rate of transformation is high and

thus it must offer higher expected returns in equilibrium as a compensation for its level of risk.

III. The Production-Based Model in Practice

In this section I estimate and test the production-based model. To establish the robustness of the empirical

findings, I test the production-based model on several portfolio sorts and I compare the performance of

the production-based model with the standard consumption-based model and the empirical Fama-French

(1993) three factor model.

A. Data and Empirical Specification

I use annual data from 1947 to 2006, which is the frequency and the sample size available for the macro-

variables used in this paper. I identify the data for each technology as a NAICS (North American

Industry Classification System) two-digit sector. I only consider goods-producing sectors. At this level

of aggregation, NAICS defines four goods-producing sectors: Agriculture, Mining, Construction and

Manufacturing. I thus exclude from the analysis all the services-producing sectors. Output in each

technology is measured by the real gross value added. Data for gross value added is from the Bureau

of Economic Analysis (BEA) website, GDP-by-Industry accounts, table Real Value Added by Industry,

lines 3, 6, 11 and 12. The price data for each sector is also from the BEA, GDP-by-the-Industry accounts,

table Chain-Type Price Indexes for Value Added by Industry, lines 3, 6, 11 and 12.

The asset market data is standard. Data for the Fama-French three factors, namely Market (Market

excess return), SMB (Small-Minus-Big) and HML (High-Minus-Low), the Fama-French 6 benchmark

portfolios, the 25 Fama-French portfolios sorted on size and book-to-market and the risk-free rate is from
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Prof. Kenneth French’s webpage. The data to construct the 9 risk-sorted portfolios is from the Centre

for Research in Security Prices (CRSP). Appendix D provides a more detailed explanation of the asset

data used as well as a description of the additional macro data used.

In matching returns with output growth, I report results for the following two conventions: (i) con-

temporaneous matching: match returns at time t with output at time t and (ii) lagged matching: match

returns at time t with output growth at time t + 1. A convention is needed because the level of output

is a flow during a year rather than a point-in-time observation as the returns; that is, output data are

time averaged. The contemporaneous matching assumes that output data for year t measures the output

at the end of the year. In this case, output growth for a given year is this year output divided by last

year output. The lagged matching follows the Campbell’s (2003) (on consumption) beginning of the

period timing convention and assumes that output data for year t measures the output at the beginning

of the year. In this case, output growth for a given year is next year output divided by this year output.

Given that there is no consensus regarding the appropriate matching assumption, I report results for

both timing conventions.4

I estimate and test the production-based model under two alternative empirical specifications. In

the first specification I assume the existence of only one common productivity factor in the underlying

productivity level. This specification is appealing since it makes the analysis more tractable by keeping the

number of pricing factors small and thus avoiding parameter proliferation. It also facilitates the economic

interpretation of the results. I then consider a more general specification that allows for the existence

of possibly many common productivity factors in the underlying productivity level. This extension is

interesting since it allows me to incorporate in the estimation of the model information from a larger cross-

section of technologies. The number of pricing factors in this specification increases with the assumed

number of common productivity factors in the economy which complicates the analysis. To maintain the

tractability of the empirical model, I reduce the number of pricing factors through a principal components

analysis.

A.1 One common productivity factor specification

According to Proposition 1, under the assumption of one common productivity factor, the equilibrium

marginal rate of transformation M∗
t is

M∗
t =

µ
P2t
P2t−1

¶bp2
µ

Y1t
Y1t−1

¶by1
µ

Y2t
Y2t−1

¶by2

(13)

where the factor risk prices b are related to the parameters of the underlying technologies. This specifica-

tion thus requires price and output data for two production technologies. I interpret the two technologies

as the mining and the other goods-producing sectors in the US economy. The other goods-producing

sector includes all the goods-producing sectors excluding the mining sector. Naturally, the specification

of the identity of the technologies is an additional modeling choice. This specification is convenient since,

as I show below, the time series of the output growth in these two sectors reveal that both sectors fluctu-

4Jagannathan and Wang (2007) show that even though the standard consumption-based model does not perform well
with annual averages, it performs significantly better when annual consumption growth is measured based only on the fourth
quarter of each year. Jagannathan and Wang’s paper emphasizes the effect of different matching assumption between returns
and macroeconomic variables on asset pricing tests.
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ate according to the business cycle, but the output in the other goods-producing sector is more cyclical

sensitive than in the mining sector. This makes the application of assumption 1 to these sectors plausible.

[Insert Table I here]

[Insert Figure 2 here]

Table I reports the descriptive statistics of selected macroeconomic variables. I report the descriptive

statistics for these variables across the whole sample period and during expansions and recessions. I

define a year as being a recession if there are at least five months in that year that are defined as being

a recession by the NBER. In addition, Figure 2 plots the time series of the output growth in the mining

and other goods-producing sectors as well as the growth rate of consumption. Two important features

of the data reported in Table I and Figure 2 are worth emphasizing. First, the output growth in these

two sectors has a clear business cycle component: naturally, output growth in both sectors tends to be

higher in expansions than in recessions. Second, the two sectors seems to have different sensitivities to

the business cycle: output growth in the other goods sector is on average 6.84% higher in expansions than

in recessions while the output growth in the mining sector is only 2.29% higher in expansions than in

recessions. For comparison, consumption growth has an even lower business cycle pattern, with average

consumption growth during expansions only 1.62% higher than in recessions. As is well known, this lack

of business cycle variation of consumption growth is one of the reasons for the empirical difficulties of the

standard consumption-based model with consumption growth of non-durables and services as the single

pricing factor.

A.2 Multiple common productivity factors specification

With multiple common productivity factors in the economy, I need to use information from more than just

two technologies. As specified in Proposition 1, with J > 1 common productivity factors, the marginal

rate of transformation can be identified from price and output data in J + 1 technologies. In this case,

the marginal rate of transformation M∗
t is given by

M∗
t =

JY
i=1

µ
Pit
Pit−1

¶bpi J+1Y
i=1

µ
Yit
Yit−1

¶byi
(14)

where again the factor risk prices b are related to the parameters of the underlying technologies. With

a possibly large number of common productivity factors, using the marginal rate of transformation

(14) as a stochastic discount factor is not feasible in practice. Output growth are highly correlated

across sectors (Murphy, Shleifer and Vishny (1988)), which creates multicollinearity problems and makes

inference unreliable. In addition, the numbers of pricing factors and thus the number of parameters to be

estimated increases with the number of common productivity factors. For example, with J = 5 common

productiviy factors, the marginal rate of transformation contains nine pricing factors: the growth rate of

output in five technologies and the growth rate of relative prices in four technologies. Clearly, a stochastic

discount factor with such a large number of factors would not be feasible in practice.

To overcome this problem and reduce the number of pricing factors, I first linearize the marginal

rate of transformation defined in (14) and then I use principal components analysis to summarize the

information contained in the cross section of output and relative prices growth in a small number of
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orthogonal variables-principal components- that by construction retain most of the information of the

original variables. Mardia, Kent and Bibby (1979) provide a textbook treatment of principal components

analysis. This procedure also allow me to identify the components of the cross section of output and

relative prices growth that are relevant for pricing. Appendix D provides a brief description of the

procedure.

To do a principal components analysis, I first linearize the marginal rate of transformation (14) by

a first order Taylor expansion around (Yit, Pit)
J+1
i=1 = (Yit−1, Pit−1)

J+1
i=1 . Normalizing the constant in the

marginal rate of transformation to one (since the mean is not identified from the estimation of the model

on excess returns) yields

M∗
t ≈ 1 +

JX
i=1

bpj∆pit +
J+1X
i=1

byj∆yit (15)

where ∆yit = (Yit/Yit−1) − 1 and ∆pit = (Pit/Pit−1) − 1. I then do a separate principal components
analysis of the cross section of relative price growth and of the cross section of output growth. Once the

principal components have been extracted, each pricing factor in (15) can specified as a linear combination

of the principal components as

∆pit =
JX

j=1

γpijPPCj (16)

∆yit =
J+1X
j=1

γyijY PCj (17)

where PPCj is the jth principal component of the cross section of relative prices growth, Y PCj is the jth

principal component of the cross section of output growth and γPj and γ
y
j are the loadings of each pricing

factor on the corresponding principal components.

In this specification, I consider all the four goods-producing sectors at the NAICS two-digit level,

namely Mining, Agriculture, Construction and Manufacturing and I specify the output from the Mining

sector as the numeraire. Thus, by using data from four sectors, I’m considering three common productivity

factors. Naturally, this analysis can be extended to any arbitrary number of common productivity factors.

Table II presents the results of the principal components analysis of the cross—section of output growth

and relative price growth. Each principal component is a linear combination of the corresponding pricing

factors. The top part in Panel A report the loadings of each principal component of the cross section

of output growth on the output growth in each sector. The first principal is almost a "level" factor. It

moves all sectors in the same direction but puts considerably less weight in the Agriculture sector. The

top part in Panel B reports the cumulative percentage in the variation in the cross section of output

growth that is explained by the first k = 1, .., 4 principal components. The first principal component

alone explains almost 62% of the total variance and the first two principal components explain together

approximately 75% of the total variance. The bottom part in Panels A and B repeat the same analysis

for the cross-section of relative price growth. Clearly, the first principal component of the cross section

of relative price growth is a "level" factor moving all sectors in the same direction. Thus the price first

principal component is approximately the same as the average relative price growth. The correlation

between the average relative price growth and the first principal component is 0.99. The bottom part
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in Panel B shows that almost 90% of the total variance in the cross section of relative price growth is

explained by the price first principal component alone.

In the empirical section, I only use the first principal components of the output growth and of the

relative price growth in the asset pricing tests. I label the first principal component of the cross-section

of the relative price growth as PFPCt (price first principal component) and the first principal component

of the cross-section of output growth as OFPCt (output first principal component). A series of asset

pricing tests suggests that only the first principal components of the output and price factors are relevant

for pricing (results available upon request). Thus, in the empirical section, I use the following linear

approximation of the marginal rate of transformation

M∗
t ≈ 1− bpPFPCt − byOFPCt (18)

as the stochastic discount factor.5 One limitation of this approach is that, since I only use two factors,

I cannot identify the technological parameters (αi) in each technology. This limits the economic inter-

pretation of the results since in this case the sign and the value of the factor risk prices (bp and by) are

not restricted by the theory. Thus, in this empirical specification, I evaluate the model by examining the

overall ability of the approximate marginal rate of transformation (18) in explaining the cross-sectional

variation in the expected returns of several portfolio sorts.

B. Estimation Methodology

I estimate and test the production-based model using the standard unconditional moment condition for

a vector of excess returns Re
t ,

E[M∗
t (b)R

e
t ] = 0 (19)

where M∗
t (b) is the marginal rate of transformation, as defined in Proposition 1 and b is the vector of

parameters to be estimated. Estimation is by the Generalized Method of Moments (GMM), following the

methodology developed by Hansen and Singleton (1982). The moment conditions used in the estimation

are the sample counterpart of the population pricing errors (19) . The GMM estimates are formed by

choosing the parameters b that minimizes a quadratic form of the sample pricing errors. I report second

stage (efficient) estimates. In the first stage I use the identity matrix as the weighting matrix, WT = I,

while in the second stage I use WT = S−1 where S is the Newey-West estimate of the covariance matrix

of the sample pricing errors in the first stage. In the estimation of this matrix, I use one period lag to

account for the possibility of time aggregation in output data (see Hall (1988) on consumption data).

To test the production-based model, I use the J-test (Hansen (1982)) of overidentifying restrictions.

As additional measures of the goodness of fit of the model, I report the cross-sectional R-squared (R2) and

the mean absolute pricing error (MAE). The R2 is obtained from an OLS regression of the realized excess

returns on the predicted excess returns by the model and including a constant. The MAE is obtained by

first computing the pricing error of each asset i, αi = E[Re
i ]
observed − E[Re

i ]
Predicted, and then take the

average across assets of the absolute value of the pricing errors to obtain MAE= 1
N

PN
i=1Abs(αi), where

N is the number of test assets and Abs(αi) is the absolute value of the pricing error of asset i.

5To obtain this representation: using only the first principal component, the output and price factors in (16) and (17)
are approximated by ∆pit ≈ γpi1PFPCt and ∆yit = γyi1OFPCt. Substituting this (15) yields equation (18).
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C. Empirical Results for the One Common Productivity Factor Model

In this section I examine if the production-based model is able to explain the variation in the average

returns of the Fama-French six benchmark portfolios sorted by size (breakpoints at the median) and

book-to-market equity (breakpoints at the 30th and 70th percentile). The choice of these portfolios is

motivated by a large empirical literature who found that size and value premia capture a large fraction

of the cross-sectional variation in expected returns. In addition, by focusing on a relatively small number

of test assets I can do efficient (second stage) GMM. Efficient GMM usually performs poorly when the

number of moment conditions relative to the number of data points is large. In addition, the efficient

weighting matrix S−1 is difficult to estimate precisely when a large number of test assets is used and the

time series dimension of the data is relatively small, which may lead to spurious results. Since I have 58

data points in my sample the concern with the small sample size if a large number of test assets is used

seems warranted.

[Insert Table III here]

Table III, reports the second stage GMM tests and measures of the goodness of fit of the production-

based model on these portfolios as well as estimates of the factors risk prices and the implied parameters

of the technologies in the two sectors. Panel A reports the results under the contemporaneous matching

assumption and Panel B reports the results under the lagged matching assumption. Clearly, the matching

assumption has a significant impact in the estimation of the model. The estimation results under the

contemporaneous matching assumption (Panel A) show that the production-based model is unable to

explain the cross-sectional variation in the returns on these portfolios. The model is rejected at the 1%

confidence level. Finally, none of the factor risk prices seems to be statistically significant at the 5% level

and the estimates of the curvature parameter αi in the mining sector has the wrong sign. The analysis

changes completely under the lagged matching assumption (Panel B). The model is comfortably not

rejected by the J− test of overidentifying restrictions (p-value of 60% ). In addition, all the factor risk

prices are statistically significant at the 5% level and all the technological parameters have the correct

sign in both sectors (αi > 1). Finally, the model completely captures the variation in the average returns

across these portfolios, with a cross sectional R2 of the predicted vs. realized excess returns of around

90% and low annual mean absolute pricing error of 0.82% (annualy).

[Insert Figure 3 here]

Figure 3 plots the predicted versus realized excess returns implied by the first stage GMM estimates

of the model. The straight line is the 45◦ line, along which all the assets should lie. The deviations

from this line are the pricing errors which provides the economic counterpart to the statistical analysis.

This figure provides a visual description of the overall good fit of the production-based model on these

portfolios since all portfolios lie along the 45◦ line.

The estimates of the technological paramaters reveal interesting information about the characteristics

of the technology in each of the two sectors. First, the point estimate of the curvature parameters αg
in the other goods-producing sector is slightly greater than the curvature parameter αm in the mining

sector, which suggests that it is harder to substitute output across states in the other goods-producing

sector, although the difference is not statistically significant. The curvature parameter is related to the
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elasticity of subtitution of output across states, defined as σi = (αi−1)−1, which is the production-based
analogue of the coefficient of relative risk aversion in the standard consumption-based model. Given the

point estimates of the curvature parameters, the elasticity of substitution of output in the two sectors

are σ̂g = 0.36 in the other goods-producing sector and σ̂m = 0.4 in the mining sector. Unfortunately,

since these parameters are new in the literature, there is no benchmark to compare these values with.

Finally, the parameter that controls the sensitivity of the underlying productivity level of the mining

sector to the common productivity factor (parameter λg1) is positive but smaller than one. According

to this estimate, the underlying productivity level in the two sectors are positively correlated but the

underlying productivity level in the mining sector is less sensititive to the common productivity factor.

This fact might explain why the output growth in the mining sector is less cyclical than the output growth

in the other goods-producing sector.

[Insert Figure 4 here]

Given the second stage GMM point estimates of the technological parameters, we can recover the

time series of innovations in the marginal rate of transformation. This time series is interesting since it

provides information about the realized time series of the contingent-claim prices in the US economy. To

obtain this time series, I assume that the states of nature are independent and identically distributed

(i.i.d.). This assumption is not required for any of the asset pricing tests reported, but is necessary in

order to recover the expected value of the marginal rate of transformation and hence of the pricing factors.

The innovations in the log marginal rate of transformation are given by6

ωmt = (1− λ21)
−1 £ωp2t + (α1 − 1)λ21ωy1t + (1− α2)ωy2t

¤
, (20)

where ωxt = xt − E [xt] is the innovation in variable xt. The time series of the innovations in the log
marginal rate of transformation implied by the second stage GMM estimates is plotted in Figure 4,

Panel A. In this Figure, the shaded bars are NBER recession years. As expected, state-contingent claim

prices, as measured by the marginal rate of transformation, tend to be high during recessions. The

mean log innovation in the marginal rate of transformation is 0.59 in recessions and −0.15 in expansions.
Interestingly however, the estimated innovations in the marginal rate of transformation reveal recession

states that are not captured by the NBER-designated business cycle recessions dates. For example,

in 1988 and 1991 we observe large innovations in the marginal rate of transformation and hence high

contingent claim prices, but these years are not classified by the NBER as recession years. In addition, not

all NBER recessions were equally important. According to the production-based model, the recessions in

1970 and 1980 were particularly severe since they correspond to the realization of states of nature with

very high state-contingent claim prices. In short, the estimated marginal rate of transformation captures

information about recessions that transcends the NBER-designated business cycle recessions dates.

6To obtain this equation, note that from equation (10) in Proposition 1 that, for the one common productivity factor
case, the log marginal rate of transformation is given by

mt = log (ςt−1) + (1− λ21)
−1 ∆p2t + (α1 − 1)λ21∆y1t + (1− α2)∆y2t .

If the states of nature are iid, the conditional expected values of Et [∆p2t] , Et [∆y1t] and Et [∆y1t] are constant over time.
Computing the inovation as ωmt = mt − E [mt] yields equation (20).
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It is also interesting to examine the time series of the innovations in the common productivity level.

In the i.i.d case, the innovations in the log common productivity factor are given by (take the log of

equation (9))

ωθt =
¡
1− λ21

¢−1
[ωp2t − (1− α1)ωy1t − (α2 − 1)ωy2t] ,

where, as before, ωxt = xt − E [xt] is the innovation in variable xt. Figure 4, Panel B plots the time

series of the inovations in the log common productivity factor. Interestingly, the plot reveals that the

common productivity factor tends to be particularly low in recessions. The mean innovation in the log

common producivity factor is −0.74 in recessions and 0.2 in expansions. Since a large value of the common
productivity factor corresponds to states of nature in which it is easier to produce, this result suggest

that recessions corresponds to the realization of states of nature in which it is difficult to produce.

Figure 4 also shows that the innovations in the marginal rate of transformation and the innovations in

the common productivity factor are almost the mirror image of each other. The correlation between the

two innovations is −0.99 and the volatility of the common productivity factor is approximately equal to
the volatility of the marginal rate of transformation. This result is not surprising given the low volatility

of output growth in these sectors compared with the required volatility of any valid discount factor that

prices assets in the US economy. To link the two variables, recall that the marginal rate of transformation

in the numeraire sector (here, the goods-producing sector) in an i.i.d. world can be written as

Mt = φ̄

µ
Ygt
Ygt−1

¶αi−1
θ−αigt , (21)

which follows from equation (6). From Table I, the standard deviation of annual output growth in the

other goods-producing sector is approximately 5%. In addition, the Sharpe ratio in the US economy

in the post-war period is approximately 0.4 which implies that the standard deviation of the discount

factor must be at least 40% on annual data.7 To be consistent with these values, and given the low

point estimates of the curvature parameter αg, equation (21) implies that we need a volatile common

productivity factor that is highly negatively correlated with the stochastic discount factor in order to be

consistent with the observed relatively low volatility of output growth.

D. Empirical Results for the Multiple Common Productivity Factors Model

As discussed in section III-A.2, with multiple common productivity factors, the marginal rate of trans-

formation can be approximated by the following linear representation

M∗
t ≈ 1− bpPFPCt − byOFPCt (22)

7This analysis follows from the basic pricing equation for excess returns (Re)

0 = E [MRe] = E [M ]E [Re] + ρ [M,Re]σ [M ]σ [Re]

we have

σ [M ] = − E[M ]

ρ [M,Re]

E [Re]

σ [Re]
.

The Sharpe ratio in the US postwar data is about E [Re] /σ [Re] = 0.4 annualy. Thus, even if the discount factor and returns
are perfectly correlated (ρ [M,Re] = 1) we need σ[M ] = 40% annually.
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where PFPCt is the first principal component of the cross-section of the relative price growth and

OFPCt is the first principal component of the cross-section of output growth. This specification implies

the following linear factor model8

E[Re
it] = bpCov(Re

it, PFPCt) + byCov(Re
it, OFPCt). (23)

In this section, I examine if this linear factor model is able to explain the cross sectional variation in the

returns of three sets of portfolios: (i) the 25 Fama-French portfolios sorted on size and book-to market;

(ii) 9 risk-sorted portfolios; and (iii) the previous 34 portfolios together. The 9 risk-sorted portfolios are

formed based on the "pre-ranking" price and output first principal components betas of each individual

stock. Appendix E-III explains the construction of these portfolios in detail.

I examine the 25 Fama-French portfolios since these portfolios are the standard benchmark portfolios

currently used in the empirical asset pricing literature (results are similar if I use the 6 Fama-French

benchmark portfolios). In addition, I examine the 9 risk-sorted portfolios since sorting on beta provides a

rigorous test for asset pricing models by creating a large spread in the post-formation betas or covariances.

Table IV shows that this procedure achieves its goal. In each row (similarly for column) the ex-post

covariance of the high pre-ranking beta portfolio is subtantially higher than the ex-post covariance of the

low pre-ranking beta portfolio. In addition, consistent with the hypothesis that these factors are important

risk factors, this sorting procedure generates a large spread in average returns. The average excess return

of the high-high pre-ranking beta portfolio is 5.1% higher than the average return of the low-low pre-

ranking beta portfolio. In addition, the relationship between average returns and the corresponding

covariances with the factors is almost monotonic.

[Insert Table IV here]

Testing the production-based model on the 9 risk-sorted portfolios, in addition to the 25 Fama-French

portfolios, also allows me to address Daniel and Titman (2005) and Lewellen et al (2006) critiques. These

authors criticize the procedure of focusing exclusively on the 25 Fama-French portfolios in testing asset

pricing models. Since the 25 Fama-French portfolios have a strong factor structure (the average R2 of the

Fama and French (1993) three factors explains more than 90% of the time-series variation in the returns

of these portfolios), these authors argue that any factor that is slighlty correlated with HML and SMB

will appear successful in explaining the cross section of the 25 Fama-French portfolios. The 9 risk-sorted

portfolios address this concern by attempting to relax the tight factor structure of the 25 Fama-French

portfolios.

D.1 Fama-French 25 Portfolios Sorted on Size and Book-to-Market and 9 Risk Portfolios

[Insert Table V here]

Table V reports the second state stage GMM tests and estimates of the production-based model on

these portfolios. I only report results for the lagged matching assumption given the evidence in favor of

8From the standard pricing equation, 0 = E [MRe] = E [M ]E [Re] + Cov (M,Re) . Substituting the marginal rate of
transformation (22) in the previous equation and rearranging terms yields the linear asset pricing model (23) .
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this assumption in the previous section. Overall, the results show that this specification of the production-

based model is able to explain the cross-sectional variation in the returns across these portfolios as well.

The model is comfortably not rejected by the J− test of overidentifying restrictions independently of the
test assets used. In addition, the estimates of the factor risk prices are comparable across test assets which

helps to make the results robust. Finally, the cross sectional R2 is high, approximately 71% when all

assets are considered, and the annual mean absolute pricing errors are low, approximately1.1% annually.

[Insert Table VI here]

To help in the interpretation of the good fit of the production-based model on the 25 Fama-French

portfolios sorted on size and book-to-market, Table VI, Panel A reports the average annual excess returns

on the 25 Fama-French and Table VI, Panel B reports the opposite of the cross sectional covariances

between the fitted marginal rate of transformation and returns on these portfolios. The pattern of the

covariances in Panel B is consistent with the pattern of excess returns reported in Panel A, which explains

the good fit of the production-based model on these portfolios. The opposite of the covariances of the

value stocks are on average almost twice that of the growth stocks thus explaining the value premium.

Small stocks tend to have higher opposite covariances than big stocks thus explaining the size premium.

In the evaluation of any asset-pricing model it is important to understand which facts in the data

are driving the results. Table VI, Panels C and D reports the covariance of the output and price first

principal components with the returns on the 25 Fama-French portfolios. In Panel C, there is large spread

in the covariances of the price first principal component with the returns on these portfolios, especially

along the book-to-market dimensions, and the pattern of the covariances matches that of the average

returns reported in Panel A. In Panel D, there is also a reasonable spread in the covariances of the

output first principal component with the returns on these portfolios along both the size and the book-

to-market dimension. Taken together, these results suggests that the price first principal component is

mostly capturing variation along the book-to-market dimension and the output first principal component

is capturing variation along the size dimension. In turn, this fact explains why both factors are statitically

significant pricing factors in the estimation of the production-based model on these portfolios.

D.2 Comparison With Other Asset Pricing Models

In order to evaluate the production-based model, it is also important to compare it to close competitors

rather than simply reject or fail to reject it on the basis of statistical tests. In fact, it is not hard to

statistically reject any of the current popular models if one uses a sufficiently rich set of test assets or a

data sample covering a long period. I compare the production-based model with the Lucas (1978) and

Breeden (1979) standard consumption-based model and the empirical Fama-French (1993) three factor

model. I include the standard consumption-based model since it is a natural theoretical benchmark for

the production-based model. I also include the Fama-French three factor model since this model has been

very successful in pricing several portfolio sorts thus also providing an interesting benchmark. Appendix

F provides a complete description of these two models.

[Insert Table VII here]
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Table VII presents the second stage GMM tests and estimates the three asset pricing models using

the 25 Fama-French portfolios sorted on size and book-to-market as test assets. Overall, these results

support the production-based model. None of the three model is rejected but the production-based

model has the lowest annual mean absolute pricing errors and highest cross sectional R2. The results

for the consumption-based model (C-CAPM) confirm the difficulty of this model in explaining the cross

sectional variation in the returns of these portfolios. The annual mean absolute pricing error of the

consumption-based model is 1.64% which is higher than the 1.13% obtained in the production-based

model. In addition, the consumption-based model requires an implausibly high coefficient of relative risk

aversion of 101.6 to price these portfolios. This is the re-statement of the equity premium puzzle using

cross sectional data. The results for the Fama-French three factor model confirm the well known good fit

of the model on these portfolios and, consistent with previous literature, only the returns on the HML

and the Market portfolio seem to be significant pricing factors.

[Insert Figure 5 here]

Figure 5 plots the predicted versus realized excess returns implied by the first stage GMM estimates

of the three models. Again, this figure shows the overall good fit of the production-based model on these

portfolios: most of the 25 Fama-French portfolios lie along the 45◦ line. Interestingly, the production-

based model is able to price the small-growth portfolio (portfolio 11 in the figure) which is known to be

notorious hard to price. D’Avolio (2002) and Lamont and Thaler (2003) suggests that short sale con-

straints are binding on a typical small-growth stock which creates limits to arbitrage which might explain

why several asset pricing model (here the Fama-French 3 factor model and the standard consumption-

based model) cannot price this portfolio. It is thus interesting that the frictionless production-based that

I consider here can price these stocks.

D.3 Testing the Model With a Longer Time Series

The output and price data used in the tests of the production-based model covers the period between 1947

and 2006. To construct a longer time series and test the model over a larger sample, I follow Breeden,

Gibbons and Litzenberger (1989) and Malloy, Moskowitz and Vissing-Jorgensen (2005) (on consumption)

and project the macro-data used in the production-based model on a constant and the excess returns of

a set of tradable assets. Since stock return data is available for a longer period than the macro data,

I can use the factor portfolios weights estimated in sample to project a time-series of returns for the

macro-factors portfolios out of sample. The longer time-series may help improve the accuracy of the

findings. In addition, if there is measurement error in the macro data that is uncorrelated with the asset

returns of the base assets, the macro-factors mimicking portfolios may contain less measurement error

than the actual macro-data.

I construct factor mimicking portfolios of the price and output first principal components. The price

first principal component mimicking portfolio, which I label PMPt (price mimicking porfolio) is obtained

by first estimating the following regression,

PFPCt = a+ b0Re
t + εt (24)
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where PFPCt is the price first principal component and Re
t are the excess returns on the base assets. The

coefficients b can be interpreted as the weights in a zero-cost portfolio. The return on the PMPt is then

PMPt = b0Re
t (25)

which is the minimum variance combination of assets that is maximally correlated with the price first

principal component. Assuming that the coefficients b are relatively stable over time I use Equation

(25) to extend the sample before 1949. The base test assets I employ are the Fama-French 6 benchmark

portfolios. An identical procedure is used to obtain the output first principal component mimicking

portfolio, which I label as OMPt (output mimicking portfolio).

In the same spirit of Malloy, Moskowitz and Vissing-Jorgensen (2005), the projection of these macro-

factors on the Fama-French 6 base assets (equation (24)) can be interpreted as a way of forming factors

related to size and value that employs the output and price first principal components as an economic

guide to determine the weights that should be placed on the base assets. For example, Fama and French

(1993) HML factor is constructed by going long a dollar in a portfolio of value stocks and short a dollar

in a portfolio of growth stocks but these weights are not dictated by theory.

[Insert Table VIII here]

Regression (24) (and similarly for the output growth first mimicking portfolio) is estimated using

annual data from 1947 to 2006, for which annual output data at the sectoral level is available. Table

VIII Panel A reports the coefficient estimates of the loadings b for both factor mimicking portfolios and

the corresponding standard errors. Panel B reports the correlation between the output and price first

principal components with the corresponding component mimicking portfolios as well as with the Fama-

French three factors (Market, SMB and HML) for comparison. The correlation between first principal

component of each factor and the corresponding mimicking portfolio is 0.62 for the price factor and 0.65

for the output factor which suggest that the mimicking portfolios are capturing a large component of the

information in the original factors. Interestingly, the output mimicking portfolio is highly correlated with

the market portfolio (correlation of 0.91). The price mimicking portfolio is reasonably correlated with

the HML factor (correlation of 0.54).

[Insert Table IX here]

Using the two factor mimicking portfolios as factors in the linear factor model (23) instead of the

original price and output first principal components, I examine if the production-based model can explain

the cross-sectional variation of the returns of the Fama-French 25 portfolios sorted on size and book-to-

market and of the 9 risk sorted portfolios over a longer time series between 1933 and 2006. Table IX

reports the second stage GMM estimates of the model. Overall, the results are very similar to the ones

reported for the model estimated using the original factors. The model is still not rejected despite the

larger sample size and thus the higher power of the test. In addition, the model is able to explain the

cross-sectional variation of the returns on these portfolios well, with a cross-sectional R2 of 75% and a

MAE of 1.22% (annually) when all assets are considered. Finally, the factor risk prices are also comparable

to the ones estimated before, although they are slightly larger now. In short, the production-based model

is also able to explain cross-sectional variation of the returns over the larger sample.
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IV. Conclusion

I find empirical support for a production-based approach to asset pricing. The central insight of the

production-based model is that the marginal rate of transformation of output across states of nature is

an appropriate measure of risk in the economy. According to the model, an asset is risky if it tends to

deliver low returns in states of nature in which the marginal rate of transformation is high. Therefore,

these assets must offer higher expected returns in equilibrium as a compensation for its level of risk. I test

this prediction by developing a procedure to measure the equilibrium marginal rates of transformation

in the data. I show that the marginal rate of transformation captures well the risk and return trade-off

of many assets. The returns on small stocks and value stocks have a large negative covariance with the

marginal rate of transformation, which explains their high average returns relative to big stocks and

growth stocks. The model explains about 75% of the cross-sectional variation in the returns of the 25

Fama-French size and book-to-market portfolios and about 88% of the cross-sectional variation in the

returns of 9 risk-sorted portfolios.
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Appendix A: Smooth production sets

In this section I show that a smooth (differentiable) production possibilities frontier can be justified by

an aggregation result of individual production functions that are not smooth. I also derive the restriction

set for the choice of the state-contingent productivity level E
h³

t
θt

´αi
< 1 that I use in the paper. This

section is based on Cochrane (1993).

I. Aggregation

A smooth production possibilities frontier across states of nature can occur when one aggregates standard

production functions which are not smooth. This is analogous to the standard result that an aggregate

of Leontief production functions can produce a smooth production function such as a Cobb-Douglas. As

a simple example to illustrate this claim, consider a two-state world, in which a farmer can plant in two

fields (technologies). Let the technology of field i have the following standard form

yi(s) = i(s)
p
ki s = wet,dry and i = 1, 2

where yi(s) is the output in field i in state s, and ki is the number of seeds planted in field i. In addition,

consider the following simple structure for the shocks in each field

1(s) =

½
1 if s = wet
0.5 if s = dry

and 2(s) =

½
0.5 if s = wet
1 if s = dry

so that field one is relatively more productive if the weather is wet and field two is relatively more

productive if the weather is dry. The left panel in Figure 6 plots the production possibilities frontier in

each one of this standard technologies for the case ki = 1 in each technology.

Total output is Y (s) = y1(s) + y2(s) and the number of seeds available to the farmer are constrained

to be

K = k1 + k2

We only observe the aggregates K and Y (s) but we know that the farmer can vary the amount of

seeds in each of the two fields. This structure implies that aggregate production possibilities frontier that

relates the total inputs of the firm (K) to its total output (Y ) across states is a smooth set. This is

illustrated in the right panel in Figure 6 which plots the production possibilities frontier across states,

when K = 1 and as we vary the amount of seeds in each of the two fields subject to the constraints

k1 + k2 ≤ 1, k1, k2 ≥ 0. As the figure shows, even though the individual production technologies have
kinks, the aggregate technology is smooth. The farmer can shape the risk exposure of his total output

to weather by varying the amount planted in each of the two fields.

[Insert Figure 6 here]

II. A tractable representation of a smooth technology

In the previous section, in order to construct a smooth production set across states of nature the producer

needs to have access to as many technologies as states of the nature. In addition, the individual technolo-

gies yi(s) are not observable to economists. Therefore, instead of aggregating the production function of
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many technologies, I follow Cochrane (1993) and simply posit an aggregate, smooth production set with

an analytically tractable functional form. In particular I impose that output across states of nature st
must satisfy the restriction,9 "X

st

[a(st)Y (st)]
α

# 1
α

≤ F (Kt) (1)

i.e. a CES transformation curve for the output across states. Here, α > 1 and a(st) are parameters and

F (.) is the (certain) production function which is increasing and concave in the input Kt (capital). The

restriction α > 1 guarantees that the set of feasible outputs in each state lies along a strictly concave

transformation curve defined by (1) . Therefore, in order to increase output in one state of nature the

producer must decrease output in the other states of nature and at an increasing rate. This sensible

property of the production function reflects diminishing returns to scale in the production of output in

each state of nature.

In a continuous state-space, the transformation curve (1) can be expressed as

∙Z
dM(ω)y(ω)α

¸ 1
α

≤ F (Kt)

In this representation, a(st) or dM are not necessarily a probability measure. Since it is convenient

to use a probability measure in order to take this technology to the data, we can use the Radon-Nikodym

derivative and express the previous transformation curve as

∙Z
dPr(ω) (y(ω)/θ (ω))α

¸ 1
α

≤ F (Kt)

or

Et−1
∙µ

Yt
θt

¶α¸ 1α
≤ F (Kt) (2)

where the expectation is conditional on the information set in period t−1. Since F (Kt) is pre-determined

at time t, we can express the previous production function as

Yt = tF (Kt) (3)

Et−1
∙µ

t

θt

¶α¸ 1α
≤ 1 (4)

where I divided both sides of (2) by F (Kt) to obtain (4). This is the representation of the technology

that I use in the paper.

9Feenstra (2003) proposes a similar transformation curve. However, instead of choosing the output across states, he
considers the choice of different output varieties.

25



Appendix B: Solving the producer’s maximization problem

Define the vector of state variables as xt−1 = (Kit−1, it−1, pit, M̃t, θ̃it)
2
i=1 whereKit−1 is the current period

stock of capital, it−1 is the current period productivity level, Pit = pit/p1t is the current period relative

price of good i with respect to good 1, M̃t is the next period distribution of the stochastic discount factor

in units of the first good and θ̃it is the next period distribution of the underlying productivity level. Let

V (xt−1) be the contingent claim value of the firm at the end of period t − 1 given the vector of state
variables xt−1. The Bellman equation of producer i is given by

V (xt−1) = max
{Iit−1, it}

{Dt−1 + Et−1 [MtV (xt)]}

subject to the constraints,

Dt−1 = Pit−1 (Yit−1 − Iit−1)

Yit−1 = it−1F
i (Kit−1)

1 ≥ Et−1
∙µ

it

θit

¶αi¸ 1
αi

(5)

Kit = (1− δi)Kit−1 + Iit−1

Et−1[.] is the expectation operator conditional on the firms’ information set at the end of period t− 1, δi
is the depreciation rate of capital and F i(.) is the (certain) production function, which is increasing and

concave.

Substitute the law of motion for capital in the value function and let λit−1 be the Lagrange multiplier

associated with the technological constraint (5), the first order conditions are

∂

∂Iit−1
: Et−1[MtVk(xt)] = 1 (6)

∂

∂ it
:MtV i(xt) = λit−1Et−1

∙µ
it

θit

¶αi¸ 1
αi
−1

αi−1
it θ−αiit

Since in equilibrium the restriction (5) is naturally binding, we have Et−1
h³

it
θit

´αii
= 1. Substitut-

ing this in the previous equation, we can write the first order condition for the optimal choice of the

productivity level it as
∂

∂ it
:MtV i(xt) = λit−1

αi−1
it θ−αiit (7)

The envelope conditions are

Vki(xt−1) = Pit−1 t−1F
i
ki
(Kit−1) + Et−1[MtVki(xt)](1− δi) (8)

V i(xt−1) = Pit−1F
i(Kit−1) (9)

Using equation (6), the envelope condition (8) is

Vki(xt−1) = Pit−1 it−1F
i
k (Kit−1) + (1− δi) (10)
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Substituting the envelope condition (9) at time t in (7) yields

MtPitF
i(Kit) = λit−1

αi−1
it θ−αiit (11)

Taking expectations on both sides of the previous equation yields

Et−1 [MtPit]F
i(Kit) = λit−1Et−1

h
αi−1
it θ−αiit

i
(12)

This equation defines the Lagrange multiplier. Substitute λit−1 from (12) back in (11) yields

MtPitF
i(Kit) = Et−1 [MtPit]F

i(Kit)/Et−1
h

αi−1
it θ−αiit

i
αi−1
it θ−αiit (13)

Rearranging terms

Mt = φit−1P
−1
it

αi−1
it θ−αiit

where φit−1 = Et−1 [MtPit] /Et−1
h

αi−1
it θ−αiit

i
. This is equation (5) in the text. Solving for the produc-

tivity level yields

it = φ
1

1−αi
it−1 M

1
αi−1
t P

1
αi−1
it θ

αi
αi−1
it

This is equation (4) in the text.

Finally, to obtain the expression for investment returns, substitute (10) at time t back in (6) to obtain

Et−1[MtR
I
t ] = 1

where

RI
t = (1− δi) + Pit itF

i
k (Kit)

is the (random) investment return. These are equations (7) and (8) in the text.

The second order conditions are satisfied by the assumptions on the production technology, i.e., αi > 1

and F i(.) increasing and concave.

Appendix C: Proof of Proposition 1

The proof is mainly algebra. From the producers’ i first order condition (see equation (6) in the text) we

have

Mt = φ̄it−1

µ
Pit
Pit−1

¶−1µ Yit
Yit−1

¶αi−1
θ−αiit (14)

Since market are complete, the SDF Mt is unique. This implies that at an interior solution, the

marginal rate of transformation is equalized across time and states across all technologies. Taking the

log of both sides of the previous equation we have

mt = γi,t−1 −∆pit + (αi − 1)∆yi,t − αiθ̄i for i = 1, .., N (15)

where lowercase variables are the log of the corresponding uppercase variable, γi,t−1 = ln
¡
φ̄it−1

¢
and ∆
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is the first difference operator. The identification Assumption 1 implies

αiθ̄it =
JX

j=1

λij θ̄
c
jt i = 1, ..,N (16)

where J is the number of common productivity factors in the economy.

Substituting (16) in (15) yields

mt = γi,t−1 −∆pit + (αi − 1)∆yi,t −
JX
j=1

λij θ̄
c
jt for i = 1, .., N (17)

Now take the difference between equation (17) for technology i = 2, ..., N and technology 1 (the

numeraire). This yields

0 =
£
γi,t−1 − γ1,t−1

¤
−∆pit + [(αi − 1)∆yi,t − (α1 − 1)∆y1,t ]−

JX
j=1

¡
λij − 1

¢
θ̄
c
jt for i = 2, .., N (18)

where I’ve used the fact that, for technology 1, ∆p1t = 0 and λ1j = 1 ∀j as specified in Assumption
1. From now on, it is convenient to write all the i = 2, .., N equations defined in (18) in matrix form.

Rearranging terms we have

Aθ̄
c
t = Ωt−1 − I∆Pt +B∆Yt (19)

where I is a (N − 1) × (N − 1) identity matrix and

Ωt−1[(N−1)×N ] =

⎡⎢⎢⎣
γ2,t−1 − γ1,t−1 · · · 0

...
. . .

...

0 · · · γN,t−1 − γ1,t−1

⎤⎥⎥⎦

A[(N−1)×J ] =

⎡⎢⎢⎣
¡
λ21 − 1

¢
· · ·

¡
λ2J − 1

¢
...

. . .
...¡

λN1 − 1
¢
· · ·

¡
λNJ − 1

¢
⎤⎥⎥⎦

B[(N−1)×N ] =

⎡⎢⎢⎢⎢⎣
(1− α1) (α2 − 1) 0 · · · 0

(1− α1) 0 (α3 − 1) . . . 0
...

...
...

. . .
...

(1− α1) 0 0 . . . (αN − 1)

⎤⎥⎥⎥⎥⎦

∆Pt[(N−1)×1] =

⎡⎢⎢⎣
∆p2t
...

∆pNt

⎤⎥⎥⎦ , ∆Yt[N×1] =
⎡⎢⎢⎣
∆y1t
...

∆yNt

⎤⎥⎥⎦ and θ̄
c
t[J×1] =

⎡⎢⎢⎣
θ̄
c
1t
...

θ̄
c
Jt

⎤⎥⎥⎦
Now, with J ≥ 1 common productivity factors, we can identify these common factors from price and

output data from N = J + 1 technologies. In this case, the matrix A is square matrix and, provided it
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has full rank, is invertible. It this case we can solve (19) for the matrix θ̄ct to obtain

θ̄
c
t = A−1Ωt−1 −A−1∆Pt +A−1B∆Yt (20)

For the case of one common productivity factor (J = 1) we haveA =
£
λ21 − 1

¤
, B =

h
(1− α1) (α2 − 1)

i
and thus the common productivity factor can be recovered from

θ̄
c
1t = ct−1 −

¡
λ21 − 1

¢−1
[∆p2t − (1− α1)∆y1t − (α2 − 1)∆y2t]

where ct−1 is a variable pre-determined at time t.

To express the actual marginal rate of transformation in terms of observed price and output data,

substitute (20) in the marginal rate of transformation (15) for firm 1 to obtain

mt = γ1,t−1 + (α1 − 1)∆y1,t − ιJ
£
A−1Ωt−1 −A−1∆Pt +A−1B∆Yt

¤
where ιJ is a row vector of ones. Finally, the previous equation can be written as

mt = λt−1 + C∆Pt +D∆Yt (21)

where λt−1 = γ1,t−1 − ιJA
−1Ωt−1 is a variable pre-determined at t, and

C1×(N−1) = ιJA
−1

D1×N =
h
(α1 − 1) 0 · · · 0

i
− ιJA

−1B

Finally, taking the exponential on both side of (21) yields

Mt = ςt−1

JY
i=1

µ
Pit
Pit−1

¶bpi J+1Y
i=1

µ
Yit
Yit−1

¶byi

where bpi is the i
th element in the row vector C , byi is the i

th element in the row vector D and ςt−1 =

exp(λt−1).

For the case of one common productivity factor (J = 1), we have

C =
£
λ21 − 1

¤−1
D =

h
(α1 − 1) 0

i
−
¡
λ21 − 1

¢−1 h
(1− α1) (α2 − 1)

i
and thus

mt = λt−1 + (λ
2
1 − 1)−1∆p2t + (1−

¡
λ21 − 1

¢−1
) (α1 − 1)∆y1,t −

¡
λ21 − 1

¢−1
(α2 − 1)∆y2t

and rearranging terms we obtain

mt = λt−1 + bp2∆p2t + by1∆y1,t + by2∆y2t
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where the factor risk prices are given by⎡⎢⎣ bp2
by1
by2

⎤⎥⎦ =
⎡⎢⎣ 1/(λ21 − 1)
(α1 − 1)λ21/(λ21 − 1)
(1− α2)/(λ

2
1 − 1)

⎤⎥⎦
Appendix D: Principal Components Analysis

To construct the principal components of the cross section of output growth (similarly for the cross-section

of relative prices growth), define ∆Yt as the 1 × N vector containing the realizations of the net output

growth rate in each sector i = 1, .., N at time t. The variance-covariance matrix of ∆Yt can be written as

var(∆Yt) = ΩΛΩ
>

where Λ is a diagonal matrix of eigenvalues of the matrix var(∆Yt) and Ω is an orthogonal matrix (i.e.

Ω> = Ω−1) whose columns are standardized eigenvectors. The vector 1×N of principal components pct
is then defined by

PCt = (∆Yt −∆Ȳ )Ω (22)

where ∆Ȳ ∈ Rn is a vector with the sample means of the output growth rate. The variance of the kth

principal component is equal to Λk, the kth eigenvalue of var(∆Yt). Moreover, the total variation in the

cross section of output growth tr(var(∆Yt)) is equal to the total variation of principal components tr(Λ),

where tr denotes trace. Thus, the percentage variation in output growth explained by the first k principal

components is

100×
Pk

i=1 Λi
tr(Λ)

By construction, the first principal component is the orthogonal component that explains most of the

variation in output growth in all sectors, the second component explains most of the part not explained

by the first component and so forth.

Appendix E: Additional description of the data

I. Macro data

The consumption of nondurable and services data, the population and the consumption price index data

used in the tests of the standard consumption-based asset pricing model is from the BEA. Nondurable plus

Services consumption is obtained from Table 2.3.5, sum of lines 6 and 13. Population is from Table 2.1,

line 38. Real consumption is obtained by deflating nominal consumption by the Consumer Price Index,

obtained from Table 2.3.4, line 2. Per capita real consumption is obtained by dividing real consumption

by the population.
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II. Asset data

The data for the three Fama-French factors (SMB, HML and Market excess returns) and the six Fama-

French factors is from Prof. Kenneth French’s webpage. The three factors are: (i) the Market excess

return on a value-weighted portfolio of NYSE, AMEX, and Nasdaq stocks minus the T-bill rate; (ii)

SMB which is the return on the Small-minus-Big portfolio; and (iii) HML, which is the return on the

High-minus-Low portfolio. The SMB and HML portfolios are based on the six Fama-French benchmark

portfolios sorted by size (breakpoint at the median) and book-to-market equity (breakpoints at the 30th

and 70th percentiles). The SMB return is the difference in average returns between three small and three

big stock portfolios. The HML return is the difference in average returns between two high and two low

book-to-market portfolios. See Fama and French, 1993, “Common Risk Factors in the Returns on Stocks

and Bonds,” Journal of Financial Economics, for a complete description of these factor returns.

III. Description of the Portfolios used

I consider the following sets of portfolios as test assets: (i) the Fama-French six benchmark portfolios

(described above); (ii) the 25 Fama-French Portfolios sorted on size and book-to-market; and (iii) 9 Risk-

sorted portfolios. The data for the 25 portfolios is from Prof. Kenneth French’s webpage. The data used

to compute the 9 Risk-sorted portfolios is from CRSP, available at the Wharton Research Data Services

(WRDS) website. Excess returns are computed by subtracting the risk free rate, as measured by the US

treasury bill return rate, from the CRSP. The description of each set of portfolio sorts is the following:

25 portfolios sorted on size and book-to-market: according to the description provided at
Prof. Kenneth French’s webpage, these portfolios, which are constructed at the end of each June, are

the intersections of 5 portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio

of book equity to market equity (BE/ME). The size breakpoints for year t are the NYSE market equity

quintiles at the end of June of t. BE/ME for June of year t is the book equity for the last fiscal year end

in t-1 divided by ME for December of t− 1. The BE/ME breakpoints are NYSE quintiles.
9 risk-sorted portfolios (double sorted on "pre-ranking" PMP and OMP betas): the

output and price first principal components are only available at annual frequency and thus it is infeasible

to use this these variables to create "pre-ranking" betas due to the small sample size. To address this

issue, I use the price mimicking portfolio (PMPt) and the output mimicking portfolio (OMPt) (section

III-D.2 in the text explains the construction of these portfolios in detail) Then following Fama and French

(1992) I create nine risk-sorted portfolios of NYSE, AMEX and NASDAQ stocks as follows. For every

calendar year, I first estimate the PMP and the OMP betas for each firm, using 24 to 60 months of past

return data. As in Fama and French (1992), I denote this beta as the "pre-ranking" PMP and OMP beta

estimate. I then do the following double sorting procedure: first I sort stocks into three bins (cutoffs at

the 33 and 66 percentile) based on their "pre-ranking" PMP beta and then, within each PMP bin, I sort

stocks based on their "pre-ranking" OMP beta. This gives 9 portfolios. I then compute the return on

each of these portfolios for the next 12 calendar months by an equally weighted average of the returns of

the stocks in the portfolio. This procedure is repeated for each calendar year.
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Appendix F: Description of the benchmark models

Lucas-Breeden standard consumption-based model: The consumption-based model is based on a
measure of consumer’s marginal rate of substitution whereas the production-based model is based on a

measure of the firm’s marginal rate of transformation. Thus this model is a natural benchmark for the

production-based model. In a SDF representation, this model is described by

Mt = β (Ct+1/Ct)
b1

where b1 = −Coefficient of Relative Risk Aversion and Ct is consumption of nondurable and services

goods and β is the subjective discount factor. I set β = 1 because the mean of the SDF is not identified

from data on excess returns. In matching returns and consumption growth, I follow Campbell (2003

) timing convention as in the production-based model. Thus I match the returns at time t with the

consumption growth at time t + 1. This timing convention improves the fit of the consumption-based

model thus providing a better benchmark for the production-based model.

Fama-French (1993) three factor model: This model uses the returns on three factor mimicking
portfolios to explain expected returns. In a SDF representation, this model is described by

Mt = 1− b1Market− b2SMB − b3HML

where Market is the excess returns on the market portfolio, SMB is the returns on the Small-minus-Big

portfolio, and HML is the returns on the High-minus-Low portfolio. The excess market return is the

return on a value-weighted portfolio of NYSE, AMEX, and Nasdaq stocks minus the one-month T-bill

rate. See Appendix C-III for an additional description of these portfolios.
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Table I
Descriptive Statistics for Selected Macroeconomic Variables

This table reports the descriptive statistics of the growth rate of output (∆Yi) in sectors i = g (other goods-producing) and
m (mining), the growth rate in the relative price in the mining sector, the first principal components of the cross section
of relative price growth (PFPC) and of output growth (OFPC), and the growth rate in the per capita consumption of
non-durables and services (∆C) for comparison. The data are annual and the sample is 1947− 2006.

Total NBER expansions NBER recessions

Var Mean S.D. Autocorrel. Mean S.D. Mean S.D.

(%) (%) (%) (%) (%) (%)

∆Yg 2.87 4.78 0.06 4.28 3.86 −2.56 4.09

∆Ym 1.06 5.44 −0.15 1.53 5.18 −0.76 6.23

∆Pm 3.33 13.49 0.27 1.77 12.84 9.31 14.83

∆C 2.34 1.18 0.33 2.68 1.01 1.06 0.87

PFPC 0 1.62 0.26 0.26 1.55 −0.83 1.69

OFPC 0 1.36 0.12 0.32 1.20 −1.38 1.10

Table II
Principal Component Analysis of the Cross-Section of Output Growth and Relative Price Growth

Panel A reports the loadings of each principal component of the cross section of output growth on the growth rate of output
in each sector as well as the loadings of each principal component of the cross section of relative price growth on the relative
price growth in each sector. Panel B reports the cumulative percentage variation in the cross section of output growth and
relative price growth that is explained by the first k = 1, .., 4 principal components. The data are annual and the sample is
1947− 2006.

Panel A: Loadings Panel B: Explained Variance

Principal Component (Output) Principal Component (Output)

k 1 2 3 4 k 1 2 3 4

Mining 0.49 −0.32 0.72 0.36 Percentage 62 73 92 100

Agriculture 0.12 −0.91 −0.39 −0.10
Construction 0.57 0.22 −0.57 0.55

Manufacturing 0.65 0.14 −0.02 −0.75

Principal Component (Price) Principal Component (Price)

k 1 2 3 4 k 1 2 3 4

Agriculture 0.55 0.84 −0.04 − Percentage 89 98 100 −
Construction 0.59 −0.35 0.72 −
Manufacturing 0.59 −0.42 −0.69 −
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Table III
GMM Estimation of the Production-Based Model on the Fama-French 6 Benchmark Portfolios

This table reports the second stage GMM estimates and tests of the production-based model. The moment condi-
tions are 0 = E[MtR

e
t ] in which Re

t is a vector with the excess returns on the six Fama-French base factors, Mt =

(Pmt/Pmt−1)
bpm (Ygt/Ygt−1)

byg (Ymct/Ymct−1)
bym with bpm = 1/(λm1 −1) , byg = (αg − 1)λ2m/(λ2m−1), bym = (1−αm)/(λ

2
m−1)

and Yit is the output in sector i = g (other goods-producing) and m (mining). Panel A reports results under the contempora-
neous matching assumption and Panel B reports results under the lagged matching assumption. The table reports measures
of the goodness of fit and tests of the model: the GMM first stage R-squared (R2), obtained from an OLS regression of the
predicted average returns on the realized excess returns and including a constant, the mean absolute pricing error (MAE, in
%) and the J-test of overidentifying restrictions with the corresponding p-value (in %). In addition, it reports the estimates
of the factor risk prices bpm, b

y
g and bym and the corresponding standard errors. Values with (∗) are statistically different

from zero at the 5% level. Finally, the table reports the estimates of the curvature parameters αg, αm and the sensitivity
of the underlying productivity level in the mining sector to the common productivity factor (λm1 ) implied by the second
stage GMM estimates of the risk prices with the corresponding standard errors obtained by the delta-method. The data are
annual and the sample is 1947− 2006.

Panel A: Contemporaneous Matching Panel B: Lagged Matching

Tests Tests

R2 % MAE % Jt p-val(Jt) R2 % MAE % Jt p-val(Jt)

value −10.40 12.03 12.35 1.49 value 90.51 0.82 1.87 59.96

Risk Prices Risk Prices

bpm byg bym bpm byg bym

estimate −0.91 −6.39 1.92 estimate −14.33∗ −37.28∗ 32.93∗

std errors (4.15) (12.29) (12.35) std errors (6.94) (11.88) (16.37)

Technological Parameters Technological Parameters

λm1 αg αm λm1 αg αm

estimate −0.10 −67.53 3.12 estimate 0.93 3.80 3.30

std errors (5.05) (30.45) (16.73) std errors (0.03) (1.76) (1.60)
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Table IV
Risk Sorted Portfolios

This figure shows the mean excess returns and the post-ranking covariances with the price first principal component (PFPC)
and output first principal component (OFPC) of 9 risk sorted portfolios formed by pre-ranking PFPC and OFPC factor
betas. Portfolio "High" is a portfolio of stocks whose pre-ranking beta of the corresponding factor is in the top 33 percentile
and portfolio "Low" is a portfolio with stocks whose pre-ranking beta of the corresponding factor are on the bottom 33
percentile. The portfolios are rebalanced annually. The data are annual and the sample is 1947− 2006.

Panel A: Average Excess Returns (%) Panel B: PFPC Covariance ×10−2

PFPC PFPC

OFPC High Medium Low avg. High Medium Low avg.

High 13.4 12.8 10.2 12.2 8.8 5.2 0.4 4.8

Medium 11.2 10.5 9.6 10.4 7.9 4.8 1.4 4.7

Low 9.4 8.9 8.3 8.9 9.0 4.5 −1.0 4.2

avg. 11.4 10.7 9.4 8.6 4.8 0.3 0.0

Panel C: OFPC Covariance ×10−2

High 19.6 18.7 19.0 19.1

Medium 16.0 15.7 14.3 15.3

Low 11.9 13.1 12.1 12.4

avg. 15.8 15.8 15.1 0.0
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Table V
GMM Estimation of the Production-Based Model on the Fama-French 25 Portfolios and 9 Risk

Sorted Porfolios

This table reports the second stage GMM estimates and tests of the production-based model. The moment conditions are
0 = E[MtR

e
t ] in which M

∗
t = 1− bpPFPCt− byOFPCt, where PFPCt is the price first principal component, OFPCt is the

output first principal component and Re
t is a vector of excess returns of the following portfolios sorts: (i) the 25 Fama-French

portfolios sorted on size and book-to-market; (ii) 9 Risk Sorted Portfolios and (iii) all the previous 34 portfolios together.
Appendix E-III provides a description of these portfolios. Panel A provides measures of the goodness of fit and tests of the
model: it reports the GMM first stage R-squared (R2), obtained from an OLS regression of the predicted average returns on
the realized excess returns and including a constant, the mean absolute pricing error (MAE) and the J-test of overidentifying
restrictions with the corresponding p-value (in %). Panel B reports the estimates of the factor risk prices bp and by and the
corresponding standard errors. Values with (∗) are statistically different from zero at the 5% level. The data are annual and
the sample is 1947− 2006.

Panel A: Tests Panel B: Risk Prices

Portfolios: 25 Size and Book-to-Market

R2 % MAE % Jt p-val(Jt) bp by

value 75 1.13 21.9 53 estimate 0.54∗ 0.41∗

std errors (0.13) (0.11)

Portfolios: 9 Risk Sorted

R2 % MAE % Jt p-val(Jt) bp by

value 88 0.49 7.4 39 estimate 0.32∗ 0.43∗

std errors (0.17) (0.12)

Portfolios: All previous 34

R2 % MAE % Jt p-val(Jt) bp by

value 71 1.12 29.9 57 estimate 0.57∗ 0.34∗

std errors (0.11) (0.08)
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Table VI
Average Returns, Fitted Marginal Rate of Transformation Covariances and Price and Output

First Principal Components Covariance of the 25 Fama-French Portfolios

Panel A reports the average annual excess returns on the 25 Fama-French portfolios sorted on size and book-to-market equity
(BE/ME). Panel B reports the opposite of the covariance between the fitted marginal rate of transformation and each one
of the 25 Fama-French Portfolios. The fitted marginal rate of transformation is given by M∗

t = 1 − bpPFPCt − byOFPCt,
where PFPCt is the price principal component and OFPCt is the output first principal component, and the factor risk prices
b are the GMM first stage estimates of the production-based model on the 25 Fama-French portfolios as test assets. Avg. is
the corresponding row or column average. The data are annual and the sample is 1947− 2006.

Panel A: Average Excess Returns (%) Panel B: MRT Covariance ×− 10−2

Size Size

BE/ME Small 2 3 4 Big avg. Small 2 3 4 Big avg.

Growth 5.8 6.6 7.4 8.3 7.6 7.1 7.6 8.4 7.9 6.4 9.1 7.9

2 12.1 10.1 10.6 8.5 7.8 9.8 11.1 10.6 11.7 9.5 7.3 10.0

3 12.1 13.0 11.0 12.0 9.4 11.5 11.7 13.1 12.3 10.8 8.7 11.3

4 15.0 13.9 13.1 12.2 9.5 12.7 12.5 14.3 14.0 12.1 11.5 12.9

Value 17.0 15.4 14.6 13.4 10.2 14.1 14.6 14.4 14.7 14.0 13.8 14.3

avg. 12.4 11.8 11.3 10.9 8.9 11.5 12.1 12.1 10.5 10.1

Panel C: PFPC Covariance ×10−2 Panel D: OFPC Covariance ×10−2

Growth −2.9 −0.3 −0.0 −0.7 3.8 −0.0 18.8 17.0 15.7 13.6 13.3 15.7

2 1.9 4.2 6.2 3.8 2.0 3.6 19.6 15.9 15.4 14.0 11.9 15.4

3 4.8 7.6 6.9 4.6 2.9 5.4 17.2 16.5 15.8 15.6 13.6 15.7

4 6.1 9.0 8.7 6.9 5.2 7.2 17.1 17.0 16.8 15.4 16.2 16.5

Value 5.9 7.3 8.9 5.9 7.4 7.1 21.6 19.3 18.0 20.2 18.1 19.5

avg. 3.2 5.6 6.1 4.1 4.3 18.9 17.1 16.3 15.8 14.6
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Table VII
Comparison of Three Asset Pricing Models on the 25 Fama-French Portfolios

This table presents the second stage GMM estimates and tests of three asset pricing models. The moment conditions are
0 = E[MtR

e
t ] in which R

e
t is the vector of excess returns of the 25 Fama-French Portfolios sorted on size and book-to market

equity. The three models are: (i) Production—based model (PBM); (ii) Consumption-CAPM (C-CAPM); and (iii) the
Fama-French three factor model (FF3F). Appendix F provides a description of these models. The stochastic discount factor
representation of each model is the following: In the PBM, M∗

t = 1− bpPFPCt − byOFPCt, where PFPCt is the price first
principal component and OFPCt is the output first principal component; In the C-CAPM, Mt = (Ct/Ct−1)

b1 where Ct is
real per capita consumption of nondurables+services; and in the FF3F, Mt = 1 − b1Markett − b2SMBt − b3HMLt where
Market, SMB and HML are the three Fama-French factors. Panel A provides measures of the goodness of fit and tests
of each model: it reports the GMM first stage R-squared (R2), obtained from an OLS regression of the predicted average
returns on the realized excess returns and including a constant, the mean absolute pricing error (MAE) and the J-test of
overidentifying restrictions with the corresponding p-value (in %). Panel B reports the estimates of the factor risk prices b
and the corresponding GMM standard errors in parenthesis. Values with (∗) are statistically different from zero at the 5%
level. The data are annual and the sample is 1947− 2006.

Panel A: Tests

PBM C-CAPM FF3F

MAE (%) 1.13 1.64 1.37

R2 (%) 75 43.88 68.08

J-Test 21.90 8.49 21.40

p-value(Jt) (%) 52.57 99.85 49.64

Panel B: Risk Prices

Factor

PFPC 0.54∗

(0.13)

OFPC 0.41∗

(0.11)

∆C −101.6∗

(47.33)

MARKET 2.14∗

(0.58)

SMB 0.25

(0.95)

HML 2.74∗

(0.80)
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Table VIII
Estimation of the Price and Output First Principal Component Mimicking Portfolios.

Panel A reports the estimates of the loadings (b) and corresponding standard errors obtained from the regression of the price
first principal component (PFPC) and the output first principal component (OFPC) on the Fama-French 6 Base Assets.
These loadings are used to construct the price mimicking portfolio (PMP) and the output mimicking portfolio (OMP). Panel
B reports the correlation between each factor and the corresponding mimicking portfolio as well with the Fama-French three
factors (MKT, SMB and HML) for comparison. The sample period is annual data between 1947 and 2006.

Panel A: Factor Mimimicking Portfolio loadings

Base Assets

Small Big

Value Neutral Growth Value Neutral Growth

b(PMP) −6.23 3.68 4.49 4.30 −2.19 −1.92
std errors (2.24) (3.99) (3.92) (2.35) (2.44) (2.89)

b(OMP) −0.26 −4.23 4.93 2.30 1.07 0.76

std errors (1.33) (3.38) (2.56) (1.46) (1.87) (1.59)

Panel B: Correlations

PMP OMP PFPC OFPC MKT SMB HML

PMP 1.00

OMP 0.49 1.00

PFPC 0.61 0.20 1.00

OFPC 0.32 0.65 0.23 1.00

MKT 0.27 0.91 0.09 0.61 1.00

SMB 0.05 0.22 0.02 0.16 0.26 1.00

HML 0.54 0.20 0.16 0.11 −0.17 −0.03 1.00
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Table IX
GMM Estimation of the Production-Based Model on the Fama-French 25 Portfolios and 9 Risk

Sorted Porfolios Using Factor Mimicking Portfolios Over a Longer Time Series

This table reports the second stage GMM estimates and tests of the production-based model. The moment conditions are
0 = E[MtR

e
t ] in which M∗

t = 1 − bpPMPt − byOMPt, where PMPt is the price mimicking portfolio, OMPt is the output
mimicking portfolio and Re

t is a vector of excess returns of the following portfolios sorts: (i) the 25 Fama-French portfolios
sorted on size and book-to-market; (ii) 9 risk-sorted portfolios and (iii) all the previous 34 portfolios together. Appendix
E-III provides a description of these portfolios. Panel A provides measures of the goodness of fit and tests of the model:
it reports the GMM first stage R-squared (R2), obtained from an OLS regression of the predicted average returns on the
realized excess returns and including a constant, the mean absolute pricing error (MAE) and the J-test of overidentifying
restrictions with the corresponding p-value (in %). Panel B reports the estimates of the factor risk prices bp and by and the
corresponding standard errors. Values with (∗) are statistically different from zero at the 5% level. The data are annual and
the sample is 1933− 2006.

Panel A: Tests Panel B: Risk Prices

Portfolios: 25 Size and Book-to-Market

R2 % MAE % Jt p-val(Jt) bp by

value 88 0.88 31.55 10.9 estimate 0.86∗ 0.19

std errors (0.19) (0.15)

Portfolios: 9 Risk

R2 % MAE % Jt p-val(Jt) bp by

value 77 1.13 9.02 25.1 estimate 0.56∗ 0.29

std errors (0.22) (0.15)

Portfolios: All previous 34

R2 % MAE % Jt p-val(Jt) bp by

value 75 1.22 33.12 41.2 estimate 0.70∗ 0.20∗

std errors (0.22) (0.09)
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Figure 1
Production Possibilities Frontier Across States of Nature

This figure plots the production possibilities frontier across states of nature (bold line) for a standard representation of
technology (left panel) and for a smooth (differentiable) representation of technology (right panel) in a two states of nature
economy. The firm is producing at point A.
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Figure 2
Time Series of the Output Growth in the Mining and in the Other Goods-Producing Sector and

Consumption Growth of Non-Durables and Services

This figure plots the time series of the output growth in the mining and in the other goods-producing sector and the per
capita consumption growth of non-durables and services. Shaded bars are NBER recession years. The data are annual and
the sample is 1947− 2006.
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Figure 3
Predicted vs Realized Excess Returns of the Production Based Model on the Fama-French Six

Benchmark Portfolios

The figure shows the plot of realized versus predicted excess returns (per year) for the six Fama-French benchmark portfolios
sorted on size and book-to-market equity implied by the first stage GMM estimation of the one common productivity factor
production-based model (PBM). The R-squared (R2) is obtained from an OLS regression of the predicted average returns
on the realized excess returns and including a constant. The data are annual and the sample is 1947− 2006.
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Figure 4
Times Series of the Inovations in the Marginal Rate of Transformation and in the Common

Productivity Factor

Panel A plots the inovations in the log marginal rate of transformation and Panel B plots the inovations in the log com-
mon productivity factor implied by second stage GMM estimates of the production-based model on the Fama-French six
benchmark portfolios. Shaded bars are NBER recession years. The data are annual and the sample is 1947− 2006.
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Figure 5
Predicted vs Realized Excess Returns of Three Asset Pricing Models on the 25 Fama-French

Portfolios

The figure shows the plot of realized versus predicted excess returns (per year) for the 25 Fama-French portfolios sorted on
size and book-to-market equity implied by the first stage GMM estimation of the following models : (i) top left: production-
based model (PBM); (ii) top right: consumption-based model (C-CAPM) and (iii) lower left: Fama-French three factors
model (FF3F). In the figure, each digit number represents one portfolio. The first digit refers to the size quintiles (1 indicating
the smallest firms, 5 the largest), and the second digit refers to book-to-market quintiles (1 indicating the portfolio with the
lowest book-to-market ratio). The R-squared (R2) is obtained from an OLS regression of the predicted average returns on
the realized excess returns and including a constant and MAE is the mean absolute pricing error. The data are annual and
the sample is 1947− 2006.
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Figure 6
Smooth Production Possibilities Frontier Across States of Nature: an Aggregation Result

This left panel in the figure plots the production possibilities frontier across states of nature for two standard representations
of the technology of the form yi(s) = i(s)

√
ki where ki = 1, s = wet, dry, 1(wet) = 2(dry) = 0.5 and 1(dry) = 2(wet) = 1.

The right panel plots the production possibilities frontier of the resulting aggregate production function Y = y1 + y2, in
which k1 + k2 ≤ 1.
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