
 Open access Journal Article DOI:10.1007/S10951-015-0423-3

A purely proactive scheduling procedure for the resource-constrained project
scheduling problem with stochastic activity durations — Source link

Patricio Lamas, Erik Demeulemeester

Institutions: Katholieke Universiteit Leuven

Published on: 01 Aug 2016 - Journal of Scheduling (Springer US)

Topics: Schedule and Robustness (computer science)

Related papers:

 Proactive heuristic procedures for robust project scheduling: An experimental analysis

 Project scheduling under uncertainty: survey and research potentials

 PSPLIB - A project scheduling problem library

 Time slack-based techniques for robust project scheduling subject to resource uncertainty

 Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities

Share this paper:

View more about this paper here: https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-
2qmh0zz25t

https://typeset.io/
https://www.doi.org/10.1007/S10951-015-0423-3
https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-2qmh0zz25t
https://typeset.io/authors/patricio-lamas-2ubj7xi3qr
https://typeset.io/authors/erik-demeulemeester-5g6dmfitug
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/journal-of-scheduling-2yu85ez6
https://typeset.io/topics/schedule-j27sh554
https://typeset.io/topics/robustness-computer-science-gkpqgcat
https://typeset.io/papers/proactive-heuristic-procedures-for-robust-project-scheduling-1n1klh1jv3
https://typeset.io/papers/project-scheduling-under-uncertainty-survey-and-research-2qagvj3bhh
https://typeset.io/papers/psplib-a-project-scheduling-problem-library-2vfs91514y
https://typeset.io/papers/time-slack-based-techniques-for-robust-project-scheduling-4v1de2q6v8
https://typeset.io/papers/proactive-and-reactive-strategies-for-resource-constrained-4wq68qupfw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-2qmh0zz25t
https://twitter.com/intent/tweet?text=A%20purely%20proactive%20scheduling%20procedure%20for%20the%20resource-constrained%20project%20scheduling%20problem%20with%20stochastic%20activity%20durations&url=https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-2qmh0zz25t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-2qmh0zz25t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-2qmh0zz25t
https://typeset.io/papers/a-purely-proactive-scheduling-procedure-for-the-resource-2qmh0zz25t

A purely proactive scheduling procedure for the

resource-constrained project scheduling problem

with stochastic activity durations

Patricio Lamas, Erik Demeulemeester

Research Center for Operations Management

Department of Decision Sciences and Information Management

Faculty of Business and Economics

KU Leuven (Belgium)

February 9, 2015

Abstract

The purpose of this research is to develop a new procedure for gen-

erating a proactive baseline schedule for the resource-constrained project

scheduling problem. The main advantage of this new procedure is that it

is completely independent of the reactive policy applied. This contrasts

with the traditional methods that assume a predefined reactive policy.

First, we define a new robustness measure, then we introduce a branch-

and-cut method for solving a sample average approximation of our origi-

nal problem. In a computational experiment, we show that our procedure

outperforms two other published methods, assuming different robustness

measures.

Keywords: proactive RCPSP, robust RCPSP, chance-constrained program-
ming, SAA.

1 Introduction

In reality projects are subject to high levels of uncertainty. This might lead to
schedule disruptions that make the schedules obtained by solving the traditional
resource-constrained project scheduling problem (RCPSP) completely different
from the actually executed schedules. That fact triggered the incorporation
of uncertainty in the models and methods for solving the RCPSP that were
developed during the last decade.

The RCPSP is a complex problem to solve even when deterministic param-
eters are assumed [8]. Consequently, solving the RCPSP incorporating uncer-
tainty is an extremely challenging problem. Therefore, the published methods
for solving the RCPSP under uncertainty have been based on its division into

1

two easier steps. One step is the generation of an initial proactive robust base-
line schedule, which is protected as much as possible against disruptions. The
second step aims to define a reactive policy, which is deployed every time a dis-
ruption occurs. The drawback of such a division is that it does not consider the
dependency between the two steps, given that all the used robustness measures
depend on both the proactive schedule and the reactive policy.

The contributions of this work are the following: we introduced a new ro-
bustness measure, defined as the probability that the actually executed schedule
is identical to the baseline schedule, which is independent of the reactive policy
applied. We propose a novel formulation for the RCPSP with stochastic du-
rations. We developed a branch-and-cut algorithm to efficiently find a robust
(purely) proactive baseline schedule, considering this new robustness measure.

The baseline schedules built using our method are the most robust solutions
for a sample average approximation model, using this new fair robustness mea-
sure as an indicator. This fact contrasts with the previously published methods,
where the comparison between robustness levels for different schedules is am-
biguous and neither an optimality guarantee nor optimality gaps are provided.

The remainder of this paper is organized as follows. In the next section we
discuss the methods that have been presented in the literature for solving the
RCPSP under uncertainty. Section 3 provides our new problem statement. In
Section 4 we present a method for solving this problem. The numerical results
of our method are presented in Section 5. The last section offers the conclusions
of this work.

2 The RCPSP with stochastic activity durations

The most frequently considered approach in the literature in order to cope with
uncertainty is to assume that the activity durations are stochastic variables with
a known probability distribution. Two alternative methodologies have been
proposed for solving the RCPSP with stochastic activity durations: stochastic
RCPSP (SRCPSP) [23, 24, 35] and proactive/reactive RCPSP [21, 42, 43, 44].
The former deals with uncertainty by viewing the scheduling problem as a mul-
tistage decision process. A scheduling policy is applied dynamically in order to
decide which activities have to be started with the objective of minimizing the
expected makespan.

It has been pointed out [16, 22] that the SRCPSP has the drawback of not
generating a complete baseline schedule before the initiation of a project. The
baseline schedule serves very important functions [4, 32]: allocating resources to
different activities, quoting competitive and reliable due dates, scheduling the
activities in accord with all parties within the inbound and outbound supply
chain, determining time windows for work to be done by subcontractors, shar-
ing production schedules with suppliers on a continuous basis using Internet
technology, making cash flow projections, measuring the performance of both
management and shop floor personnel, and project monitoring and control.

The proactive/reactive RCPSP methodology creates, before the project is

2

started, a proactive (robust) baseline schedule that is protected as much as pos-
sible against the disruptions that may happen. Then, during project execution,
when disruptions that cannot be absorbed by the proactive baseline schedule
occur, a reactive scheduling procedure is deployed.

Both proactive and reactive procedures have the objective of maximizing
some robustness measure. The following measures have been considered:

• Solution stability: This measure refers to the expected difference between
the baseline schedule SB and the actually realized schedule during the
project execution SR (SB and SR are the vectors of activity starting
times for the baseline and realized schedules, respectively). It is assumed
that there is a non-negative cost wi per unit time overrun or underrun on
the start time of each activity i. The lower this measure is, the higher the
robustness of the schedule:

∆
(

SB , SR
)

=
∑

i

wiE
[
∣

∣SR
i − SB

i

∣

∣

]

(1)

• Expected makespan: In this case, the schedule will be considered more
robust when the expected makespan is shorter.

• Timely project completion probability (TPCP): It measures the probabil-
ity that the solution value of the realized schedule stays within a certain
threshold. Larger values of the TPCP indicate that the schedule is more
robust.

The above three robustness measures share the characteristic of depending
on the reactive policy. The most competitive proactive methods cope with this
dependency by dividing the problem into two steps. First, an early start (re-
active) policy is determined assuming deterministic activity durations typically
corresponding to its mean (or median) values. Then, in a second step a proac-
tive method creates a robust schedule considering the reactive policy that is
fixed in the first step. This two-step approach has been successful in (approx-
imately) solving the problem in reasonable computation times. However, the
simplification made in the first step undoubtedly has a negative impact on the
quality of the solution reached.

In [12] an algorithm that integrates the proactive and reactive procedures is
presented. It creates the optimal proactive schedule for a given reactive policy.
Then, a heuristic iteratively modifies such a policy and recalculates the baseline
schedule in order to increase the robustness. Clearly, such a procedure does
not guarantee optimality. However, to the best of our knowledge, it is the only
published method that integrates the proactive and reactive steps.

Based on the above facts, we can conclude the following:

• It is not possible, from a practical point of view, to determine a proactive
schedule and a reactive policy that together are optimal.

3

• The quality of the proactive schedules is determined using robustness mea-
sures that depend on the applied reactive policy. Therefore, the compar-
ison among different proactive schedules is not necessarily fair, e.g. a
proactive schedule S1 can be more robust than a proactive schedule S2

for a given reactive policy Π1, but S2 can be more robust than S1 consid-
ering another policy Π2. In Section A we provide an example that proves
this statement.

We propose a new robustness measure that is completely independent of the
reactive policy that is planned to be applied, allowing us to develop a method
that exclusively focuses on the optimization of the proactive baseline schedule.
We call this new measure confidence level (CL), which is defined as follows:

CL = P
(

SR
i = SB

i , ∀i
)

(2)

CL measures the joint-probability that each activity i starts exactly at its
baseline starting time SB

i . A reactive policy is never applied if each activity is
actually started at its baseline starting time. Therefore CL is independent of
any reactive policy that is planned to be applied during the execution of the
project. It is assuming that a railway execution policy is applied, i.e. each
non-dummy activity will never start earlier than its planned starting time in
the baseline schedule.

There are three alternatives for creating a robust proactive schedule based
on CL. One is to minimize the project makespan subject to a fixed confidence
level. The second option is to maximize CL subject to a given project makespan.
A third choice is to use a linear combination of the project makespan and CL as
the objective to maximize or minimize. The three alternatives generate the same
efficient frontier of solutions, hence they can be considered equivalent. Never-
theless, we choose the first alternative because it can be directly formulated as
a chance-constrained (C-C) programming problem.

In general, C-C programming models aim to minimize or maximize an ob-
jective function subject to probabilistic constraints. This type of model was
introduced in [10]. A description of these models, their solution methods and
applications can be found in [7, 38].

3 Problem statement

The problem statement for the chance-constrained RCPSP (C-C RCPSP) is
based on the definitions of the traditional (deterministic) RCPSP. Thus, first we
present such definitions and a new mathematical formulation for that problem,
which is an extension of the formulation introduced in [5]. Then, we present the
problem statement for the C-C RCPSP and its corresponding formulation.

3.1 The deterministic RCPSP

An instance of the deterministic RCPSP is defined by the following elements: a
set of activities V = {0, . . . , n+ 1}, where 0 and n+ 1 are dummy activities that

4

represent the start and the end of the schedule respectively, a vector d ∈ N
n+2

of activity durations, with di the duration of activity i and d0 = dn+1 = 0, a
set E ⊆ V 2 of precedence relations, where (i, j) ∈ E indicates that activity j
can start after the completion of activity i, a set of renewable resources K =
{1, . . . , k}, a vector of resource availabilities B ∈ N

k with Bk the availability of
resource type k and a resource consumption matrix b of dimension (n+ 2)×|K|
such that bik ∈ N represents the amount of resource type k used per time period
during the execution of activity i.

The (deterministic) RCPSP is the problem of finding a non-preemptive
schedule of minimal makespan subject to the precedence and the resource con-
straints.

Defining the schedule by S ∈ N
n+2, where Si represents the starting time of

activity i, the RCPSP can be conceptually formulated as follows:

min Sn+1 (3)

subject to

Sj − Si ≥ di ∀(i, j) ∈ E (4)
∑

i∈Γt

bik ≤ Bk ∀k ∈ K, t = 0, . . . , T (5)

with S0 = 0 and Γt denotes the set of activities that are in progress at time
t and T is an upper bound on the project makespan.

It has been proven that the RCPSP is NP-hard in the strong sense by re-
duction from the 3-PARTITION problem [8].

The following definitions, lemma and propositions have been presented and
proven in the project scheduling literature. The interested reader is referred to
[6, 28, 29].

A forbidden set (introduced in [23, 24]) is a set F of activities (without prece-
dence relations between them) that cannot be in progress simultaneously be-
cause of resource limitations due to some resource type k, such that

∑

i∈F bik >
Bk. A minimal forbidden set is a forbidden set such that each of its proper
subsets is not a forbidden set. Let Φ be the set of all minimal forbidden sets.

Let E′ ⊆ V 2 \ E be a relation over V 2. We consider the following require-
ments for E′:

• C1: E ∪ E′ is a strict partial order, i.e., E ∪ E′ is a transitive and asym-
metric relation containing E.

• C2: for each minimal forbidden set F ∈ Φ, F 2 ∩ (E ∪E′) 6= ∅, that is, for
every F ∈ Φ there exist i 6= j ∈ F such that (i, j) ∈ E ∪ E′.

Lemma 1. A schedule S will be a feasible solution for the RCPSP if and only
if S is feasible for the set of relations E ∪ E′, and conditions C1 and C2 hold
for E′.

5

In general, an RCPSP instance can be represented in an activity on node
(AoN) graph. In this (directed) graph G (V,E ∪ E′), each activity i ∈ V has a
corresponding node i. Each edge (i, j) represents a direct (i.e. non-transitive)
relation (i, j) ∈ E∪E′. For each edge (i, j) in G (V,E ∪ E′) a cost ci,j is defined
as ci,j = di.

Let a selection of edges E′ ⊆ V 2 be a set of edges that defines a set of
relations E ∪E′, such that C1 holds for E′. Furthermore, a feasible selection of
edges E′ ⊆ V 2 is a selection of edges that defines a set of precedence relations
such that C1 holds for E ∪ E′. Let li (E

′) be the distance of a longest path
between node 0 (dummy start activity) and node i ∈ V \ {0} in G (V,E ∪ E′).

Proposition 1. A schedule S defined as S0 = 0 and Si = li (E
′) , ∀i ∈ V \ {0},

with E′ a feasible selection of edges, is a feasible solution for the RCPSP.

A consequence of Proposition 1 is that the RCPSP can be equivalently stated
as follows: The RCPSP is the problem of finding a feasible selection of edges E∗

such that the distance of a longest path between dummy activities 0 and n+ 1
in the graph G (V,E ∪ E∗) is of minimum length.

3.1.1 Integer programming formulation for the RCPSP

Following [1], we present a mathematical programming formulation for the
RCPSP based on the above problem statement. Binary variable xij is equal
to 1 if edge (i, j) is selected and 0 otherwise. Positive integer variable Si repre-
sents the starting time of activity i ∈ V .

min Sn+1 (6)

subject to

xij = 1 ∀(i, j) ∈ E (7)

xij + xji ≤ 1 ∀(i, j) ∈ V 2, i 6= j (8)
∑

(i,j)∈F 2,i 6=j

xij ≥ 1 ∀F ∈ Φ (9)

Sj − Si ≥M (xij − 1) + di ∀(i, j) ∈ V 2, i 6= j (10)

xij ∈ {0, 1} ∀(i, j) ∈ V 2, i 6= j (11)

Si ∈ Z
+ ∀i ∈ V (12)

Objective function (6) represents the starting time of dummy activity n+ 1
which is equivalent to the project makespan. The set of constraints (7) states
that for each original precedence relation in E there is a selected edge in the
graph. Constraints (8) ensure that the asymmetry condition in C1 holds. Con-
straints (9) are sufficient (non-necessary) to ensure that C2 holds. Constraints
(10) relate the starting and finishing times of each two activities connected by
an edge (with M any upper bound on the project makespan). Constraints (10)
also imply that asymmetry condition in C1 holds. Constraints (11) and (12)

6

are the integrality constraints. Given the assumption that the vector of activity
durations d is integer, the integrality constraints (12) can be relaxed.

The above formulation is slightly different from the one introduced in [1]. In
the latter, the edges represent either direct or transitive precedence relations,
whereas in the formulation (6)-(12) the edges represent only direct precedence
relations between two activities, even when there is a transitive precedence
relation between such activities. An advantage of our formulation is that it does
not require the transitive constraints xij+xjk ≤ xik+1 ∀(i, j, k) ∈ V 3, i 6= j 6= k.
The total number of these constraints is in the order of |V |3. Therefore, as soon
as the number of activities increases up to realistic sizes, the negative impact
on the linear programming (LP) solver performance becomes relevant.

An argument in favor of the introduction of the transitive constraints is that
they make the formulation stronger, and thus the extra time spent in solving a
larger LP problem is compensated by a stronger lower bound. This argument is
not necessarily true, specially in the case of difficult instances where the minimal
forbidden sets F have a large cardinality. Thus, by constraints (9) the linear
relaxation solutions x∗

ij generally take values around 1/|F |, resulting in the fact
that the transitive constraints are then not violated.

3.1.2 Other formulations for the RCPSP in the literature

The mathematical programming models for the RCPSP can be divided into
three broad categories: sequence-based, time-indexed and event-based formula-
tions [3, 27]. In the sequence-based models, both the sequence of the activities
and the starting time of each activity must be determined. In the case of
time-indexed formulations, the starting time of each activity is the only type
of decision to be made. Finally, in the event-based formulations, an event is
defined as the point in time where an activity either starts or ends. Thus, in
these type of models the decisions variables correspond to the definitions of the
events that each activity starts at.

Formulation (6)-(12) is a sequence-based model. The variables xij are related
to the sequencing decisions and the variables Si are the starting times of each
activity. In the literature only two others sequence-based models can be found
in [1] and [2], which are based on the disjunctive graph representation for the
job-shop scheduling problem presented in [5].

In the case of the time-indexed formulations, the first mathematical program-
ming model was presented in [39]. Based on that paper, a stronger formulation
is introduced in [11]. Three other formulations of this type can be found in
[25, 33]. Lagrangean relaxation methods based on this type of formulations are
introduced in [17, 34]. A cutting planes algorithm that uses a time-indexed
formulation is presented in [19].

In [27] three different event-indexed models are proposed. Additionally, [27]
is the only published paper that presents an exhaustive computational compar-
ison among the different mathematical programming formulations available in
the literature. More specifically, in their comparison they consider one sequence-
based, two time-indexed and three event-based formulations. Their conclusions

7

are the following: The time-indexed formulations perform the best when the
instances have low activity duration ranges. However, in the case of instances
with high activity duration ranges, the event-based formulations perform the
best and the time-indexed formulations the worst. The sequence-based model
consistently performs in between time-indexed and event-based formulations for
both type of instances.

An advantage of the sequence-based models is that the formulation of the
resource constraints is time-independent [41]. This characteristic makes this
type of formulations relatively easy to extend when uncertainty in the activity
durations is considered. Unfortunately, in the literature the portion of exact
solution methods for the RCPSP that make use of formulations based on the
minimal forbidden sets is virtually negligible. This lack of attractiveness is
possibly explained by the fact that the total number of minimal forbidden sets
is exponential in the number of activities, thus the complete enumeration of all
the resource constraints is impractical. We will introduce a delayed constraint
generation method that allows us to avoid the initial complete enumeration of
all the minimal forbidden sets, making our sequence-based formulation suitable
from a practical point of view.

3.2 The chance-constrained RCPSP

The C-C RCPSP under stochastic activity durations is the problem of finding
a non-preemptive schedule of minimal makespan such that the precedence and
the resource constraints hold with a predefined confidence level. This problem
is clearly NP-hard since it is a generalization of the deterministic RCPSP.

Let (1− α) denote the confidence level defined by the decision maker (typi-
cally, 1− α = 0.99 or 0.95). The set of constraints (10) is then replaced by the
following constraint:

P
(

Sj − Si ≥M (xij − 1) + di ∀(i, j) ∈ V 2, i 6= j
)

≥ 1− α (13)

Constraint (13) states that the probability that all the precedence relations
hold is larger than or equal to the confidence level 1−α. Thus, the C-C RCPSP
is formulated as: minimize (6) subject to: (7)-(9), (11)-(13).

This formulation is a simple modification of its deterministic counterpart,
which is a consequence of the sequence-based models. However, its solution
complexity is amplified due to the addition of randomness.

To the best of our knowledge, [9] is the only previous publication presenting
a model that combines C-C programming and the RCPSP. The formulation
introduced in that paper differs from ours, since the former is based on an
initially fixed priority list policy. A numerical comparison of both formulations
is presented in Section 5.

8

4 Solution method

There are three main difficulties that make the C-C RCPSP model impractical
to solve by directly using the mixed integer programming methods:

• D1: the feasible region defined by the probabilistic constraint is not convex
[31].

• D2: the probabilistic constraint is hard to compute. Just checking feasi-
bility is already difficult [31].

• D3: the number of minimal forbidden sets is exponential in the number
of activities.

Difficulties D1 and D2 are tackled by a sample average approximation. D3
is approached by a branch-and-cut algorithm.

4.1 Sample average approximation

In the sample average approximation (SAA) method presented in [30], the orig-
inal distribution of the random parameters, in this case the activity durations
d ∈ N

n+2, is replaced with an empirical distribution obtained from a random
sample. Under some conditions, a feasible solution of the SAA problem will be
feasible in the original C-C programming problem with a high probability. The
only assumption made on the distribution of the random parameters is that it
can be sampled from.

4.1.1 Sample size

A larger sample size implies a better approximation, however a larger sample
size also implies a more difficult to solve SAA problem. Thus, the determination
of the sample size should strike a balance between approximation quality and
SAA problem difficulty. One of the results presented in [30] is the determination
of a lower bound for the random sample size, such that the solution of the SAA
problem is feasible for the original C-C programming problem.

LetW be the random sample of vector d (d0 = dn+1 = 0 for each realization).
Let (1− ǫ) be a confidence level for the SAA problem, such that ǫ < α, let
(1− θ) be the probability that a feasible solution for the SAA problem will
yield a feasible solution of the original C-C programming problem and let U be
an upper bound on the random activity durations (di ≤ U, ∀i ∈ V).

The sample size |W | can be determined using the following expression:

|W | ≥
1

2 (α− ǫ)
2 log

(

1

θ

)

+
|V |

2 (α− ǫ)
2 log (U) (14)

In [30], it has been shown that the above lower bound is too conservative.
Those authors suggest to solve the SAA problem with a smaller sample size and

9

then to use the obtained solution and a larger sample size to estimate the real
confidence level reached.

Applying the above method to the RCPSP, in a first step the SAA for the
C-C RCPSP is solved with ǫ < α and a sample size |W1|, giving a solution S.
Then, using a second sample W2 (with |W2| ≫ |W1|) and the solution S, the
estimated confidence level reached 1 − α̂ can be calculated as the number of
realizations belonging to W2 for which solution S is feasible, divided by |W2|.

4.1.2 Sample average approximation formulation

Formally, a sample W is a set of realizations of the random activity durations
vector, such that W =

{

d1, . . . , d|W |
}

. Let a scenario w ∈ {1, . . . , |W |} be a
realization dw ∈W . In order to simplify the notation, we will refer to both the
sample as well as its set of scenarios as W .

The basic idea of the reformulation introduced in [40] is to solve a problem
such that it is infeasible for at most ⌊|W | · ǫ⌋ realizations, thus the solution will
be feasible with a confidence level (for the SAA problem) of at least (1− ǫ).
Based on that idea, we reformulate C-C RCPSP as follows:

Let yw be a binary variable that takes the value 1 if the obtained solution is
not necessarily feasible for scenario w and 0 otherwise.

Probabilistic constraint (13) can then be replaced by the following con-
straints:

Sj − Si ≥M (xij − 1) + (1− yw) d
w
i ∀(i, j) ∈ V 2, i 6= j, w ∈W (15)

∑

w∈W

yw ≤ ⌊|W | · ǫ⌋ (16)

yw ∈ {0, 1} ∀w ∈W (17)

Constraints (15) state that each precedence relation holds if yw = 0. Con-
straint (16) imposes that the maximum number of scenarios for which the solu-
tion is not necessarily feasible is ⌊|W | · ǫ⌋. Thus, the SAA formulation for the
original C-C RCPSP (SAA RCPSP) is: minimize (6) subject to: (7)-(9), (11),
(12), (15)-(17).

The lower bound obtained by solving the LP relaxation of the SAA refor-
mulation is weak in general. In [31] a set of strong valid inequalities for general
C-C programming problems are presented. The following formulation considers
such inequalities.

Let δi ∈ N
|W | be a vector that contains the durations of activity i ∈ V

for each scenario w ∈ W sorted in non-increasing order. δli is the duration of
activity i in position l ∈ {1, . . . , |W |}. Additionally, let σl

i be the scenario of
position l for activity i. Finally, let zli be a binary variable that takes the value 1
if the solution is not necessarily feasible for the duration of activity i at position
l in its respective sorted vector, and 0 otherwise.

Thus, we can replace (15) by:

10

Sj − Si −M (xij − 1) ≥ δ1i −

⌊|W |·ǫ⌋
∑

l=1

(

δli − δl+1
i

)

zli ∀(i, j) ∈ V × V, i 6= j (18)

and add:

zli − zl+1
i ≥ 0 ∀i ∈ V, l ∈ {1, . . . , ⌊|W | · ǫ⌋} (19)

z
⌊|W |·ǫ⌋+1
i = 0 ∀i ∈ V (20)

yσl

i

− zli ≥ 0 ∀i ∈ V, l ∈ {1, . . . , ⌊|W | · ǫ⌋} (21)

zli ∈ {0, 1} ∀i ∈ V, l ∈ {1, . . . , ⌊|W | · ǫ⌋+ 1} (22)

Constraints (18) and (19) together state that Sj − Si −M (xij − 1) must
be larger than or equal to δli if zli = 0. Constraints (20) state that Sj − Si −

M (xij − 1) must be at least larger than or equal to δ
⌊|W |·ǫ⌋+1
i . Constraints (21)

ensure that if a scenario is infeasible for the duration of activity i at position
l, then this scenario is infeasible overall. Constraints (22) are the integrality
constraints. Thus, the strong formulation for the SAA of the C-C RCPSP
(Strong SAA RCPSP) is: minimize (6) subject to: (7)-(9),(11),(12), (16)-(22).

4.2 Branch-and-cut

A Branch-and-Cut (B&C) algorithm allows the introduction of valid inequalities
as cutting planes (cuts) in the nodes of the Branch-and-Bound (B&B) tree.
Typically, these cuts are introduced in order to make the LP-relaxation-based
bound stronger. It normally implies a smaller B&B tree (less memory usage) and
faster convergence to the optimum. Examples of applications of this approach
are the cover inequalities for the knapsack problem and the comb inequalities
for the traveling salesman problem (TSP) [36].

A delayed constraint generation method adds some of the constraints that
define the feasible set of solutions only when they are violated. Basically, it
initially solves a relaxed problem, which is obtained by leaving out a set of
constraints. Then, using the initial solution, it is checked whether there are vio-
lated constraints or not. If there are no violated constraints, the solution found
is optimal. If there are violated constraints, those are added to the problem and
it is solved again. This last step is repeated until no violated constraints are
found. For integer programming problems, the method can be applied in the
nodes of the B&B tree. In that case, the violated constraints can be added as
cuts, and therefore we obtain a B&C algorithm. A well-known example of this
approach is the relaxation of the subtour elimination constraints in the TSP
and the subsequent dynamic introduction of them as cuts [37].

We designed a B&C algorithm, which is based on a delayed constraint gen-
eration method, for solving Strong SAA RCPSP. Since the number of forbidden
sets is exponential in the number of activities, the initial introduction of the

11

complete set of constraints (9) is not practical. Thus, the forbidden set related
constraints are inserted as cuts when they are violated. Another positive feature
of this approach is that it avoids initially solving the problem of determining all
minimal forbidden sets.

4.2.1 Delayed constraint generation

The problem that is initially considered in the root node is a relaxation of
Strong SAA RCPSP. We left out all the constraints that are related to minimal
forbidden sets of cardinality ≥ κ in (9) (with κ any integer value larger than or
equal to 2) and integrality constraints (11) (the same type relaxation is applied
in [13]).

Then, the problem is to check in each (or some selected) node of the B&C tree
whether the solution is feasible or not with respect to the resource constraints, or
equivalently to check if the constraints (5) hold. If not, it provides one (or more)
set(s) of activities Γt′ , t

′ ∈ {0, . . . , T} that violates the resource constraints for
at least one resource (note that Γt′ is a forbidden set). In order to separate a
non-feasible schedule (with respect to the resource constraints) from the feasible
set of solutions, we add the following cut for each Γt′ :

∑

(i,j)∈Γ2

t′
,i 6=j

xij ≥ 1 (23)

Note that cuts (23) are equivalent to constraints (9).
Let (S∗, x∗, y∗, z∗) be the optimal solution of the relaxed problem in a node

of the B&C tree.
Separation problem for the resource constraints (SP): Do the resource con-

straints hold for (S∗, x∗, y∗, z∗)? If yes, the solution found is feasible (not nec-
essarily feasible for the integrality constraints). If no, it provides all the cuts of
type (23).

An algorithm for solving SP (see Algorithm 1) is presented. First, some
definitions and proofs are needed for its presentation: A selection of scenarios
W ′ ⊆ W is a set of scenarios for which a solution (S, x) is feasible. Moreover,
a feasible selection of scenarios W ′ is a selection of scenarios such that |W ′| ≥
|W | · (1− ǫ). W ′

η = {w | y∗w = 0, ∀w ∈W} denotes a selection of scenarios in a
node η of the B&C tree for which the solution found is feasible.

Proposition 2. A selection of scenarios W ′
η in a node η of the B&C tree, such

that y∗ is integer for η, is a feasible selection of scenarios.

Proof. Given that y∗w ∈ {0, 1} , ∀w ∈W in node η, the cardinality of W ′
η can be

calculated as
∣

∣W ′
η

∣

∣ =
∑

w∈W (1− y∗w) = |W | −
∑

w∈W y∗w. But, constraint (16)
holds for the solution in node η, then

∑

w∈W y∗w ≤ ⌊|W | · ǫ⌋ ≤ |W | · ǫ. Thus,
∣

∣W ′
η

∣

∣ ≥ |W | − |W | · ǫ. Therefore, W ′
η is a feasible selection of scenarios.

Let d′ (W ′) be the vector of maximum activity durations for a given selection
W ′, such that d′i (W

′) = max (dwi , ∀w ∈W ′) , ∀i ∈ V .

12

Proposition 3. Given a feasible selection of scenarios W ′, SAA RCPSP re-
duces to the deterministic RCPSP with activity durations equal to d′ (W ′).

Proof. Considering SAA RCPSP, constraints (16) and (17) always hold by def-
inition of feasible selection of scenarios. Set of constraints (15) always holds
for w /∈ W ′. For w ∈ W ′ constraints (15) become: Sj − Si ≥ M (xij − 1) +
diw, ∀ (i, j) ∈ V 2, i 6= j, w ∈W ′, then Sj − Si ≥M (xij − 1) + d′ (W ′) , ∀ (i, j) ∈
V 2, i 6= j. The rest of the constraints and the objective function define the
formulation of the deterministic RCPSP.

Corollary 1. SAA RCPSP with ǫ = 0 reduces to the deterministic RCPSP
with activity durations di = max (dwi , ∀w ∈W) , ∀i ∈ V .

A consequence of Proposition 4 is that any algorithm made for the deter-
ministic RCPSP can be applied in each node η of the B&C tree, such that y∗

is integer for η.
Given an optimal solution in a node for the relaxed problem (S∗, d′ (W ′

n)),
Algorithm 1 determines whether there exists a violated forbidden set or not in
O(|V |2|K|) time. It is based on the observation that the changes in the resource
consumption occur only at the starting times or finishing times of the activities.
These times define intervals in which the resource consumption is checked for
each resource type. In case it is larger than the resource availability for at least
one resource type, the algorithm returns no and also the sets of activities that
violates the resources constraints. A similar algorithm is presented in [2], which
is more restrictive since it assumes that the solutions are left-shifted schedules,
thus the changes occur only at the finishing times of the activities.

In order to make the linear relaxation stronger, we could insert a cut for
each minimal forbidden set belonging to each forbidden set F = Γt′ , which
is equivalent to find all the minimal covers for a set of knapsack constraints.
Even if we have an algorithm that could enumerate all minimal covers in a
computation time bounded by a polynomial in |ΦF | and |F |, with ΦF the set
of all minimal covers in F . Nevertheless, |ΦF | is exponential in |F |.

An alternative might be trying to find the most violated (not necessarily
minimal) forbidden set constraint for each set F . However, such a problem is
NP-hard. In order to prove the last statement, we formulate the problem as
follows:

Let G (F,EF) be a complete undirected graph, with |EF | =
(

|F |
2

)

. In this
graph, both sets F and EF are weighted. Each node i ∈ F has a set of weights
equal to the resource consumption rik of activity i ∈ F for each resource type
k ∈ K. Each edge f = (i, j) ∈ EF has a weight γf = x∗

ij+x∗
ji. The optimization

problem OP1 is the problem of finding a clique C ⊆ F of minimum edge weight
∑

c∈EC
γc, such that for at least one resource type k,

∑

i∈C rik ≥ Bk + 1.

Lemma 2. Problem OP1 is NP-hard.

Proof. First, let us define the associated decision problem for the above opti-
mization problem. DP1: Given a complete undirected graph G (F,EF), a set of
edge weights γf , ∀f ∈ EF , a set of node weights rik for each i ∈ F and k ∈ K,

13

Algorithm 1

Input: (S∗, x∗, d′ (W ′
n)) Output: yes or no , forbidden sets

1: Π= vector of finishing times, Π← ⌊S∗⌋+ d′ (W ′
n)

2: Ψ= vector of events, Ψ←MergeV ectors(⌊S∗⌋ ,Π)
3: sort Ψ in non-decreasing order and eliminate duplicates
4: F= set of activities in progress in time interval [e, e+ 1] ∀e ∈
{0, . . . , |Ψ| − 1}

5: feasible= variable that contains the answer for feasibility check, feasible←
yes

6: infsets= vector that contains the violated forbidden sets, infsets← ∅
7: for e = 0→ |Ψ| − 1 do

8: F = ∅
9: for k = 1→ |K| do

10: reqk = 0
11: end for

12: for i = 1→ |V | do
13: if ⌊S[i]⌋ ≤ Ψ[e] and Π[i] ≥ Ψ[e+ 1] then
14: add activity i to set F
15: for k = 1→ |K| do
16: reqk = reqk + bik
17: end for

18: end if

19: end for

20: for k = 1→ |K| do
21: if reqk > Bk then

22: feasible← no
23: add F to infsets
24: end if

25: end for

26: end for

27: return feasible,infsets

14

a vector of positive integers Bk and a constant J . Is there any clique C ⊆ F
such that

∑

i∈C rik ≥ Bk + 1 for at least one k and
∑

c∈EC
γc ≤ J?

Proposition 4. The CLIQUE problem is a special case of DP1.

Proof. We restrict DP1 to the CLIQUE problem by allowing only instances in
which γf = 0 if edge f exists and γf > 0 otherwise. |K| = 1, rik = ri = 1, ∀i ∈
F , Bk = B ≤ |F | − 1 and J = 0. Thus, the decision problem is: is there a
Clique of cardinality ≥ B+1?, which corresponds to the CLIQUE problem.

By Proposition 5 and given that the CLIQUE problem is NP-complete [18]
DP1 is NP-complete. Therefore OP1 is NP-hard.

Given the fact that the separation problem must be solved many times dur-
ing the B&C algorithm, simpler constraint generation methods seem to be rea-
sonable. One option is to simply add the constraints related to the forbidden
sets found with Algorithm 1. Thus, for each forbidden set F the constraint
∑

(i,j)∈F 2,i 6=j xij ≥ 1 is added if
∑

(i,j)∈F 2,i 6=j x
∗
ij < 1 (last condition must be

checked when the variables xij are not all integer). We will refer to this con-
straint generation method as CG1. A second option is to approximately solve
OP1 for each forbidden set F found after running Algorithm 1. We propose
a greedy heuristic (see Algorithm 2) for reaching that goal. Basically, in each
step a new node is added such that the increase in the total edge weight is
minimal. This step is repeated until the resource availability constraints are vi-
olated for at least one resource type. After running Algorithm 2, the constraint
∑

(i,j)∈C2,i 6=j xij ≥ 1 is added, if
∑

(i,j)∈C2,i 6=j x
∗
ij < 1 for each forbidden set C.

We call this constraint generation method CG2.
The running time of CG1 will be smaller than the one of CG2 since the latter

runs both Algorithm 1 and Algorithm 2 while CG1 only runs Algorithm 1. How-
ever, given that C ⊆ F , the cuts generated by CG2 normally will be stronger.

Algorithm 2 Heuristic 1

Input: (F,B, r, γ) Output: Clique set C

1: initialize C = ∅
2: sort vector γ in non-decreasing order
3: add to C the pair of activities e = (i, j) such that γe is minimum
4: while

∑

i∈C rik ≤ Bk, ∀k ∈ K do

5: for all activity a ∈ F \ C do

6: A = set of edges of the subgraph composed by nodes C ∪ {a}
7: wa =

∑

α∈A γα
8: end for

9: select activity a ∈ F \ C with the smallest wa

10: add activity a to C
11: extract activity a from F
12: end while

13: return C

15

Example

In order to show how the cutting planes algorithm works, let us consider a small
instance of the RCPSP. It is composed of 8 non-dummy activities and 1 resource
type with availability equal to 8. For ease of exposition, let us consider that
a feasible selection of scenarios W ′ is given and fixed. This assumption does
not affect how the delayed constraint generation method essentially works. The
durations d′(W ′) and resource consumptions for each activity, as well as the
precedence relations are shown in Figure 1.

Figure 1: AoN graph representation of the RCPSP instance

The number above each node represents the resource consumption of the
respective activity. The number next to each edge represents the duration of
the activity corresponding to its tail node. Each edge represents a precedence
relation.

Initially, we solve a relaxation of the problem that considers only forbidden
sets of cardinality = 2. Algorithm 1 will be applied after an optimal integer
solution is found for the relaxed problem. This is not a requirement of our
method, but it helps us to graphically explain the procedure. Figure 2 shows
the solution found initially.

Figure 2: Initial solution

After the solution is found, we have to apply Algorithm 1 in order to test
whether this solution is feasible (and optimal) or not. In Figure 3 the vertical
lines represent the limits of each of the intervals defined by Algorithm 1.

16

Figure 3: Application of Algorithm 1 to the initial solution

For the first interval, we can see that activities 1, 2 and 4 are in progress. Its
total resource consumption is equal to 9, which is over the resource availability
of 8, thus {1, 2, 4} defines a violated forbidden set. Analogously for the second
and third intervals, {2, 3, 4} and {2, 3, 6} are violated forbidden sets. The rest
of the intervals have a total resource consumption that is smaller than or equal
to the resource availability.

The algorithm proceeds adding a cut for each of the violated forbidden sets.
The goal is that the activities belonging to a violated forbidden set are not all
simultaneously in progress. Thus, the following three cuts are added:

x12 + x14 + x21 + x24 + x41 + x42 ≥ 1

x23 + x24 + x32 + x34 + x42 + x43 ≥ 1

x23 + x26 + x32 + x36 + x62 + x63 ≥ 1

Then, the relaxed problem must be resolved including the newly added cuts.
The new solution obtained and the intervals defined after the application of
Algorithm 1 are shown in Figure 4.

Figure 4: Application of Algorithm 1 to the second solution

The fourth and sixth intervals have a total resource consumption that ex-
ceeds the availability of 8, thus {2, 4, 5} and {5, 6, 8} define violated forbidden
sets. Then, the respective cuts are added:

x24 + x25 + x42 + x45 + x52 + x54 ≥ 1

17

x56 + x58 + x65 + x68 + x85 + x86 ≥ 1

Next, the problem is resolved again, including the newly added cuts. The ob-
tained solution is shown in Figure 5. It is clear that the resource consumption
in each time interval is smaller than or equal to the resource availability, thus
the cutting planes algorithm stops giving the optimal solution.

Figure 5: Optimal solution found

4.2.2 Feasible solution

The determination of an initial feasible solution has two main advantages. First,
it normally improves the performance of the B&C algorithm as a consequence
of a stronger initial upper bound on the objective function. Second, it provides
an alternative solution in case the B&C algorithm is unable to find a solution
in a reasonable amount of time.

We introduce an algorithm for determining a feasible solution. It is based
on the two following observations:

• Given a feasible selection of scenarios W ′, the SAA RCPSP reduces to the
deterministic RCPSP (by Proposition 4).

• Given a feasible selection of edges E′, the C-C RCPSP (and equivalently
the SAA RCPSP) reduces to the chance-constrained longest path problem
(C-C LPP) (by Proposition 2).

Algorithm 3 sequentially uses these two observations. First, a feasible se-
lection of scenarios is created randomly. Then, the deterministic RCPSP is
solved and its solution used as an input for determining a feasible selection of
edges. Finally, the SAA for the C-C LPP (SAA LLP) is solved, giving a feasible
solution for the SAA RCPSP.

In [3], a polynomial time algorithm is presented for determining a feasible
resource flow network given a feasible solution S as input. Each edge with a
positive resource flow and not included in the original set of edges E will be in
E′. We will refer to that algorithm as FeasEdgeAlg(S).

The solution obtained after solving the RCPSP (S1 in Algorithm 3) with a
random feasible selection of scenarios is already a feasible solution for the SAA
RCPSP, however its objective value (S1

n+1) can be arbitrarily bad. It normally
will be improved by solving the SAA LPP (lines 3 and 4 of Algorithm 3).

18

Algorithm 3

1: create a random initial feasible selection of scenarios W ′

2: S1=solve RCPSP(d′ (W ′))
3: determine a feasible selection of edges E′ using FeasEdgeAlg(S1)
4: S2=solve SAA LPP(G (N,E ∪ E′))
5: return S2

Although both the deterministic RCPSP and SAA LPP are NP-hard, practi-
cally both problems can be solved more efficiently than the Strong SAA RCPSP
(see [31] for an NP-hardness proof of general SAA linear programming prob-
lems). For the deterministic RCPSP, efficient exact algorithms have been devel-
oped for solving the problem [14, 15, 20]. For the SAA LPP, it could be solved
efficiently, given that the deterministic LPP is easy to solve for a directed acyclic
graph.

4.2.3 Lower bound

A lower bound for the project makespan (Sn+1) can be used to check the quality
of the solution obtained. Unlike the feasible solution, this bound is merely an
informational tool that will not improve the performance of the B&C algorithm.
It is an alternative lower bound that can provide good information in the case
that the B&C algorithm stops prematurely (or even is not executed).

Let d ∈ N
n+2 be a lower bound of the activity durations vector defined

as follows. d0 = dn+1 = 0 and di = δ
⌊|W |·ǫ⌋+1
i , ∀i ∈ V \ {0, n+ 1}. Where

δ
⌊|W |·ǫ⌋+1
i is the duration of activity i in position ⌊|W | · ǫ⌋+ 1 in its respective
(non-increasing) sorted vector.

Proposition 5. The optimal value of the deterministic RCPSP with activity
durations equal to d is a lower bound for the SAA RCPSP.

Proof. Relaxing the set of constraints (21) in the strong SAA RCPSP, the prob-
lem reduces to the deterministic RCPSP with activity durations equal to d.

Example

The purpose of this example is to illustrate the procedures for obtaining a
feasible solution and a lower bound. Let us consider the same instance as the
previous example, but in this case we will assume that the activity durations
(for non-dummy activities) have a discrete uniform probabilistic distribution
with limits (⌊0.5di⌋ , ⌈1.5di⌉).

Table 1 shows the values of the activity durations for each realization of a
sample W , with |W | = 10.

19

Act W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

0 0 0 0 0 0 0 0 0 0 0
1 3 3 3 2 2 3 3 1 1 3
2 10 5 9 6 8 6 7 11 11 6
3 2 3 4 3 3 2 5 4 5 1
4 4 3 6 6 6 5 4 2 4 4
5 7 7 5 9 12 6 6 5 9 9
6 7 9 4 6 5 4 9 7 9 8
7 3 4 4 2 4 5 6 4 6 2
8 1 1 3 3 2 3 2 2 2 2
9 0 0 0 0 0 0 0 0 0 0

Table 1: Activity durations for each scenario

Considering an SAA confidence level (1− ǫ) = 0.6, we have to find a feasible
selection of scenarios W ′ with cardinality equal to 6. Applying Algorithm 3, we
first randomly select W ′ = W \ {2, 4, 6, 8}. Then, we have to solve the deter-
ministic RCPSP considering deterministic activity durations equal to d′ (W ′) =
(0, 3, 11, 5, 6, 12, 9, 6, 3, 0). The schedule obtained is S1 = (0, 0, 3, 6, 0, 11, 11, 14, 20, 23).

The next step is to find a feasible selection of edges E′ using FeasEdgeAlg(S1).
The resulting set E′ corresponds to the edges in dashed lines in Figure 6.

Figure 6: Feasible selection of edges E’

Then, we solve the SAA LPP considering G (V,E ∪ E′) and the sample W .
The new feasible selection of scenarios is W ′2 = W \ {3, 7, 8, 9} and the final
feasible schedule is S2 = (0, 0, 3, 6, 0, 9, 9, 13, 18, 21), which is two periods shorter
than the first schedule S1. Its corresponding diagram considering the activity
durations d′

(

W ′2
)

= (0, 3, 10, 3, 6, 12, 9, 5, 3, 0) is shown in Figure 7.

20

Figure 7: Final feasible schedule S2

In order to obtain a lower bound for this instance, first we have to sort in
non-increasing order the activity durations for each non-dummy activity i, and
then determine di. Each element of di corresponds to the element in position
⌊|W | · ǫ⌋+ 1 = 4 + 1 = 5 in the sorted vector. Those values are shown in Table
2.

Act 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
1 3 3 3 3 3 3 2 2 1 1
2 11 11 10 9 8 7 6 6 6 5
3 5 5 4 4 3 3 3 2 2 1
4 6 6 6 5 4 4 4 4 3 2
5 12 9 9 9 7 7 6 6 5 5
6 9 9 9 8 7 7 6 5 4 4
7 6 6 5 4 4 4 4 3 2 2
8 3 3 3 2 2 2 2 2 1 1
9 0 0 0 0 0 0 0 0 0 0

Table 2: Sorted activity durations

Following Proposition 6, the optimal value of the deterministic RCPSP with
activity durations equal to d = (0, 3, 8, 3, 4, 7, 7, 4, 2, 0) is a lower bound for this
instance. In this case, it corresponds to 17.

Finally, we can determine the relative optimality gap as: 21−17
17 = 0.235.

5 Computational results

All the algorithms that have been presented in the previous sections were com-
putationally implemented and tested. We developed such tests in order to reach
four goals. First, to compare our two different constraint generation methods
CG1 and CG2. Second, to analyze the impact of the sample size in the perfor-
mance of our algorithms. Third, to check the performance of the B&C algorithm
for different levels of variability on the activity durations. Fourth, to compare
our C-C RCPSP approach with two alternative algorithms published in the liter-
ature. Supplementary, we include a performance comparison between our B&C
algorithm and other mathematical programming based methods for solving the
deterministic RCPSP.

21

The tests were made on 480 instances composed of 30 non-dummy activi-
ties and 4 types of resources belonging to the PSPLIB library [26]. Since those
instances were created for the deterministic RCPSP, we modified them in the
following way: the activity durations di for each non-dummy activity i follow a
transformation of the beta distribution with shape parameters 2 and 5, and an
expected value equal to the duration d̃i in the original RCPSP instances. The
beta distribution is defined over the (continuous) interval [0, 1], thus we first ap-
ply a linear transformation to the generated random variables (with beta(2,5)
distribution) and then we round the result of such transformation to the clos-
est integer. We considered three different linear transformations that allow us
to generate random variables with three levels of variability: low variability
[

0.75 · d̃i, 1.625 · d̃i
]

, medium variability
[

0.5 · d̃i, 2.25 · d̃i
]

and high variability
[

0.25 · d̃i, 2.875 · d̃i
]

. Note that the expected value of the random variables is

equal to d̃i for the three levels of variability. This approach was originally used in
[42]. These instances are available in http://feb.kuleuven.be/public/ndbaa92/.

Our B&C algorithm was implemented in C++ using the CPLEX 12.5 API
and ran on a personal computer equipped with an Intel R© Core

TM

i7-2720QM
2.20 GHz and 4 Gb RAM. All the remaining algorithms presented in this paper
were implemented in C++ and ran on the same computer as well.

5.1 Comparison between CG1 and CG2

The first computational experiment was ran for comparing the performance of
the constraint generation methods CG1 and CG2. In the case of CG1, the best
results were obtained when the cuts were generated only in the nodes where the
solution found was integer. For CG2, the best option was to generate the cuts
in each node of the B&C tree such that the variables y were integer. For both
CG1 and CG2 the B&C algorithm started with a feasible solution and a lower
bound obtained using Algorithm 3 and Proposition 6 respectively. The optimal
solutions for the deterministic RCPSP were generated using the B&B algorithm
presented in [14, 15]. The same sample of size equal to 100 was considered for
both methods. The time limit for the B&C algorithms (not including the time
needed constructing the initial feasible solution and the initial lower bound) is
fixed on 10 seconds (we refer to the next section for a discussion on the sample
size and the time limit).

Table 3 shows the obtained results. Column ”1 − ǫ” contains the different
values for the SAA confidence level. ”Opt. solved” contains the total number
of instances solved to optimality over the 480 instances. ”Opt. gap” shows the
average optimality gap for the 480 instances, calculated as incumbent−LB

LB
, where

incumbent is the value of the best feasible solution found and LB is the lower
bound defined as the maximum value between the lower bound found by Cplex
and the one obtained using Proposition 6. The column ”N. nodes” contains the
average number of nodes processed in the B&C tree, over the 480 instances. The
results for 1 − ǫ = 1 are not included since in those cases the problem can be

22

solved to optimality using a solver for the deterministic RCPSP (see Corollary
1).

Opt. solved Opt. gap N. nodes
1− ǫ CG1 CG2 CG1 CG2 CG1 CG2

low var 0.99 370 323 0.008 0.011 1035 49
0.95 319 257 0.028 0.034 273 22
0.9 256 205 0.043 0.048 51 9
0.8 35 27 0.100 0.101 0 0
0.7 0 0 0.176 0.176 0 0

med var 0.99 363 301 0.012 0.018 1052 47
0.95 306 228 0.044 0.057 295 23
0.9 232 160 0.072 0.081 61 9
0.8 27 25 0.177 0.173 0 0
0.7 0 0 0.351 0.351 0 0

high var 0.99 362 307 0.015 0.021 1100 49
0.95 295 207 0.053 0.069 295 28
0.9 204 130 0.091 0.101 59 9.9
0.8 17 13 0.231 0.233 0 0
0.7 0 0 0.516 0.516 0 0

Average - 185.7 145.5 0.128 0.133 281.4 16.4

Table 3: Number of instances solved to optimality, average optimality gap and
average number of nodes processed for CG1 and CG2

According to the results shown in Table 3, we can conclude that CG1 per-
forms better than CG2 . The number of instances that were solved to optimality
for CG1 is strictly larger than for CG2 for all variabilities and confidence levels,
with the exception of 1 − ǫ = 0.7. Analogous results are obtained consider-
ing the average optimality gap, with the exception of medium variability and
1 − ǫ = 0.8, where CG2 slightly outperforms CG1. As expected, the average
number of nodes processed in the B&C tree is smaller for CG2. However, the
reduction in time due to a smaller search tree does not compensate (on average)
the extra time spent on a harder separation problem.

Consequently, all the results of the tests that are presented in the remaining
sections were obtained using CG1 as the constraint generation method for our
B&C algorithm.

5.2 Comparison among different sample sizes

Given the combinatorial nature of the C-C programming problems in general,
the sample size has an important impact on the execution time of the algo-
rithms designed for solving such type of problems. Our tests show that the C-C
RCPSP is no exception. In table 4 we present the number of instances that were
solved to optimality (Opt. solved) and the corresponding optimality gaps (Opt.
gap) with an execution time limit of 10 seconds (not including the time needed

23

constructing the initial feasible solution and the initial lower bound), for three
different sample sizes (50, 100 and 200) and 5 different SAA confidence levels
(1− ǫ). In the case of 1− ǫ = 1 it was possible to obtain the optimal solutions
for the 480 instances for all sample sizes and variabilities due to Corollary 1.
We do not include the results for a sample size equal to 50 and 1 − ǫ equal to
0.99 and 0.95 given that there does not exist an integer number r such that
50−r
50 = 0.99 or 0.95.

Opt. solved Opt. gap
1− ǫ 50 100 200 50 100 200

low var 1 480 480 480 0.000 0.000 0.000
0.99 - 370 363 - 0.008 0.011
0.95 - 319 262 - 0.028 0.036
0.9 317 256 37 0.030 0.043 0.074
0.8 239 35 0 0.052 0.100 0.141
0.7 101 0 0 0.082 0.176 0.177

med var 1 480 480 480 0.000 0.000 0.000
0.99 - 363 347 - 0.012 0.018
0.95 - 306 244 - 0.044 0.059
0.9 294 232 27 0.051 0.072 0.135
0.8 194 27 0 0.090 0.177 0.290
0.7 77 0 0 0.130 0.351 0.355

high var 1 480 480 480 0.000 0.000 0.000
0.99 - 362 350 - 0.015 0.020
0.95 - 295 211 - 0.053 0.073
0.9 275 204 18 0.065 0.091 0.172
0.8 165 17 0 0.118 0.231 0.408
0.7 50 0 0 0.167 0.516 0.520

Average - 262.7 234.8 183.3 0.065 0.107 0.138

Table 4: Number of instances solved to optimality and average optimality gap
for sample sizes 50, 100 and 200

Clearly, the number of instances solved to optimality decreases when the
sample size increases. That impact becomes more relevant when 1 − ǫ de-
creases. The conclusion is opposite when we observe the optimality gaps, i.e.
the optimality gaps increase when the sample size increases. Thus, we could
conclude that smaller sample sizes allow us to obtain better (closer to the op-
timum for a given sample) solutions. However, the impact of the sample size
on the optimality gaps (and the number of instances solved to optimality) of
the algorithm represents only half of the analysis. A complete examination of
the obtained solutions should also include a test on its real quality. Given the
analytical complexity of the considered probability distributions, the most ap-
propriate option is to obtain an estimation of the real quality of the solutions
through simulation.

There is an interdependency between project makespans and confidence lev-

24

els, therefore we will analyze the efficient frontiers between estimated expected
makespans and estimated confidence levels for each sample size. As explained
in Section 2, the expected makespan of a given schedule depends on the applied
reactive policy. Thus we fix such a policy for each solution. It is defined by the
edges with a positive resource flow after applying algorithm FeasEdgeAlg() to
the solution. We explain the procedure as follows:

Let S∗ be the obtained solution (schedule), W be the set of replications of
the activity durations in the simulation and E′ be the edges with positive flow
after applying FeasEdgeAlg(S∗). The simulated starting time of activity i for
replication w ∈ W is defined as Sw

i = max {S∗
i , (S

w
j + dwj)} for each activity

j such that (j, i) ∈ (E ∪ E′). Then, the estimated expected makespan can be
calculated by the following expression:

Ê[Sn+1] =
1

|W |

∑

w∈W

Sw
n+1 (24)

In order to calculate the estimated confidence level, we can define a binary
variable zw that takes a value equal to 1 if the simulated schedule Sw is identical
to S∗ (i.e. Sw

i = S∗
i for all activities i) and 0 otherwise. Then, the estimated

confidence level can be computed as follows:

1− α̂ =
1

|W |

∑

w∈W

zw (25)

Our tests were made considering simulations of 1000 replications, for each
activity duration variability, SAA confidence level (1−ǫ) and sample size. Table
5 shows the results of the average estimated confidence level (1 − α̂) and the
average estimated expected makespan (Ê[Sn+1]) for sample sizes equal to 50,
100 and 200.

25

1− α̂ Ê[Sn+1]
1− ǫ 50 100 200 50 100 200

low var 1 0.874 0.951 0.987 78.4 80.8 82.4
0.99 - 0.943 0.975 - 80.4 81.3
0.95 - 0.903 0.936 - 78.0 78.5
0.9 0.760 0.848 0.884 75.1 76.3 76.8
0.8 0.652 0.735 0.778 73.1 74.1 74.4
0.7 0.559 0.618 0.668 71.9 72.4 72.6

med var 1 0.797 0.916 0.977 98.2 102.8 106.2
0.99 - 0.902 0.961 - 102.2 104.6
0.95 - 0.857 0.914 - 98.7 99.9
0.9 0.670 0.792 0.857 92.5 95.5 97.1
0.8 0.568 0.675 0.742 89.1 91.5 92.4
0.7 0.469 0.555 0.626 86.7 88.1 88.8

high var 1 0.762 0.898 0.969 117.8 124.8 129.6
0.99 - 0.883 0.953 - 123.7 127.3
0.95 - 0.831 0.904 - 118.5 121.1
0.9 0.627 0.769 0.846 110.0 114.5 116.9
0.8 0.532 0.648 0.725 105.1 108.6 110.3
0.7 0.432 0.527 0.607 101.7 103.8 105.0

Average - 0.642 0.792 0.850 91.6 96.4 98.1

Table 5: Average estimated confidence level and average estimated expected
makespan for sample sizes equal to 50, 100 and 200

A visual analysis on the efficient frontiers is more suitable in this case. Figure
8 shows the results presented in Table 5. There, it is clear that the solutions
obtained with a larger sample size dominate the ones obtained by considering a
smaller one. Therefore, we can conclude that it is better to obtain solutions by
solving an approximation with a larger sample size, even when the optimality
gaps increase due to a more difficult to solve approximation problem.

26

Figure 8: Average estimated confidence level versus average expected makespan
for sample sizes 50, 100 and 200

In order to further analyze the impact of the sample size on the quality of
the solutions, we will consider sample sizes varying in a wider range: 100, 200,
400, 800, 1600 and 3200. Consequently, we increased the time limit (for the
execution of the B&C algorithm) to 600 seconds. Lastly, the sample size for
simulations is increased up to 1,000,000.

Running the experiments, considering the new settings, on 480 instances
would take (in the worst case) a time of 20 days only for one confidence level.
Thus, we will consider a subset of 48 instances (instances ”j30X 1”, with X=1,..,48;
following the notation presented in [26]).

The results of these experiments are presented in Table 6 to Table 9. In
Table 6 we can see that the number of instances solved to optimality clearly
decreases when the sample size increases from 100 to 3200. However, in Table 7
we can see that the optimality gaps are relatively low, reaching a value of 6.3%
in the worst case. In Table 8 we can see that the obtained estimated confidence
levels (1 − α̂) with a sample size equal to 3200 are practically identical to the
real confidence levels (1−α), hence we can conclude that a sample size of 3200
is enough for attaining a desired confidence level. Such a sample size is radically
smaller than 600,000, which is obtained theoretically through (14)(considering
α − ǫ = 0.01 and θ = 0.99). The efficient frontiers of the estimated confidence
levels (Table 8) and the expected makespan (Table 9) are plotted in Figure 9.

27

1− ǫ 100 200 400 800 1600 3200
low var 1 48 48 48 48 48 48

0.99 43 45 42 40 40 38
0.95 42 39 38 35 33 27

med var 1 48 48 48 48 48 48
0.99 42 42 41 42 39 38
0.95 40 40 38 35 29 24

high var 1 48 48 48 48 48 48
0.99 43 43 42 40 39 38
0.95 40 40 37 34 30 24

Average - 43.8 43.7 42.2 41.1 39.3 37.0

Table 6: Number of instances solved to optimality for sample sizes 100, 200,
400, 800, 1600 and 3200

1− ǫ 100 200 400 800 1600 3200
low var 1 0 0 0 0 0 0

0.99 0.002 0.003 0.006 0.006 0.006 0.010
0.95 0.009 0.013 0.014 0.018 0.025 0.030

med var 1 0 0 0 0 0 0
0.99 0.004 0.005 0.007 0.008 0.012 0.017
0.95 0.015 0.017 0.018 0.029 0.035 0.057

high var 1 0 0 0 0 0 0
0.99 0.004 0.004 0.007 0.011 0.013 0.021
0.95 0.019 0.018 0.022 0.032 0.050 0.063

Average - 0.006 0.007 0.008 0.012 0.013 0.022

Table 7: Average optimality gaps for sample sizes 100, 200, 400, 800, 1600 and
3200

1− ǫ 100 200 400 800 1600 3200
low var 1 0.952 0.985 0.993 0.997 0.997 0.999

0.99 0.943 0.974 0.986 0.988 0.989 0.991
0.95 0.907 0.936 0.949 0.953 0.953 0.954

med var 1 0.917 0.975 0.988 0.995 0.997 0.998
0.99 0.905 0.957 0.977 0.985 0.987 0.988
0.95 0.860 0.914 0.935 0.946 0.948 0.951

high var 1 0.899 0.967 0.985 0.992 0.995 0.998
0.99 0.883 0.950 0.973 0.981 0.985 0.988
0.95 0.829 0.901 0.931 0.940 0.944 0.949

Average - 0.899 0.951 0.969 0.975 0.977 0.980

Table 8: Average estimated confidence levels for sample sizes 100, 200, 400, 800,
1600 and 3200

28

1− ǫ 100 200 400 800 1600 3200
low var 1 79.9 81.3 82.9 83.9 84.8 86.9

0.99 79.6 80.2 81.0 81.1 80.8 81.0
0.95 77.1 77.3 77.7 77.7 77.7 77.7

med var 1 101.8 104.9 107.1 109.5 111.1 114.2
0.99 101.3 102.7 104.7 105.5 105.4 105.9
0.95 97.5 98.3 98.7 99.2 99.7 100.2

high var 1 123.4 127.6 132.1 134.8 137.8 142.5
0.99 122.4 125.4 128.2 129.1 129.5 130.2
0.95 117.0 118.6 120.2 120.7 121.3 121.8

Average - 100.0 101.8 103.6 104.6 105.3 106.7

Table 9: Average estimated expected makespan for sample sizes 100, 200, 400,
800, 1600 and 3200

Figure 9: Average estimated confidence level versus average expected makespan
for sample sizes 100, 200, 400, 800, 1600 and 3200

In Figure 9 we can observe that generally the solutions that are obtained
with a larger sample size dominate the ones obtained through smaller samples.
However, the efficient frontiers for sample sizes equal to 800, 1600 and 3200 are
virtually identical. Thus, we can conclude that a sample size equal to 800 is
enough for obtaining good quality solutions.

Regarding the effect of the activity duration variability, it is clear that the

29

number of instances solved to optimality decreases when the variability in-
creases. Similarly, the optimality gaps increase when the variability increases.
The differences between the quality of the solutions, due to a change in the
sample size, are larger when the variability increases.

5.3 Comparison among C-C RCPSP and other methods

in the literature

In this section we compare the performance of our method with the starting
time criticality heuristic (STC) presented in [42] and the stochastic dynamic
generation scheme (SDGS) introduced in [9]. The results of the STC heuris-
tic were obtained running the original C++ implementation of the method on
the same computer as for our method. In the case of SDGS, the results were
obtained directly from the tables with results that are presented in [9].

5.3.1 Comparison between C-C RCPSP and STC

The STC heuristic has the objective of maximizing the solution stability. Thus,
in order to make a fair comparison, we additionally calculated the expected
solution stability defined by (1), with wi = 1 for all activities i. Therefore, the
expected solution stability can be estimated as follows:

Ê[∆] =
1

|W |

∑

w∈W

∑

i∈V

Sw
i − S∗

i (26)

WithW , S∗
i and Sw

i defined as in the previous section. Note that Sw
i −S

∗
i ≥ 0

for every activity i and replication w, due to the fact that a railway execution
policy is applied.

For both methods we considered the same 1000 replications for the simula-
tions and a sample of size 100 for optimization. Our B&C method was limited
to 10 seconds. The execution time for STC is negligible. Table 10 shows the
results for this experiment. Figure 10 shows the efficient frontiers of expected
confidence level versus expected makespan. There we can see that in general
our approach outperforms STC. The best (average) performances of our CCP
method are obtained when the variability and the estimated confidence level
1− α̂ are low. However, when the variability is high and 1− α̂ is close to 90%,
STC slightly outperforms CCP. This situation can be explained by the fact that
the sample size of 100 is not representative enough. Table 11 contains the re-
sults considering a confidence level equal to 1 and a sample size for optimization
equal to 1000. Figure 11 shows the results of Table 10 and Table 11 together.
There, we can see that our method tends to outperform STC.

30

Ê[Sn+1] 1− α̂ Ê[∆]
1− ǫ CCP STC CCP STC CCP STC

low var 1 80.8 80.9 0.951 0.920 0.093 0.115
0.99 80.4 80.1 0.943 0.897 0.109 0.169
0.95 78.0 77.6 0.903 0.794 0.188 0.389
0.9 76.3 75.9 0.848 0.696 0.313 0.633
0.8 74.1 73.7 0.735 0.561 0.620 1.138
0.7 72.4 71.9 0.618 0.431 1.065 1.844

med var 1 102.8 103 0.916 0.917 0.186 0.126
0.99 102.2 101.5 0.902 0.890 0.219 0.190
0.95 98.7 97.8 0.857 0.809 0.336 0.409
0.9 95.5 94.5 0.792 0.694 0.536 0.760
0.8 91.5 90.3 0.675 0.548 0.978 1.358
0.7 88.1 87.1 0.555 0.426 1.624 2.202

high var 1 124.8 125.3 0.898 0.917 0.281 0.145
0.99 123.7 123.0 0.883 0.891 0.324 0.219
0.95 118.5 117.3 0.831 0.785 0.502 0.515
0.9 114.5 113.0 0.769 0.697 0.756 0.873
0.8 108.6 107.0 0.648 0.544 1.361 1.676
0.7 103.8 102.4 0.527 0.417 2.261 2.689

Average - 96.4 95.7 0.792 0.713 0.653 0.858

Table 10: Average expected makespan, average estimated confidence level and
average expected solution stability for CCP and STC

Figure 10: Average estimated confidence level versus average expected
makespan

31

Ê[Sn+1] 1− α̂ Ê[∆]
CCP STC CCP STC CCP STC

low var 84.7 84.3 0.994 0.969 0.008 0.045
med var 111.0 110.1 0.991 0.979 0.014 0.027
high var 136.7 135.0 0.988 0.978 0.023 0.036

Table 11: Average expected makespan, average estimated confidence level and
average expected solution stability for CCP and STC with 1− ǫ = 1

Figure 11: Average estimated confidence level versus average expected
makespan (including data in Table 11)

We also show the efficient frontiers of the average expected solution stability
versus the average expected makespan (including data in Table 11) in Figure
12. Again, our method tends to outperform STC even in this case, which
considers the expected solution stability, a measure that is the objective of STC.
The relative drawback of our method is the computation time. It ranges from
approximately 1 second (on average) for high confidence levels to 20 seconds
(namely, 10 seconds for the initial lower and upper bound procedures and 10
seconds for the B&C procedure) for low confidence levels, whereas STC has an
average computation time of approximately 0.2 seconds.

32

Figure 12: Average expected solution stability versus average expected
makespan

5.3.2 Comparison among SDGS, C-C RCPSP and STC

In this section we compare our algorithm with STC and SDGS. The latter is also
based on a C-C programming formulation, but in a completely different frame-
work. However, the reported results contain the average estimated confidence
levels and the average expected makespans. We used an experimental setting
that is as similar as possible to the one presented in [9], considering the same
10 instances of the PSPLIB, activity durations that are Poisson distributed and
a sample size equal to 1000 for simulations. For our algorithm and STC we
consider a sample size equal to 100 for optimization. The average results (over
the 4 variations of SDGS) that were obtained in [9] are presented in Table 12.
Table 13 contains the results that we computed for CCP and STC.

1− ǫ Ê[Sn+1] 1− α̂
0.99 150.6 0.978
0.95 132.4 0.903
0.9 125.4 0.778
0.85 127.4 0.763
0.8 126.1 0.718

Table 12: Average expected makespan and average estimated confidence level
for SDGS

33

Ê[Sn+1] 1− α̂
1− ǫ CCP STC CCP STC
1 116.1 116.1 0.998 0.894

0.99 109.9 108.0 0.994 0.859
0.95 98.6 98.5 0.968 0.812
0.9 93.3 94.7 0.924 0.759
0.8 84.3 85.5 0.861 0.605
0.7 76.7 77.9 0.752 0.519

Table 13: Average expected makespan and average estimated confidence level
for CCP and STC

Figure 13 shows that our method clearly outperforms SDGS and STC, and
that STC outperforms SDGS. Also, we can see that the trade-off curve obtained
for SDGS is not consistent since the point with the shortest makespan does not
have the lowest confidence level. The relatively worse performance of SDGS can
be explained by the fact that such a method considers a fixed initial priority
policy, which in general does not perform well.

Figure 13: Average expected makespan versus average estimated confidence
level

5.4 Comparison among different deterministic RCPSP for-

mulations

A mathematical programming formulation for the deterministic RCPSP is an
essential element of the C-C RCPSP. However, the design and comparison of
different formulations for the former is beyond the scope of this research. In [27],

34

a comparative study of different formulations for the RCPSP is presented. In
this section we compare the performance of our formulation (6)-(12) (combined
with our B&C algorithm) with the results of the tests presented in [27]. Note
that the latter results were also obtained by a B&C algorithm, but using the
default options of CPLEX. This comparison is not intended to provide definitive
conclusions, but rather to highlight the idea that there are potential benefits in
applying our algorithm to the classical deterministic RCPSP.

In Table 14, we present the obtained results for our algorithm and the ones
provided in [27]. The first row refers to the results of our sequence based ap-
proach (SB), which is defined by (6)-(12). The successor rows show the results
for the other formulations: basic discrete time (DT), disaggregated discrete
time (DDT), flow-based continuous time (FCT), start/end event-based (SEE),
on/off event-based (OEE) and on/off event-based with preprocessing (OOE2).
Column ”% Integer” shows the percentage of instances for which a feasible inte-
ger solution was found. Analogously, column ”% Opt” contains the percentage
of optimal solutions that were found over the complete set of instances. These
results were obtained considering a time limit equal to 500 seconds and 480
instances with 30 activities belonging to the PSPLIB library.

Although we ran the tests on a slightly updated hardware (and software),
it seems that the combination of formulation (6)-(12) and our B&C algorithm
outperforms the standard CPLEX B&C algorithm that was ran considering
the other alternative models. More specifically, given that formulation (6)-(12)
and FCT are the only two sequence-based formulations that were tested, we
can conclude that the omission of the transitive constraints and the delayed
generation of the forbidden sets-related constraints (9) are beneficial.

Method % Integer % Opt
SB 100 95

DDT 91 82
DT 86 78
FCT 67 62

OOE2 46 30
OOE 33 24
SEE 3.1 2.9

Table 14: Percentage of integer feasible and optimal solutions that were found
with a time limit of 500 seconds

6 Conclusions

We introduced a new robustness measure that has the advantage of being in-
dependent of the applied reactive policy. That fact allowed us to develop a
method that is completely focused on the optimization of the proactive baseline
schedule. A novel chance-constrained programming formulation was created in
order to model the problem considering this new robustness measure.

35

We developed a B&C algorithm for solving this problem, which took an
average time of approximately 1 second for optimally (or approximately) solving
the stochastic RCPSP instances with 30 activities and confidence levels close to
1%. As soon as the confidence level decreases, the performance of the algorithm
drastically decreases as well. Similarly, the optimality gaps increase when the
sample size increases. However, the quality of the solutions is superior when
they are obtained considering larger sample sizes. In fact, in our numerical
experiments, the solutions that were obtained with smaller sample sizes were
virtually always dominated (in terms of efficient frontiers).

As expected, our algorithm in general outperformed two alternative methods
published in the literature, considering our new robustness measure. Even more,
it tended to outperform the STC method considering a traditional robustness
measure (solution stability), which is its objective function.

Finally, we found two contributions from an algorithmic point of view. First,
our mathematical programming model and our B&C algorithm can be applied
together in order to solve the traditional deterministic RCPSP. Our basic com-
putational experiments showed a good performance when it was compared to
alternatives formulations in the literature. Nevertheless, further research is nec-
essary for making the last conclusion definitive. Also, the introduced methods
for obtaining lower and upper bounds are not restricted to the RCPSP, there-
fore they could be applied for solving general mixed integer chance-constrained
programming problems in an implicit enumerative method as, for example, a
B&B algorithm.

A Appendix 1

The goal of this example is to show how, considering a traditional robustness
measure, a baseline schedule S1 is more robust than S2 for a given reactive
policy Π1, however S2 is more robust than S1 for another reactive policy Π2.

Let us consider an instance of the RCPSP composed by 5 activities (3 non-
dummy activities). The durations of the non-dummy activities 1 and 3 are
random variables that can take only a value equal to 1 or 2 with the same
probability. For the non-dummy activity 2, the duration is a deterministic value
equal to 2. There are no precedence relations between the non-dummy activities.
There is only one resource type with an availability equal to 2. Finally, the
resource consumption of all the non-dummy activities is equal to 1.

Let us assume that we are given the following two baseline schedules: S1 =
(0, 0, 1, 1, 3) and S2 = (0, 1, 1, 0, 3). Also, two different reactive priority policies
are given in order to calculate the robustness measure under consideration:
Π1 = (1, 2, 3) and Π2 = (3, 2, 1). Reactive priority policies as Π1 and Π2 are
completely defined by a list of activities, such that when a resource conflict
occurs, the activities are starting following the priority list. Preemption is not
allowed for activities that are in progress. Additionally, we will assume a railway
execution policy, i.e. each non-dummy activity will never start earlier than their
planned starting time in the baseline schedule. The robustness measure taken

36

into consideration is solution stability with weights wi = 1 for each activity,
which is defined by (1).

Figure 13 contains the schedule diagrams for each baseline schedule, reactive
policy and realization of the random duration vector. SR

(

Si,Πi
)

represents the
realized schedule considering a baseline schedule Si and a reactive policy Πi for
i equal to 1 or 2.

Figure 14: Realized schedule for each realization

Table 8 shows the results for each realization of the random activity dura-
tions. In Table 9, ∆

(

Si,Πi
)

denotes the solution stability for a given realized
schedule and baseline schedule.

r Dur. SR
(

S1,Π1
)

SR
(

S2,Π1
)

SR
(

S1,Π2
)

SR
(

S2,Π2
)

1 (0,1,2,1,0) (0,0,1,1,3) (0,1,1,0,3) (0,0,1,1,3) (0,1,1,0,3)
2 (0,1,2,2,0) (0,0,1,1,3) (0,1,2,0,4) (0,0,1,1,3) (0,2,1,0,3)
3 (0,2,2,1,0) (0,0,1,2,3) (0,1,1,0,3) (0,0,2,1,4) (0,1,1,0,3)
4 (0,2,2,2,0) (0,0,1,2,4) (0,1,2,0,4) (0,0,2,1,4) (0,2,1,0,4)

Table 15: Realized schedule for each realization

r ∆
(

S1,Π1
)

∆
(

S2,Π1
)

∆
(

S1,Π2
)

∆
(

S2,Π2
)

1 0 0 0 0
2 0 2 0 1
3 1 0 2 0
4 2 2 2 2

E [∆] 0.75 1 1 0.75

Table 16: Solution stability for each realization

37

According to the results shown in Table 9, we could conclude that S1 is more
robust than S2 using reactive policy Π1. However, S2 would be more robust
than S1 considering reactive policy Π2.

References

[1] Ramon Alvarez-Valdes Olaguibel and JoseManuel Tamarit Goerlich. The
project scheduling polyhedron: dimension, facets and lifting theorems. Eu-
ropean Journal of Operational Research, 67(2):204–220, 1993.

[2] Christian Artigues, Sophie Demassey, and Emmanuel Neron. Resource-
constrained project scheduling: models, algorithms, extensions and applica-
tions, volume 37. Wiley, 2010.

[3] Christian Artigues, Philippe Michelon, and Stéphane Reusser. Insertion
techniques for static and dynamic resource-constrained project scheduling.
European Journal of Operational Research, 149(2):249–267, 2003.

[4] Haldun Aytug, Mark A Lawley, Kenneth McKay, Shantha Mohan, and
Reha Uzsoy. Executing production schedules in the face of uncertainties:
A review and some future directions. European Journal of Operational
Research, 161(1):86–110, 2005.

[5] Egon Balas. Machine sequencing via disjunctive graphs: an implicit enu-
meration algorithm. Operations research, 17(6):941–957, 1969.

[6] Martin Bartusch, Rolf H Möhring, and Franz J Radermacher. Scheduling
project networks with resource constraints and time windows. Annals of
operations Research, 16(1):199–240, 1988.

[7] John R Birge and François V Louveaux. Introduction to stochastic pro-
gramming. Springer, 2011.

[8] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling
subject to resource constraints: classification and complexity. Discrete
Applied Mathematics, 5(1):11–24, 1983.

[9] Maria Elena Bruni, Patrizia Beraldi, Francesca Guerriero, and Erika Pinto.
A heuristic approach for resource constrained project scheduling with un-
certain activity durations. Computers & Operations Research, 38(9):1305–
1318, 2011.

[10] Abraham Charnes and William W Cooper. Chance-constrained program-
ming. Management science, 6(1):73–79, 1959.

[11] Nicos Christofides, Ramon Alvarez-Valdés, and José M Tamarit. Project
scheduling with resource constraints: A branch and bound approach. Eu-
ropean Journal of Operational Research, 29(3):262–273, 1987.

38

[12] Filip Deblaere, Erik Demeulemeester, and Willy Herroelen. Proactive poli-
cies for the stochastic resource-constrained project scheduling problem. Eu-
ropean Journal of Operational Research, 214(2):308–316, 2011.

[13] Sophie Demassey, Christian Artigues, and Philippe Michelon. Constraint-
propagation-based cutting planes: An application to the resource-
constrained project scheduling problem. INFORMS Journal on computing,
17(1):52–65, 2005.

[14] Erik Demeulemeester and Willy Herroelen. A branch-and-bound procedure
for the multiple resource-constrained project scheduling problem. Manage-
ment science, 38(12):1803–1818, 1992.

[15] Erik Demeulemeester and Willy Herroelen. New benchmark results for
the resource-constrained project scheduling problem. Management Science,
43(11):1485–1492, 1997.

[16] Erik Demeulemeester and Willy Herroelen. Robust project scheduling, vol-
ume 3. Now Publishers Inc, 2011.

[17] Marshall L Fisher. Optimal solution of scheduling problems using lagrange
multipliers: Part i. Operations Research, 21(5):1114–1127, 1973.

[18] Michael R Garey and David S Johnson. Computers and intractability,
volume 174. Freeman New York, 1979.

[19] Jill R Hardin, George L Nemhauser, and Martin WP Savelsbergh. Strong
valid inequalities for the resource-constrained scheduling problem with uni-
form resource requirements. Discrete Optimization, 5(1):19–35, 2008.

[20] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-
constrained project scheduling: a survey of recent developments. Comput-
ers & Operations Research, 25(4):279–302, 1998.

[21] Willy Herroelen and Roel Leus. The construction of stable project base-
line schedules. European Journal of Operational Research, 156(3):550–565,
2004.

[22] Willy Herroelen and Roel Leus. Robust and reactive project scheduling: a
review and classification of procedures. International Journal of Production
Research, 42(8):1599–1620, 2004.

[23] G Igelmund and Franz Josef Radermacher. Algorithmic approaches to pre-
selective strategies for stochastic scheduling problems. Networks, 13(1):29–
48, 1983.

[24] G Igelmund and Franz Josef Radermacher. Preselective strategies for the
optimization of stochastic project networks under resource constraints. Net-
works, 13(1):1–28, 1983.

39

[25] Robert Klein and Armin Scholl. Computing lower bounds by destructive
improvement: An application to resource-constrained project scheduling.
European Journal of Operational Research, 112(2):322–346, 1999.

[26] Rainer Kolisch and Arno Sprecher. Psplib-a project scheduling problem
library: Or software-orsep operations research software exchange program.
European Journal of Operational Research, 96(1):205–216, 1997.

[27] Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau.
Event-based milp models for resource-constrained project scheduling prob-
lems. Computers & Operations Research, 38(1):3–13, 2011.

[28] Roel Leus. Resource allocation by means of project networks: complexity
results. Networks, 58(1):59–67, 2011.

[29] Roel Leus. Resource allocation by means of project networks: dominance
results. Networks, 58(1):50–58, 2011.

[30] James Luedtke and Shabbir Ahmed. A sample approximation approach
for optimization with probabilistic constraints. SIAM Journal on Opti-
mization, 19(2):674–699, 2008.

[31] James Luedtke, Shabbir Ahmed, and George L Nemhauser. An integer
programming approach for linear programs with probabilistic constraints.
Mathematical Programming, 122(2):247–272, 2010.

[32] Sanjay V Mehta and Reha M Uzsoy. Predictable scheduling of a job shop
subject to breakdowns. Robotics and Automation, IEEE Transactions on,
14(3):365–378, 1998.

[33] Aristide Mingozzi, Vittorio Maniezzo, Salvatore Ricciardelli, and Lucio
Bianco. An exact algorithm for the resource-constrained project scheduling
problem based on a new mathematical formulation. Management Science,
44(5):714–729, 1998.

[34] Rolf H Möhring, Andreas S Schulz, Frederik Stork, and Marc Uetz. Solving
project scheduling problems by minimum cut computations. Management
Science, 49(3):330–350, 2003.

[35] Rolf H Möhring and Frederik Stork. Linear preselective policies for stochas-
tic project scheduling. Mathematical Methods of Operations Research,
52(3):501–515, 2000.

[36] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial
optimization, volume 18. Wiley New York, 1988.

[37] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems. SIAM
review, 33(1):60–100, 1991.

40

[38] András Prékopa. Probabilistic programming. Handbooks in operations re-
search and management science, 10:267–351, 2003.

[39] A Alan B Pritsker, Lawrence J Waiters, and Philip M Wolfe. Multipro-
ject scheduling with limited resources: A zero-one programming approach.
Management Science, 16(1):93–108, 1969.

[40] Andrzej Ruszczyński. Probabilistic programming with discrete distribu-
tions and precedence constrained knapsack polyhedra. Mathematical Pro-
gramming, 93(2):195–215, 2002.

[41] Frederik Stork and Marc Uetz. On the generation of circuits and minimal
forbidden sets. Mathematical programming, 102(1):185–203, 2005.

[42] Stijn Van de Vonder, Erik Demeulemeester, and Willy Herroelen. Proac-
tive heuristic procedures for robust project scheduling: An experimental
analysis. European Journal of Operational Research, 189(3):723–733, 2008.

[43] Stijn Van de Vonder, Erik Demeulemeester, Willy Herroelen, and Roel
Leus. The use of buffers in project management: The trade-off between
stability and makespan. International Journal of Production Economics,
97(2):227–240, 2005.

[44] Stijn Van de Vonder, Erik Demeulemeester, Willy Herroelen, and Roel
Leus. The trade-off between stability and makespan in resource-
constrained project scheduling. International Journal of Production Re-
search, 44(2):215–236, 2006.

41

