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Abstract

Recently, there has been growing inter-

est in multi-speaker speech recognition,

where the utterances of multiple speak-

ers are recognized from their mixture.

Promising techniques have been proposed

for this task, but earlier works have re-

quired additional training data such as

isolated source signals or senone align-

ments for effective learning. In this paper,

we propose a new sequence-to-sequence

framework to directly decode multiple la-

bel sequences from a single speech se-

quence by unifying source separation and

speech recognition functions in an end-to-

end manner. We further propose a new ob-

jective function to improve the contrast be-

tween the hidden vectors to avoid generat-

ing similar hypotheses. Experimental re-

sults show that the model is directly able

to learn a mapping from a speech mix-

ture to multiple label sequences, achieving

83.1% relative improvement compared to

a model trained without the proposed ob-

jective. Interestingly, the results are com-

parable to those produced by previous end-

to-end works featuring explicit separation

and recognition modules.

1 Introduction

Conventional automatic speech recognition (ASR)

systems recognize a single utterance given a

speech signal, in a one-to-one transformation.

However, restricting the use of ASR systems to sit-

uations with only a single speaker limits their ap-

plicability. Recently, there has been growing inter-

∗This work was done while H. Seki, Ph.D. candidate at
Toyohashi University of Technology, Japan, was an intern at
MERL.

est in single-channel multi-speaker speech recog-

nition, which aims at generating multiple tran-

scriptions from a single-channel mixture of mul-

tiple speakers’ speech (Cooke et al., 2009).

To achieve this goal, several previous works

have considered a two-step procedure in which the

mixed speech is first separated, and recognition

is then performed on each separated speech sig-

nal (Hershey et al., 2016; Isik et al., 2016; Yu et al.,

2017; Chen et al., 2017). Dramatic advances have

recently been made in speech separation, via the

deep clustering framework (Hershey et al., 2016;

Isik et al., 2016), hereafter referred to as DPCL.

DPCL trains a deep neural network to map each

time-frequency (T-F) unit to a high-dimensional

embedding vector such that the embeddings for

the T-F unit pairs dominated by the same speaker

are close to each other, while those for pairs dom-

inated by different speakers are farther away. The

speaker assignment of each T-F unit can thus be

inferred from the embeddings by simple cluster-

ing algorithms, to produce masks that isolate each

speaker. The original method using k-means clus-

tering (Hershey et al., 2016) was extended to al-

low end-to-end training by unfolding the cluster-

ing steps using a permutation-free mask inference

objective (Isik et al., 2016). An alternative ap-

proach is to perform direct mask inference using

the permutation-free objective function with net-

works that directly estimate the labels for a fixed

number of sources. Direct mask inference was first

used in Hershey et al. (2016) as a baseline method,

but without showing good performance. This ap-

proach was revisited in Yu et al. (2017) and Kol-

baek et al. (2017) under the name permutation-

invariant training (PIT). Combination of such

single-channel speaker-independent multi-speaker

speech separation systems with ASR was first con-

sidered in Isik et al. (2016) using a conventional

Gaussian Mixture Model/Hidden Markov Model
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(GMM/HMM) system. Combination with an end-

to-end ASR system was recently proposed in (Set-

tle et al., 2018). Both these approaches either

trained or pre-trained the source separation and

ASR networks separately, making use of mixtures

and their corresponding isolated clean source ref-

erences. While the latter approach could in princi-

ple be trained without references for the isolated

speech signals, the authors found it difficult to

train from scratch in that case. This ability can

nonetheless be used when adapting a pre-trained

network to new data without such references.

In contrast with this two-stage approach, Qian

et al. (2017) considered direct optimization of a

deep-learning-based ASR recognizer without an

explicit separation module. The network is opti-

mized based on a permutation-free objective de-

fined using the cross-entropy between the system’s

hypotheses and reference labels. The best per-

mutation between hypotheses and reference labels

in terms of cross-entropy is selected and used for

backpropagation. However, this method still re-

quires reference labels in the form of senone align-

ments, which have to be obtained on the clean iso-

lated sources using a single-speaker ASR system.

As a result, this approach still requires the original

separated sources. As a general caveat, generation

of multiple hypotheses in such a system requires

the number of speakers handled by the neural net-

work architecture to be determined before train-

ing. However, Qian et al. (2017) reported that the

recognition of two-speaker mixtures using a model

trained for three-speaker mixtures showed almost

identical performance with that of a model trained

on two-speaker mixtures. Therefore, it may be

possible in practice to determine an upper bound

on the number of speakers.

Chen et al. (2018) proposed a progressive

training procedure for a hybrid system with ex-

plicit separation motivated by curriculum learn-

ing. They also proposed self-transfer learning

and multi-output sequence discriminative training

methods for fully exploiting pairwise speech and

preventing competing hypotheses, respectively.

In this paper, we propose to circumvent the

need for the corresponding isolated speech sources

when training on a set of mixtures, by using an

end-to-end multi-speaker speech recognition with-

out an explicit speech separation stage. In sep-

aration based systems, the spectrogram is seg-

mented into complementary regions according to

sources, which generally ensures that different ut-

terances are recognized for each speaker. Without

this complementarity constraint, our direct multi-

speaker recognition system could be susceptible to

redundant recognition of the same utterance. In

order to prevent degenerate solutions in which the

generated hypotheses are similar to each other, we

introduce a new objective function that enhances

contrast between the network’s representations of

each source. We also propose a training procedure

to provide permutation invariance with low com-

putational cost, by taking advantage of the joint

CTC/attention-based encoder-decoder network ar-

chitecture proposed in (Hori et al., 2017a). Ex-

perimental results show that the proposed model

is able to directly convert an input speech mix-

ture into multiple label sequences without requir-

ing any explicit intermediate representations. In

particular no frame-level training labels, such as

phonetic alignments or corresponding unmixed

speech, are required. We evaluate our model on

spontaneous English and Japanese tasks and ob-

tain comparable results to the DPCL based method

with explicit separation (Settle et al., 2018).

2 Single-speaker end-to-end ASR

2.1 Attention-based encoder-decoder

network

An attention-based encoder-decoder net-

work (Bahdanau et al., 2016) predicts a target

label sequence Y = (y1, . . . , yN ) without requir-

ing intermediate representation from a T -frame

sequence of D-dimensional input feature vectors,

O = (ot ∈ R
D|t = 1, . . . , T ), and the past label

history. The probability of the n-th label yn is

computed by conditioning on the past history

y1:n−1:

patt(Y |O) =

N
∏

n=1

patt(yn|O, y1:n−1). (1)

The model is composed of two main sub-modules,

an encoder network and a decoder network. The

encoder network transforms the input feature vec-

tor sequence into a high-level representation H =
(hl ∈ R

C |l = 1, . . . , L). The decoder net-

work emits labels based on the label history y

and a context vector c calculated using an atten-

tion mechanism which weights and sums the C-

dimensional sequence of representation H with at-

tention weight a. A hidden state e of the decoder is
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updated based on the previous state, the previous

context vector, and the emitted label. This mecha-

nism is summarized as follows:

H = Encoder(O), (2)

yn ∼ Decoder(cn, yn−1), (3)

cn, an = Attention(an−1, en, H), (4)

en = Update(en−1, cn−1, yn−1). (5)

At inference time, the previously emitted labels

are used. At training time, they are replaced by

the reference label sequence R = (r1, . . . , rN ) in

a teacher-forcing fashion, leading to conditional

probability patt(YR|O), where YR denotes the out-

put label sequence variable in this condition. The

detailed definitions of Attention and Update are

described in Section A of the supplementary mate-

rial. The encoder and decoder networks are trained

to maximize the conditional probability of the ref-

erence label sequence R using backpropagation:

Latt = Lossatt(YR, R) , − log patt(YR = R|O),
(6)

where Lossatt is the cross-entropy loss function.

2.2 Joint CTC/attention-based

encoder-decoder network

The joint CTC/attention approach (Kim et al.,

2017; Hori et al., 2017a), uses the connection-

ist temporal classification (CTC) objective func-

tion (Graves et al., 2006) as an auxiliary task to

train the network. CTC formulates the condi-

tional probability by introducing a framewise la-

bel sequence Z consisting of a label set U and an

additional blank symbol defined as Z = {zl ∈
U ∪ {’blank’}|l = 1, · · · , L}:

pctc(Y |O) =
∑

Z

L
∏

l=1

p(zl|zl−1, Y )p(zl|O), (7)

where p(zl|zl−1, Y ) represents monotonic align-

ment constraints in CTC and p(zl|O) is the frame-

level label probability computed by

p(zl|O) = Softmax(Linear(hl)), (8)

where hl is the hidden representation generated

by an encoder network, here taken to be the en-

coder of the attention-based encoder-decoder net-

work defined in Eq. (2), and Linear(·) is the final

linear layer of the CTC to match the number of

labels. Unlike the attention model, the forward-

backward algorithm of CTC enforces monotonic

alignment between the input speech and the out-

put label sequences during training and decod-

ing. We adopt the joint CTC/attention-based

encoder-decoder network as the monotonic align-

ment helps the separation and extraction of high-

level representation. The CTC loss is calculated

as:

Lctc = Lossctc(Y,R) , − log pctc(Y = R|O).
(9)

The CTC loss and the attention-based encoder-

decoder loss are combined with an interpolation

weight λ ∈ [0, 1]:

Lmtl = λLctc + (1− λ)Latt. (10)

Both CTC and encoder-decoder networks are

also used in the inference step. The final hypothe-

sis is a sequence that maximizes a weighted condi-

tional probability of CTC in Eq. ( 7) and attention-

based encoder decoder network in Eq. (1):

Ŷ = argmax
Y

{

γ log pctc(Y |O)

+ (1− γ) log patt(Y |O)
}

, (11)

where γ ∈ [0, 1] is an interpolation weight.

3 Multi-speaker end-to-end ASR

3.1 Permutation-free training

In situations where the correspondence between

the outputs of an algorithm and the references is

an arbitrary permutation, neural network training

faces a permutation problem. This problem was

first addressed by deep clustering (Hershey et al.,

2016), which circumvented it in the case of source

separation by comparing the relationships between

pairs of network outputs to those between pairs of

labels. As a baseline for deep clustering, Hershey

et al. (2016) also proposed another approach to ad-

dress the permutation problem, based on an ob-

jective which considers all permutations of refer-

ences when computing the error with the network

estimates. This objective was later used in Isik et

al. (2016) and Yu et al. (2017). In the latter, it was

referred to as permutation-invariant training.

This permutation-free training scheme extends

the usual one-to-one mapping of outputs and la-

bels for backpropagation to one-to-many by se-

lecting the proper permutation of hypotheses and
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references, thus allowing the network to generate

multiple independent hypotheses from a single-

channel speech mixture. When a speech mixture

contains speech uttered by S speakers simulta-

neously, the network generates S label sequence

variables Y s = (ys1, . . . , y
s
Ns

) with Ns labels from

the T -frame sequence of D-dimensional input fea-

ture vectors, O = (ot ∈ R
D|t = 1, . . . , T ):

Y s ∼ gs(O), s = 1, . . . , S, (12)

where the transformations gs are implemented as

neural networks which typically share some com-

ponents with each other. In the training stage, all

possible permutations of the S sequences Rs =
(rs1, . . . , r

s
N ′

s

) of N ′
s reference labels are consid-

ered (considering permutations on the hypotheses

would be equivalent), and the one leading to min-

imum loss is adopted for backpropagation. Let P
denote the set of permutations on {1, . . . , S}. The

final loss L is defined as

L = min
π∈P

S
∑

s=1

Loss(Y s, Rπ(s)), (13)

where π(s) is the s-th element of a permutation

π. For example, for two speakers, P includes two

permutations (1, 2) and (2, 1), and the loss is de-

fined as:

L = min(Loss(Y 1, R1) + Loss(Y 2, R2),

Loss(Y 1, R2) + Loss(Y 2, R1)). (14)

Figure 1 shows an overview of the proposed

end-to-end multi-speaker ASR system. In the fol-

lowing Section 3.2, we describe an extension of

encoder network for the generation of multiple

hidden representations. We further introduce a

permutation assignment mechanism for reducing

the computation cost in Section 3.3, and an ad-

ditional loss function LKL for promoting the dif-

ference between hidden representations in Sec-

tion 3.4.

3.2 End-to-end permutation-free training

To make the network output multiple hypotheses,

we consider a stacked architecture that combines

both shared and unshared (or specific) neural net-

work modules. The particular architecture we con-

sider in this paper splits the encoder network into

three stages: the first stage, also referred to as

mixture encoder, processes the input mixture and

Figure 1: End-to-end multi-speaker speech recog-

nition. We propose to use the permutation-free

training for CTC and attention loss functions

Lossctc and Lossatt, respectively.

outputs an intermediate feature sequence H; that

sequence is then processed by S independent en-

coder sub-networks which do not share param-

eters, also referred to as speaker-differentiating

(SD) encoders, leading to S feature sequences Hs;

at the last stage, each feature sequence Hs is inde-

pendently processed by the same network, also re-

ferred to as recognition encoder, leading to S final

high-level representations Gs.

Let u ∈ {1 . . . , S} denote an output index (cor-

responding to the transcription of the speech by

one of the speakers), and v ∈ {1 . . . , S} de-

note a reference index. Denoting by EncoderMix

the mixture encoder, EncoderuSD the u-th speaker-

differentiating encoder, and EncoderRec the

recognition encoder, an input sequence O corre-

sponding to an input mixture can be processed by

the encoder network as follows:

H = EncoderMix(O), (15)

Hu = EncoderuSD(H), (16)

Gu = EncoderRec(H
u). (17)

The motivation for designing such an architecture

can be explained as follows, following analogies

with the architectures in (Isik et al., 2016) and

(Settle et al., 2018) where separation and recog-
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nition are performed explicitly in separate steps:

the first stage in Eq. (15) corresponds to a speech

separation module which creates embedding vec-

tors that can be used to distinguish between the

multiple sources; the speaker-differentiating sec-

ond stage in Eq. (16) uses the first stage’s output

to disentangle each speaker’s speech content from

the mixture, and prepare it for recognition; the fi-

nal stage in Eq. (17) corresponds to an acoustic

model that encodes the single-speaker speech for

final decoding.

The decoder network computes the conditional

probabilities for each speaker from the S outputs

of the encoder network. In general, the decoder

network uses the reference label R as a history to

generate the attention weights during training, in

a teacher-forcing fashion. However, in the above

permutation-free training scheme, the reference

label to be attributed to a particular output is not

determined until the loss function is computed, so

we here need to run the attention decoder for all

reference labels. We thus need to consider the con-

ditional probability of the decoder output variable

Y u,v for each output Gu of the encoder network

under the assumption that the reference label for

that output is Rv:

patt(Y
u,v|O) =

∏

n

patt(y
u,v
n |O, y

u,v
1:n−1), (18)

cu,vn , au,vn = Attention(au,vn−1, e
u,v
n , Gu), (19)

eu,vn = Update(eu,vn−1, c
u,v
n−1, r

v
n−1), (20)

yu,vn ∼ Decoder(cu,vn , rvn−1). (21)

The final loss is then calculated by considering all

permutations of the reference labels as follows:

Latt = min
π∈P

∑

s

Lossatt(Y
s,π(s), Rπ(s)). (22)

3.3 Reduction of permutation cost

In order to reduce the computational cost, we fixed

the permutation of the reference labels based on

the minimization of the CTC loss alone, and used

the same permutation for the attention mechanism

as well. This is an advantage of using a joint

CTC/attention based end-to-end speech recogni-

tion. Permutation is performed only for the CTC

loss by assuming synchronous output where the

permutation is decided by the output of CTC:

π̂ = argmin
π∈P

∑

s

Lossctc(Y
s, Rπ(s)), (23)

where Y u is the output sequence variable corre-

sponding to encoder output Gu. Attention-based

decoding is then performed on the same hidden

representations Gu, using teacher forcing with the

labels determined by the permutation π̂ that mini-

mizes the CTC loss:

patt(Y
u,π̂(u)|O) =

∏

n

patt(y
u,π̂(u)
n |O, y

u,π̂(u)
1:n−1 ),

cu,π̂(u)n , au,π̂(u)n =Attention(a
u,π̂(u)
n−1 , eu,π̂(u)n , Gu),

eu,π̂(u)n = Update(e
u,π̂(u)
n−1 , c

u,π̂(u)
n−1 , r

π̂(u)
n−1 ),

yu,π̂(u)n ∼ Decoder(cu,π̂(u)n , r
π̂(u)
n−1 ).

This corresponds to the “permutation assignment”

in Fig. 1. In contrast with Eq. (18), we only need

to run the attention-based decoding once for each

output Gu of the encoder network. The final loss

is defined as the sum of two objective functions

with interpolation λ:

Lmtl = λLctc + (1− λ)Latt, (24)

Lctc =
∑

s

Lossctc(Y
s, Rπ̂(s)), (25)

Latt =
∑

s

Lossatt(Y
s,π̂(s), Rπ̂(s)). (26)

At inference time, because both CTC and

attention-based decoding are performed on the

same encoder output Gu and should thus pertain

to the same speaker, their scores can be incorpo-

rated as follows:

Ŷ u = argmax
Y u

{

γ log pctc(Y
u|Gu)

+ (1− γ) log patt(Y
u|Gu)

}

, (27)

where pctc(Y
u|Gu) and patt(Y

u|Gu) are obtained

with the same encoder output Gu.

3.4 Promoting separation of hidden vectors

A single decoder network is used to output mul-

tiple label sequences by independently decoding

the multiple hidden vectors generated by the en-

coder network. In order for the decoder to gener-

ate multiple different label sequences the encoder

needs to generate sufficiently differentiated hidden

vector sequences for each speaker. We propose to

encourage this contrast among hidden vectors by

introducing in the objective function a new term

based on the negative symmetric Kullback-Leibler
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(KL) divergence. In the particular case of two-

speaker mixtures, we consider the following ad-

ditional loss function:

LKL = −η
∑

l

{

KL(Ḡ1(l) || Ḡ2(l))

+ KL(Ḡ2(l) || Ḡ1(l))
}

, (28)

where η is a small constant value, and

Ḡu = (softmax(Gu(l)) | l = 1, . . . , L) is ob-

tained from the hidden vector sequence Gu at the

output of the recognition encoder EncoderRec as

in Fig. 1 by applying an additional frame-wise

softmax operation in order to obtain a quantity

amenable to a probability distribution.

3.5 Split of hidden vector for multiple

hypotheses

Since the network maps acoustic features to la-

bel sequences directly, we consider various archi-

tectures to perform implicit separation and recog-

nition effectively. As a baseline system, we use

the concatenation of a VGG-motivated CNN net-

work (Simonyan and Zisserman, 2014) (referred

to as VGG) and a bi-directional long short-term

memory (BLSTM) network as the encoder net-

work. For the splitting point in the hidden vector

computation, we consider two architectural varia-

tions as follows:

• Split by BLSTM: The hidden vector is split at

the level of the BLSTM network. 1) the VGG

network generates a single hidden vector H; 2)

H is fed into S independent BLSTMs whose

parameters are not shared with each other;

3) the output of each independent BLSTM

Hu, u=1, . . . , S, is further separately fed into a

unique BLSTM, the same for all outputs. Each

step corresponds to Eqs. (15), (16), and (17).

• Split by VGG: The hidden vector is split at the

level of the VGG network. The number of filters

at the last convolution layer is multiplied by the

number of mixtures S in order to split the out-

put into S hidden vectors (as in Eq. (16)). The

layers prior to the last VGG layer correspond to

the network in Eq. (15), while the subsequent

BLSTM layers implement the network in (17).

4 Experiments

4.1 Experimental setup

We used English and Japanese speech corpora,

WSJ (Wall street journal) (Consortium, 1994;

Table 1: Duration (hours) of unmixed and mixed

corpora. The mixed corpora are generated by Al-

gorithm 1 in Section B of the supplementary ma-

terial, using the training, development, and evalu-

ation set respectively.

TRAIN DEV. EVAL

WSJ (UNMIXED) 81.5 1.1 0.7
WSJ (MIXED) 98.5 1.3 0.8

CSJ (UNMIXED) 583.8 6.6 5.2
CSJ (MIXED) 826.9 9.1 7.5

Garofalo et al., 2007) and CSJ (Corpus of spon-

taneous Japanese) (Maekawa, 2003). To show the

effectiveness of the proposed models, we gener-

ated mixed speech signals from these corpora to

simulate single-channel overlapped multi-speaker

recording, and evaluated the recognition perfor-

mance using the mixed speech data. For WSJ, we

used WSJ1 SI284 for training, Dev93 for develop-

ment, and Eval92 for evaluation. For CSJ, we fol-

lowed the Kaldi recipe (Moriya et al., 2015) and

used the full set of academic and simulated pre-

sentations for training, and the standard test sets 1,

2, and 3 for evaluation.

We created new corpora by mixing two utter-

ances with different speakers sampled from exist-

ing corpora. The detailed algorithm is presented

in Section B of the supplementary material. The

sampled pairs of two utterances are mixed at vari-

ous signal-to-noise ratios (SNR) between 0 dB and

5 dB with a random starting point for the overlap.

Duration of original unmixed and generated mixed

corpora are summarized in Table 1.

4.1.1 Network architecture

As input feature, we used 80-dimensional log Mel

filterbank coefficients with pitch features and their

delta and delta delta features (83 × 3 = 249-

dimension) extracted using Kaldi tools (Povey

et al., 2011). The input feature is normalized to

zero mean and unit variance. As a baseline sys-

tem, we used a stack of a 6-layer VGG network

and a 7-layer BLSTM as the encoder network.

Each BLSTM layer has 320 cells in each direc-

tion, and is followed by a linear projection layer

with 320 units to combine the forward and back-

ward LSTM outputs. The decoder network has

an 1-layer LSTM with 320 cells. As described in

Section 3.5, we adopted two types of encoder ar-

chitectures for multi-speaker speech recognition.

The network architectures are summarized in Ta-

ble 2. The split-by-VGG network had speaker

differentiating encoders with a convolution layer
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Table 2: Network architectures for the en-

coder network. The number of layers is indi-

cated in parentheses. EncoderMix, EncoderuSD,

and EncoderRec correspond to Eqs. (15), (16),

and (17).

SPLIT BY EncoderMix Encoder
u

SD EncoderRec

NO VGG (6) — BLSTM (7)
VGG VGG (4) VGG (2) BLSTM (7)
BLSTM VGG (6) BLSTM (2) BLSTM (5)

(and the following maxpooling layer). The split-

by-BLSTM network had speaker differentiating

encoders with two BLSTM layers. The architec-

tures were adjusted to have the same number of

layers. We used characters as output labels. The

number of characters for WSJ was set to 49 includ-

ing alphabets and special tokens (e.g., characters

for space and unknown). The number of charac-

ters for CSJ was set to 3,315 including Japanese

Kanji/Hiragana/Katakana characters and special

tokens.

4.1.2 Optimization

The network was initialized randomly from uni-

form distribution in the range -0.1 to 0.1. We

used the AdaDelta algorithm (Zeiler, 2012) with

gradient clipping (Pascanu et al., 2013) for opti-

mization. We initialized the AdaDelta hyperpa-

rameters as ρ = 0.95 and ǫ = 1−8. ǫ is de-

cayed by half when the loss on the development set

degrades. The networks were implemented with

Chainer (Tokui et al., 2015) and ChainerMN (Ak-

iba et al., 2017). The optimization of the networks

was done by synchronous data parallelism with 4

GPUs for WSJ and 8 GPUs for CSJ.

The networks were first trained on single-

speaker speech, and then retrained with mixed

speech. When training on unmixed speech, only

one side of the network only (with a single speaker

differentiating encoder) is optimized to output the

label sequence of the single speaker. Note that

only character labels are used, and there is no

need for clean source reference corresponding to

the mixed speech. When moving to mixed speech,

the other speaker-differentiating encoders are ini-

tialized using the already trained one by copying

the parameters with random perturbation, w′ =
w × (1 + Uniform(−0.1, 0.1)) for each param-

eter w. The interpolation value λ for the multiple

objectives in Eqs. (10) and (24) was set to 0.1 for

WSJ and to 0.5 for CSJ. Lastly, the model is re-

trained with the additional negative KL divergence

loss in Eq. (28) with η = 0.1.

Table 3: Evaluation of unmixed speech without

multi-speaker training.

TASK AVG.

WSJ 2.6
CSJ 7.8

4.1.3 Decoding

In the inference stage, we combined a pre-

trained RNNLM (recurrent neural network lan-

guage model) in parallel with the CTC and de-

coder network. Their label probabilities were lin-

early combined in the log domain during beam

search to find the most likely hypothesis. For the

WSJ task, we used both character and word level

RNNLMs (Hori et al., 2017b), where the charac-

ter model had a 1-layer LSTM with 800 cells and

an output layer for 49 characters. The word model

had a 1-layer LSTM with 1000 cells and an output

layer for 20,000 words, i.e., the vocabulary size

was 20,000. Both models were trained with the

WSJ text corpus. For the CSJ task, we used a char-

acter level RNNLM (Hori et al., 2017c), which

had a 1-layer LSTM with 1000 cells and an out-

put layer for 3,315 characters. The model parame-

ters were trained with the transcript of the training

set in CSJ. We added language model probabilities

with an interpolation factor of 0.6 for character-

level RNNLM and 1.2 for word-level RNNLM.

The beam width for decoding was set to 20 in

all the experiments. Interpolation γ in Eqs. (11)

and (27) was set to 0.4 for WSJ and 0.5 for CSJ.

4.2 Results

4.2.1 Evaluation of unmixed speech

First, we examined the performance of the base-

line joint CTC/attention-based encoder-decoder

network with the original unmixed speech data.

Table 3 shows the character error rates (CERs),

where the baseline model showed 2.6% on WSJ

and 7.8% on CSJ. Since the model was trained and

evaluated with unmixed speech data, these CERs

are considered lower bounds for the CERs in the

succeeding experiments with mixed speech data.

4.2.2 Evaluation of mixed speech

Table 4 shows the CERs of the generated mixed

speech from the WSJ corpus. The first col-

umn indicates the position of split as mentioned

in Section 3.5. The second, third and forth

columns indicate CERs of the high energy speaker

(HIGH E. SPK.), the low energy speaker (LOW

E. SPK.), and the average (AVG.), respectively.

The baseline model has very high CERs because
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Table 4: CER (%) of mixed speech for WSJ.

SPLIT HIGH E. SPK. LOW E. SPK. AVG.

NO (BASELINE) 86.4 79.5 83.0
VGG 17.4 15.6 16.5
BLSTM 14.6 13.3 14.0
+ KL LOSS 14.0 13.3 13.7

Table 5: CER (%) of mixed speech for CSJ.

SPLIT HIGH E. SPK. LOW E. SPK. AVG.

NO (BASELINE) 93.3 92.1 92.7
BLSTM 11.0 18.8 14.9

it was trained as a single-speaker speech recog-

nizer without permutation-free training, and it can

only output one hypothesis for each mixed speech.

In this case, the CERs were calculated by du-

plicating the generated hypothesis and comparing

the duplicated hypotheses with the correspond-

ing references. The proposed models, i.e., split-

by-VGG and split-by-BLSTM networks, obtained

significantly lower CERs than the baseline CERs,

the split-by-BLSTM model in particular achieving

14.0% CER. This is an 83.1% relative reduction

from the baseline model. The CER was further re-

duced to 13.7% by retraining the split-by-BLSTM

model with the negative KL loss, a 2.1% rela-

tive reduction from the network without retrain-

ing. This result implies that the proposed negative

KL loss provides better separation by actively im-

proving the contrast between the hidden vectors

of each speaker. Examples of recognition results

are shown in Section C of the supplementary ma-

terial. Finally, we profiled the computation time

for the permutations based on the decoder network

and on CTC. Permutation based on CTC was 16.3

times faster than that based on the decoder net-

work, in terms of the time required to determine

the best match permutation given the encoder net-

work’s output in Eq. (17).

Table 5 shows the CERs for the mixed speech

from the CSJ corpus. Similarly to the WSJ ex-

periments, our proposed model significantly re-

duced the CER from the baseline, where the aver-

age CER was 14.9% and the reduction ratio from

the baseline was 83.9%.

4.2.3 Visualization of hidden vectors

We show a visualization of the encoder networks

outputs in Fig. 2 to illustrate the effect of the neg-

ative KL loss function. Principal component anal-

ysis (PCA) was applied to the hidden vectors on

the vertical axis. Figures 2(a) and 2(b) show the

hidden vectors generated by the split-by-BLSTM

model without the negative KL divergence loss

for an example mixture of two speakers. We can

observe different activation patterns showing that

the hidden vectors were successfully separated to

the individual utterances in the mixed speech, al-

though some activity from one speaker can be seen

as leaking into the other. Figures 2(c) and 2(d)

show the hidden vectors generated after retrain-

ing with the negative KL divergence loss. We

can more clearly observe the different patterns and

boundaries of activation and deactivation of hid-

den vectors. The negative KL loss appears to reg-

ularize the separation process, and even seems to

help in finding the end-points of the speech.

4.2.4 Comparison with earlier work

We first compared the recognition performance

with a hybrid (non end-to-end) system including

DPCL-based speech separation and a Kaldi-based

ASR system. It was evaluated under the same

evaluation data and metric as in (Isik et al., 2016)

based on the WSJ corpus. However, there are dif-

ferences in the size of training data and the op-

tions in decoding step. Therefore, it is not a fully

matched condition. Results are shown in Table 6.

The word error rate (WER) reported in (Isik et al.,

2016) is 30.8%, which was obtained with jointly

trained DPCL and second-stage speech enhance-

ment networks. The proposed end-to-end ASR

gives an 8.4% relative reduction in WER even

though our model does not require any explicit

frame-level labels such as phonetic alignment, or

clean signal reference, and does not use a phonetic

lexicon for training. Although this is an unfair

comparison, our purely end-to-end system outper-

formed a hybrid system for multi-speaker speech

recognition.

Next, we compared our method with an end-

to-end explicit separation and recognition net-

work (Settle et al., 2018). We retrained our model

previously trained on our WSJ-based corpus using

the training data generated by Settle et al. (2018),

because the direct optimization from scratch on

their data caused poor recognition performance

due to data size. Other experimental conditions

are shared with the earlier work. Interestingly,

our method showed comparable performance to

the end-to-end explicit separation and recognition

network, without having to pre-train using clean

signal training references. It remains to be seen if

this parity of performance holds in other tasks and

conditions.
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Figure 2: Visualization of the two hidden vector sequences at the output of the split-by-BLSTM encoder

on a two-speaker mixture. (a,b): Generated by the model without the negative KL loss. (c,d): Generated

by the model with the negative KL loss.

Table 6: Comparison with conventional ap-

proaches

METHOD WER (%)

DPCL + ASR (ISIK ET AL., 2016) 30.8
Proposed end-to-end ASR 28.2

METHOD CER (%)
END-TO-END DPCL + ASR (CHAR LM)

(SETTLE ET AL., 2018) 13.2
Proposed end-to-end ASR (char LM) 14.0

5 Related work

Several previous works have considered an ex-

plicit two-step procedure (Hershey et al., 2016;

Isik et al., 2016; Yu et al., 2017; Chen et al., 2017,

2018). In contrast with our work which uses a sin-

gle objective function for ASR, they introduced an

objective function to guide the separation of mixed

speech.

Qian et al. (2017) trained a multi-speaker

speech recognizer using permutation-free training

without explicit objective function for separation.

In contrast with our work which uses an end-to-

end architecture, their objective function relies on

a senone posterior probability obtained by align-

ing unmixed speech and text using a model trained

as a recognizer for single-speaker speech. Com-

pared with (Qian et al., 2017), our method di-

rectly maps a speech mixture to multiple character

sequences and eliminates the need for the corre-

sponding isolated speech sources for training.

6 Conclusions

In this paper, we proposed an end-to-end multi-

speaker speech recognizer based on permutation-

free training and a new objective function pro-

moting the separation of hidden vectors in order

to generate multiple hypotheses. In an encoder-

decoder network framework, teacher forcing

at the decoder network under multiple refer-

ences increases computational cost if implemented

naively. We avoided this problem by employing

a joint CTC/attention-based encoder-decoder net-

work.

Experimental results showed that the model is

able to directly convert an input speech mixture

into multiple label sequences under the end-to-end

framework without the need for any explicit inter-

mediate representation including phonetic align-

ment information or pairwise unmixed speech. We

also compared our model with a method based

on explicit separation using deep clustering, and

showed comparable result. Future work includes

data collection and evaluation in a real world

scenario since the data used in our experiments

are simulated mixed speech, which is already ex-

tremely challenging but still leaves some acous-

tic aspects, such as Lombard effects and real room

impulse responses, that need to be alleviated for

further performance improvement. In addition,

further study is required in terms of increasing

the number of speakers that can be simultane-

ously recognized, and further comparison with the

separation-based approach.
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