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A putative “chemokine switch” 
that regulates systemic acute 
inflammation in humans
Nabil Azhar1,2,3, Rami A. Namas1,2, Khalid Almahmoud1, Akram Zaaqoq1, Othman A. Malak1, 
Derek Barclay1, Jinling Yin1, Fayten El‑Dehaibi1, Andrew Abboud1, Richard L. Simmons1, 
Ruben Zamora1,3, Timothy R. Billiar1 & Yoram Vodovotz1,3,4*

Systemic inflammation is complex and likely drives clinical outcomes in critical illness such as that 
which ensues following severe injury. We obtained time course data on multiple inflammatory 
mediators in the blood of blunt trauma patients. Using dynamic network analyses, we inferred a novel 
control architecture for systemic inflammation: a three‑way switch comprising the chemokines MCP‑1/
CCL2, MIG/CXCL9, and IP‑10/CXCL10. To test this hypothesis, we created a logical model comprising 
this putative architecture. This model predicted key qualitative features of systemic inflammation in 
patient sub‑groups, as well as the different patterns of hospital discharge of moderately vs. severely 
injured patients. Thus, a rational transition from data to data‑driven models to mechanistic models 
suggests a novel, chemokine‑based mechanism for control of acute inflammation in humans and 
points to the potential utility of this workflow in defining novel features in other complex diseases.

Traumatic injury is a signi�cant cause of morbidity and mortality and the leading cause of death in people under 
55 years  old1,2. In recent years, the outcomes landscape in blunt trauma has shi�ed from mortality to second-
ary complications such as multiple organ dysfunction syndrome (MODS) and nosocomial infection, leading 
to a prolonged length of stay (LOS) in the intensive care unit (ICU) and  hospital3. �is injury-induced critical 
illness has been attributed in large part to the in�ammation and immune dysregulation elicited a�er trauma/
hemorrhage4–8. Systemic acute in�ammation is a complex process that occurs at multiple scales and involves the 
activation of signaling pathways that mobilize in�ammatory cells and stimulate the systemic release of multiple 
in�ammatory mediators such as damage-associated molecular pattern (DAMP) molecules, chemokines, and 
 cytokines9,10. Numerous studies have investigated this response in the context of severe injury at the level of 
cellular  mobilization11, genomic pathway  activation12, and secreted  mediators13,14. Analyzing circulating in�am-
matory mediators is particularly informative, as these are elevated following severe injury, and constitute the 
communication medium for organizing the response among the various cell  types9.

Previous studies of systemic in�ammation in trauma have either focused on association of dynamic patterns 
of in�ammatory mediators with speci�c  outcomes13,15–20 or building predictive mechanistic models from prior 
biological knowledge/literature21. Herein, we sought to identify early regulatory architectures directly from 
trajectories of circulating in�ammatory mediators using dynamic network inference coupled with simulatable, 
quasi-mechanistic models.

Results
DyBN inference suggests a central, chemokine‑based switching motif in trauma patients. We 
sought initially to identify potential feedback architectures in the systemic in�ammatory responses of trauma 
patients as a function of injury severity. Accordingly, we focused on three groups of trauma patients matched for 
age and gender distribution but di�ering in injury severity, and with progressively worse clinical outcomes as 
a function of injury  severity20,21 (Table 1). �e initial step in our work�ow (Fig. 1A) involved obtaining a time-
series dataset of circulating, protein-level in�ammatory mediators. Time courses of 24 systemic in�ammatory 
mediators from each patient were used as input for the DyBN inference algorithm. �is analysis suggested a 
consistent core motif across all three injury severity groups, involving the chemokines MCP-1, MIG, and IP-10 
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with cross-regulation among them and with the cytokine IL-6 as a shared output node (Fig. 1B-D)20. Notably, 
IL-6 levels generally correlate with injury severity and adverse outcomes such organ dysfunction, and there-
fore serve as an excellent marker for the magnitude of the systemic in�ammatory response and risk for organ 
 dysfunction9,22. We note that several in�ammatory mediators were signi�cantly di�erent by ANOVA between 
the moderate and severe injury patient sub-groups (Figure S1) but were not identi�ed as nodes in the DyBN 

Table 1.  Demographics, clinical outcomes, and co-morbidities of mild, moderate, and severely injured 
patients. Cohorts were age- and gender-matched. Length of stay in the ICU (ICU LOS), total length of stay 
(Total LOS), and days on mechanical ventilation increase with injury severity. Values are expressed as median 
(1st-3rd quartile range).

Mild (n = 48) Moderate (n = 47) Severe (n = 47) P value

ISS* 10 (9–13) 20 (17–22) 29 (27–35.5)  < 0.001

Demographics

Age 42.5 (31.5–51) 41 (25.5–51.5) 43 (26.5–52) 0.71

Gender M = 33 F = 15 M = 33 F = 14 M = 32 F = 15 0.97

Clinical Outcomes

ICU LOS* 2 (2–4) 4 (2–7) 9 (4–13)  < 0.001

Total LOS* 6.5 (3.75–12) 9 (5–15) 14 (9–24)  < 0.001

Mechanical Ventilation* 0 (0–1.25) 1 (0–2) 4 (1–10) 0.0002

Co-morbidities

Asthma, n (%) 3 (6.2%) 2 (4.2%) 2 (4.2%) 0.87

COPD, n(%) 2 (4.2%) 1 (2.1%) 0 0.78

Diabetes Mellitus, n (%) 2 (4.2%) 5 (10.6%) 4 (8.5%) 0.48

Hypertension, n (%) 8 (16.7%) 9 (19.1%) 11 (23.4%) 0.71

Psychiatric illness, n (%) 8 (16.7%) 4 (8.5%) 5 (10.6%) 0.44

�yroid disease, n (%) 6 (12.5%) 2 (4.2%) 1 (2.1%) 0.89

Alcohol intake, n (%) 5 (10.4%) 3 (6.4%) 5 (10.6%) 0.72

Smoker, n (%) 6 (12.5%) 4 (8.5%) 3 (6.4%) 0.57

Other, n (%) 14 (19.2%) 16 (34%) 18 (38.3%) 0.64

None, n (%) 19 (39.6%) 20 (42.5%) 19 (40.4%) 0.95

Figure 1.  Work�ow leading to a conceptual model of the “chemokine switch”. (Panel A): A schematic of the 
analysis work�ow. Time courses of in�ammatory mediators were measured in trauma patients and causal 
interactions inferred by DyBN analysis. �e inferred network topology formed the basis a Boolean model which 
was simulated in silico. Results were compared to clinical trajectories to re�ne the model. (Panels B-D): DyBN 
consensus network structure for Mild, Moderate and Severe Injury. Panel E: Boolean model structure with 
cross-regulation among chemokines MIG, IP-10, and MCP-1.
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networks, likely due to the major methodological di�erences between ANOVA and DyBN. �ese mediators 
may represent a consequence of the chemokine-based feedback structure, similar to IL-6. �us, data-driven 
modeling could discern potential proximal feedback structures in an extensive time course of in�ammatory 
mediators from injured patients, which in turn are associated with a key biomarker of morbidity and mortality 
following traumatic injury. 

Logical model based on DyBN results captures population behavior. DyBN inference suggested 
the possibility of a novel feedback architecture based on correlations among the multitude of in�ammatory 
mediators assessed. However, correlation is not causality. To test whether MCP-1, MIG, and IP-10 a�ected their 
own levels, the levels of the other two chemokines, or the levels of IL-6 in a manner that depended on injury 
severity, we constructed a logical model that posits the hypothesis schematically represented in Fig. 1E. Because 
the parameters are integrated during the process of learning the DyBN structure, we can only translate the direc-
tionality of the interactions but not whether the interactions are positive or negative (representing activation or 
inhibition). �us, when constructing the logical model, we initially ascribed positive vs. negative interactions 
based on plausible mechanisms from the literature and our own hypotheses. We then adjusted the labels and 
iterated through several versions of the model in order to arrive at the �nal model that best recapitulated the 
observed trajectories of MIG, MCP-1, IP-10, and IL-6. A similar approach was employed to deduce the logi-
cal rules governing combinations of interactions (AND vs OR). �e model that best reproduced the observed 
population behavior of moderately and severely injured patients postulated that each chemokine upregulates its 
own expression while downregulating the expression of the other two in a manner dependent on injury severity, 
a hypothesis supported by studies regarding the negative cross-regulation of chemokines by other chemokines 
(generally at the level of shared receptors [e.g. CXCR3, which is shared by MIG and IP-10])23–28.�e set of rules 
for this initial logical model is provided in Supplemental Table S1. �e interactions of the model, which form a 
series of hypotheses, can be described as follows:

• Moderate injury induces IP-10 and MIG, while severe injury induces these as well as MCP-1 (in line with 
prior studies in both  mouse29 human blunt  trauma16,18,30).

• IP-10 has positive feedback on  itself31,32, and both MIG and MCP-1 must be active (have a nonzero value) 
to suppress IP-10. Furthermore, the suppression of IP-10 is an "AND" interaction, and thus both MIG and 
MCP-1 must be non-zero in order for IP-10 to be fully suppressed.

• MCP-1 can be induced either by severe injury alone, or by positive feedback on itself (in line with the positive 
feedback described in  monocytes33), but high IP-10 levels suppress this self-feedback. MCP-1 can reach high 
levels only in the combination of severe injury, moderate MCP-1, and lack of high IP-10, i.e. self-feedback 
is not su�cient to reach high MCP-1 levels. �us, the model rules clearly dictate that MCP-1 can only reach 
high levels in severe injury. Also, as long as injury is severe, MCP-1 will remain at least at moderate levels 
even with high IP-10 (Supplemental Figure S2A).

• MIG has self-feedback32 but is suppressed when both IP-10 is high and MCP-1 is active.
• IL-6 is activated by both MIG and MCP-1. However, high levels of IL-6 are induced only when MCP-1 is 

present (in line with our prior studies showing reduced IL-6 production by hepatocytes from MCP-1-null 
 mice16) and suppressed by high IP-10. In an alternative formulation of this rule, MIG reduces the degree to 
which IL-6 is induced by MCP-1, resulting in essentially identical predicted IL-6 dynamics (data not shown).

�e dynamics of the model are as follows. When all elements are initialized to zero, they remain at zero 
(Supplemental Figure S2B). When injury is set to “moderate,” IP-10 rises to its highest level while all other vari-
ables remain at zero (Supplemental Figure S2C). When injury is set to “severe,” IP-10 rises to its highest level. 
Also, MCP-1 and then IL-6 rise to their highest levels before gradually reaching steady state at a moderate level 
(Supplemental Figure S2D).

Model verification against data from trauma patients. To mimic a population of patients starting 
with random baseline values of each of the in�ammatory mediators, the model was next simulated with random 
initial conditions. Our simulations matched qualitatively with the clinical data, and, importantly, were able to 
capture the key di�erences in the dynamics of MCP-1 and IL-6 in moderately and severely injured patients 
(Fig. 2A-B vs 3A-B). In the simulations, IL-6 reached a steady state at low levels within the �rst 5 time-steps for 
moderate injury (Fig. 2A), whereas this cytokine remained at higher levels for longer and reached steady state 
at a moderate (non-baseline) level in the severe injury case (Fig. 3A). In agreement with these simulations, IL-6 
levels returned to near baseline values within the �rst 24 h in moderately injured patients (Fig. 2B), whereas IL-6 
levels remained higher for up to three days in severely injured patients (Fig. 3B). �e simulations for MCP-1 
(Fig. 2C and 3C) showed the same behavior as in the patients (Fig. 2D and 3D). MIG and IP-10 trajectories in 
both simulations (Fig. 2E, 2G, 3E, and 3G) and patients (Fig. 2F, 2H, 3F, and 3H) did not di�er qualitatively 
between moderate and severe injury, respectively. 

Model refinement suggests an intermediate step delaying IP‑10 induction following 
injury. Despite the overall qualitative agreement between simulations and data, the simulations for IP-10 
showed a monotonic rise to a steady state high level (Fig. 2G and 3G), whereas in the patients there was an early 
dip and delayed rise (Fig. 2H and 3H). In order to address this discrepancy, we hypothesized an additional node 
(labeled X), positioned upstream of IP-10, which could delay IP-10 induction following injury. We examined 
both spiky (Fig. 4A) and sustained (Fig. 4B) dynamics of node X and observed that the IP-10 trajectory corre-
sponding to the latter behavior most closely �t the data in our patient cohort (compare simulations in Fig. 4D vs. 



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9703  | https://doi.org/10.1038/s41598-021-88936-8

www.nature.com/scientificreports/

Figure 2.  In�ammatory mediator trajectories for Moderate Injury: Simulations vs. data from trauma patients. 
Le� column: 500 simulations were run with random initial conditions. Plot shows mean plus standard error 
for each time step. Right column: Patient data shown as mean with standard error for each time point. Healthy 
volunteer (white circles) included for reference.
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Figure 3.  In�ammatory mediator trajectories for Severe Injury: Simulations vs. data from trauma patients. Le� 
column: 500 simulations were run with random initial conditions. Plot shows mean plus standard error for each 
time step. Right column: Patient data shown as mean with standard error for each time point. Healthy volunteer 
(white circles) included for reference.
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data in Fig. 3H). We compared the predicted trajectory for node X (Fig. 4C) to all the in�ammatory mediators 
measured in the patient cohort (see Supplemental Figure S1) and found a reasonable qualitative match between 
the dynamics of node X and those of circulating IFN-γ (Fig. 4E). Notably, IFN-γ is the key cytokine that induces 
IP-10 (hence IP-10′s name, “IFN-γ-inducible protein of 10 kDa)34. �us, a mechanistic computational model 
was used to impute a plausible, novel node not inferred directly in the underlying data in a manner consistent 
with known biology and observed data in humans (Fig. 4F).

Figure 4.  Addition of a putative node improves IP-10 simulations. A new variable, X, was added upstream 
of IP-10 to introduce a delay due to the observed slow rise in patient IP-10 trajectory. A spiky trajectory for 
X (Panel A) produces an IP-10 trajectory (Panel B) that is inconsistent with patient data. A step rise for X 
(Panel C) produces an IP-10 trajectory (Panel D) that matches well with patient data. Coincidentally, out of the 
measured in�ammatory mediator pro�les, the trajectory of circulating IFN- γ most closely resembles a step 
increase trajectory (Panel E). (Panel F): Model schematic with addition of new variable X.
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Model validation based on a patient sub‑population with low initial MCP‑1 levels. We next 
sought to validate our re�ned logical model. Predictions of all mechanistic computational models are, to some 
extent, dependent on initial  conditions35. Accordingly, we tested whether speci�c initial conditions of one of 
the elements in our model combined with injury severity resulted in model predictions that matched clinically 
observed cytokine trajectories in trauma patient sub-populations that exhibited those attributes. As the model 
was calibrated to the behavior of the overall trauma patient population using random initial conditions, we con-
sider this analysis a form of validation. A previous study from our group had shown that the outcomes of trauma 
patients could be segregated based on circulating MCP-1  levels16. �erefore, we chose the cuto� levels of circu-
lating MCP-1 used in that study: levels lower than 1000 pg/ml were associated with patients whose clinical out-
comes were better than those of patients with circulating levels greater than 1500 pg/ml16,36. Accordingly, we set 
1000 pg/ml MCP-1 to correspond to an initial condition of low MCP-1. We compared the responses of patients 
with low MCP-1 under moderate or severe injury and observed that MCP-1 levels were signi�cantly higher in 
patients with severe injury compared to patients with moderate injury (P < 0.05, 2-way ANOVA, Fig. 5B vs 5D). 
Correspondingly, model simulations showed that following moderate injury, MCP-1 levels that started at a low 
level remained at a lower level. In contrast, MCP-1 levels were predicted to rise following severe injury when 
starting with the same low initial condition of MCP-1, and this behavior was observed in the corresponding 
patient sub-population (Fig. 5A vs Fig. 5C). �us, a quasi-mechanistic model constructed and re�ned following 
an initial data-driven model could reproduce key behaviors on which it was not trained explicitly, suggesting a 
novel interaction between initial levels of MCP-1 and the subsequent graded response to injury.

State transition analysis reveals differences in the evolution of trauma‑induced systemic 
inflammation. Finally, we hypothesized that we could glean additional insights about post-injury in�am-
mation and the role of the putative “chemokine switch” by examining the state transition diagram of our logical 
model. Although there was only one steady state for each injury severity irrespective of initial conditions, we 
investigated whether the time to reach that steady state varied, by examining the state transition graphs for the 
logical model (Figure S3). Our simulations are deterministic, so there is only one path from each initial state 
to the �nal steady state. For severe injury, overall, the simulations take longer to reach steady state than for 
moderate injury (Fig. 6A). Given that in�ammation and associated injury-induced persistent critical illness are 
considered key determinant of a given trauma patient’s length of stay in the  hospital4–9, we hypothesized that 

Figure 5.  Logical model captures di�erences in Moderate vs. Severe Injury patients with low MCP-1. 
Simulation with moderate injury and low initial MCP-1 (Panel A) shows MCP-1 remaining low, whereas 
simulation with severe injury and low initial MCP-1 (Panel C) shows a rise and higher sustained MCP-1 levels. 
Similarly, patients with low initial MCP-1 and moderate injury (Panel B) exhibit lower MCP-1 levels throughout 
time course as compared to patients with severe injury (Panel D). Data in (Panels B vs. D) are signi�cantly 
di�erent (P < 0.05) by Two-Way ANOVA.
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this in�ammatory state transition would correlate with hospital discharge rates (Fig. 6A vs B). We observed that 
the model was indeed able to capture the earlier hospital discharge of moderately vs. severely injured patients.

Discussion
In the present study, we inferred initial network connectivity from time-courses of circulating in�ammatory 
mediators in human trauma patients to de�ne central nodes and potential regulatory architectures. �is dynamic 
network analysis suggested a core set of interactions among the chemokines MCP-1/CCL2, MIG/CXCL9, and 
IP-10/CXCL10 upstream of the cytokine IL-6. Building on the inferred network with biological mechanism and 
hypotheses, we constructed a Boolean model of this “chemokine switch” motif that we inferred from the network 
analysis. Predictions from this Boolean model matched data from trauma patients, identi�ed a missing node, 
and correlated to di�erences in LOS between moderate and severe injury groups.

We have suggested previously that a work�ow involving extensive time courses of data, data-driven modeling 
(e.g. network inference), and mechanistic modeling could serve to decipher the complexity of acute in�ammation 
and other complex biological  processes9,37,38. Herein, we demonstrate one example of this work�ow, in which 
we utilized extensive time course data on systemic in�ammatory mediators, suggested a potential regulatory 
architecture, tested this hypothesis computationally using a Boolean framework, inferred missing network nodes, 
and validated aspects of this model using separate data sets obtained from injured patients. Boolean models 
– with their state-based structure and qualitative underpinnings – represent a natural partner to data-driven 
network models. In contrast to reaction network models that are most o�en constructed as systems of di�er-
ential equations, logical models do not require quantitative parameters. In this approach, the network elements 

Figure 6.  Logical model captures di�erences in patient discharge in Moderate vs Severe Injury patients. 
Kaplan–Meier style survival curve with endpoint as steady state (simulations, Panel A) or patient discharge 
(patients, Panel B). Simulations of moderate injury reach steady state sooner than severe injury (top panel). 
Similarly, patients with moderate injury are discharged sooner than severely injured patients (bottom panel).
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are represented with discrete variables, and interactions are de�ned by logical rules. �e resulting model allows 
exploration of dynamical and steady state behavior while providing qualitative comparison to experimental data.

Previous studies have shown that chemokines can be activated either directly by injury or indirectly through 
cytokines such as IFN-γ39,40. Our results in the present study support a highly nuanced role for chemokines 
in the setting of systemic in�ammation induced by traumatic injury, as opposed to a more common view that 
chemokines are largely redundant in their pro-in�ammatory e�ects. �e regulatory architecture inferred com-
putationally in this study – and documented in various related manifestations in other dynamic network studies 
in human blunt  trauma19,41,42 as well as pediatric liver  failure43 – is plausible based on numerous prior studies. 
For example, the switching architecture could be based at least in part on shared receptors, since CXCR3 is the 
receptor for both IP-10 and  MIG23–28. Notably, previous studies have shown that MCP-1 16,18, MIG 30, and IP-10 
41 are all potential biomarkers of adverse outcomes in human blunt trauma patients. Furthermore, recent studies 
in COVID-19 have suggested IP-10 as a major feature of this form of critical  illness44 as well as being a biomarker 
of multiple other infectious  diseases45. Our model suggests a role for IP-10 in moderating more severe in�am-
mation, a hypothesis supported by the protective role of IP-10 in the context of  SARS46.

Our modeling studies are based on levels of circulating in�ammatory mediators, which may be derived from 
circulating cells or from one or more tissues/organs; recent modeling work from our group has pointed to a 
complex, cross-organ spatiotemporal cascade of acute in�ammation that eventually leads to systemic spillover in 
endotoxemic  mice47. �ose studies did not point to speci�c cellular sources, however. While an indirect measure 
of cellular populations, chemokines might re�ect the activities of pro- vs. anti-in�ammatory  neutrophils48–50 and 
 eosinophils51; it is unclear if this occurs in other leukocytes as well. Ultimately, a multiscale model is required to 
connect changes in systemic in�ammatory mediators to the underlying tissue-, cell-, and molecular/signaling-
scale mechanisms in a complex setting such as traumatic  injury52. As a rational approach toward such a model, we 
utilized network inference of abstracted interactions among cytokines to generate hypotheses about mechanism 
that can be further tested and eventually incorporated into a multiscale, mechanistic model. Since most evidence 
suggests that either  insu�cient53 or self-sustaining54 in�ammation drives the pathobiology of trauma/hemor-
rhage and subsequent processes such as nosocomial infection-induced sepsis, we hypothesize that the putative 
“chemokine switch” motif that we have identi�ed through computational modeling is an important regulator 
of these in�ammatory  regimes9. �us, acute in�ammation due to traumatic injury represents a highly complex 
and coordinated response which can become dysregulated when thresholds of injury are  exceeded9,10. Factors 
other than severity are also likely to determine the nature of the proximal mediator structures. �ese include 
patient-speci�c factors such as gene  polymorphisms55,56 and  age57–61.

We hypothesized that the coordination of in�ammatory mediators early in the response dictates the sub-
sequent trajectory. By studying propensity-matched groups of trauma patients with mild, moderate, or severe 
injury, we aimed to elucidate the mechanisms by which their corresponding in�ammatory responses di�ered. 
Accordingly, we applied DyBN methodology to infer the in�ammatory networks across injury severity. Our 
results showed that over a broad range of ISS, a core chemokine motif is observed consistently upstream of the 
central in�ammation-associated cytokine IL-6. Based on DyBN, IL-6 appeared to receive more connections 
as severity of injury increased: for mild injury IL-6 only received input from MIG, whereas for moderate both 
MIG and MCP-1 contributed to the output and for severe MIG, MCP-1 and IP-10 contributed. In the absence 
of experimental perturbations to validate the model, we used trajectories of subgroups to show that the model 
can capture a range of dynamics that were observed in individual patients instead of only the mean behavior to 
which the model was calibrated.

Injury-induced in�ammation has been linked to MODS, in-hospital outcomes, and longer-term  morbidity4–9. 
Given this link between in�ammation and trauma outcomes, and our hypothesis that the “chemokine switch” 
might represent a key determinant of self-sustaining vs. resolving in�ammation, we sought to determine if the 
“chemokine switch” model could be linked in some way to proximal clinical outcomes. Analysis of the state 
transition diagrams of our Boolean model suggested that in the setting of moderate injury, initial conditions of 
the in�ammatory mediators can determine how long it takes to reach the (resolving) steady state. In contrast, all 
trajectories reached steady state at the same time point under severe injury. �is �nding suggests that severity 
of injury may exert a greater impact than individual di�erences in baseline in�ammatory mediators. Notably, 
when viewed as a pseudo-Kaplan–Meier curve, the state transition diagram of the “chemokine switch” Boolean 
model resembled the actual hospital discharge rate of moderately vs. severely injured patients. While this �nd-
ing on its own does not prove a causal link between systemic in�ammation and clinical outcomes as it does 
not consider the role of damage resolution or other factors a�ecting discharge, this result does suggest that the 
“chemokine switch” is related to other pathophysiological processes. Furthermore, this �nding raises the pos-
sibility of patient-speci�c modeling and prediction of in�ammation and clinical discharge based solely on the 
ISS (which is typically available within 24 h following hospital admission), along with initial circulating levels 
of MIG, MCP-1, IP-10, and IL-6. It is intriguing to speculate that this approach may also yield insights into the 
longer-term outcomes of critically ill patients.

�ere are multiple limitations to this study. �e proposed logical model is not the only network that can give 
rise to the observed data and therefore does not represent a unique solution. Since the network is relatively small, 
a more rigorous e�ort to quantify model uncertainty can be made by permuting through all possible Boolean 
functions based on the network topology (i.e. combinations of AND/OR/NOT logic) and measuring the output 
of these models compared to the patient data. Alternatively, one may use Probabilistic Boolean Networks to 
determine the robustness of the model behavior to varying the logical functions encoding  interactions62. Another 
limitation concerns the fact that our logical model is only quasi-mechanistic. �e inferred interactions among 
the in�ammatory mediators in our model are not reaction mechanisms but rather represent e�ects that involve 
activation and recruitment of cells as well as intracellular signaling and gene regulation leading to changes in 
expression/secretion of target cytokines. Another limitation is the possibility the assay kits used in this study 
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detect di�erentially processed versions of the  chemokines63 (e.g. the recently reported processed variant of IP-10, 
which has anti-in�ammatory  properties64), thereby accounting for di�erential pro- vs. anti-in�ammatory e�ects 
in our model. We also note that although we are modeling both pro- and anti-in�ammatory processes, we are 
not modeling healing explicitly.

We assume that injury is present throughout, and therefore a�ects the activation of the chemokines equally 
throughout the time course. However, IL-6 represents a potential bridge between pro- and anti-in�ammatory 
 responses65, and thus the inclusion of IL-6 as an output of the model could tie in to injury repair processes (e.g. 
repair pathways involving transforming growth factor-β1 66). Notably, resolution of in�ammatory mediators as 
determined by steady state in the model does not necessarily correspond to hospital discharge, as there are many 
other clinical factors besides in�ammatory condition that determine discharge.

Lastly, the choice of synchronous updates is based on certain assumptions that may not hold true through-
out the full time course under study. We assume that the events leading to the activation or suppression of 
one in�ammatory mediator on another involve cell migration, signaling, and gene transcription, and therefore 
operate over relatively long timescales. �is simplifying assumption leads to the further assumption that the 
interactions being modeled are similar across each chemokine-chemokine and chemokine-cytokine interaction. 
However, it is possible that these mediators interact on faster timescales. Indeed, there is evidence to suggest that 
the interaction among chemokines may be occurring at the level of competition for shared receptors, a relatively 
fast  process23,27,28. In that case, some of the modeled interactions might necessitate a particular rank order of 
simulation updates or take into account stochastic e�ects (i.e. require asynchronous updates). �us, a more 
thorough characterization of the biochemistry of interactions among cytokines could inform the appropriate 
choice of update scheme and also help re�ne the logical rules in the model.

�ere have been multiple calls for the integration of data-driven and mechanistic modeling as a means 
for overcoming the limited utility of pure machine learning approaches in  biomedicine67,68. In support of this 
approach, our studies de�ne a rational transition from data to data-driven models to mechanistic models in the 
context of a complex human disease and help decipher a novel mechanism for control of systemic acute in�am-
mation. �ese insights combined with the logical modeling structure outlined herein may lead to novel diagnostic 
modalities, in which measurements of chemokines made early following admission may help prognosticate a 
given patient’s in�ammatory and clinical trajectory.

Methods
To de�ne potentially novel control points in systemic acute in�ammation induced by traumatic injury in humans, 
we employed a novel work�ow to e�ectively integrate statistical and generative modeling (Fig. 1). We detail the 
relevant methods for this work�ow below.

Study approval. All human sampling was done following approval by the University of Pittsburgh Institu-
tional Review Board (IRB; Protocol No. MOD08010232-19 / PRO08010232) and in accordance with the Dec-
laration of Helsinki. Informed consent was obtained from each patient or next of kin as per IRB regulations. 
Patients eligible for enrollment in the study were at least 18 years of age, admitted to the ICU a�er being resus-
citated, and per treating physician, were expected to live more than 24 h. Reasons for ineligibility were isolated 
head injury, pregnancy, and penetrating trauma. Laboratory results and other basic demographic data were 
recorded in the database via direct interface with the electronic medical record.

Trauma patient enrollment and sampling. From a cohort of 472 blunt trauma survivors (330 males 
and 142 females, age 48.4 ± 0.9, ISS 19.6 ± 0.5), 48 mildly injured, 47 moderately injured, and 47 severely injured 
patients were matched using IBM SPSS Statistics case–control matching algorithm controlling for age and gen-
der ratio (Table  1). Key clinical and in�ammatory features of this patient cohort were reported  recently20,21. 
Importantly, this sub-cohort represents the age, gender ratio, and mechan93ism of injury ratios of the general 
cohort. Serial blood samples were obtained from all patients (3 samples within the �rst 24 h and then from days 
1 to 7 post-injury). �e number and span of time points sampled for each patient varied, but all patients had at 
least three time points, all within the �rst 24 h post-injury.

Analysis of inflammation biomarkers. �e initial step in our work�ow (Fig. 1A) involved obtaining 
a time-series dataset of circulating, protein-level in�ammatory mediators. Blood samples were collected into 
citrated tubes via central venous or arterial catheters within 24 h of admission and daily up to 7 days post-injury. 
�e blood samples were centrifuged, and plasma aliquots were stored in cryoprecipitate tubes at -80 °C for sub-
sequent analysis of in�ammatory  mediators20. �e human in�ammatory MILLIPLEX MAP Human Cytokine/
Chemokine Panel-Premixed 23-Plex (Millipore Corporation, Billerica, MA) and Luminex 100 IS (Luminex, Aus-
tin, TX) were used to measure plasma levels (in pg/ml) of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), 
IL-2, soluble IL-2 receptor-α (sIL-2Rα), IL-4, IL-5, IL-6, IL-7, IL-8 (CCL8), IL-10, IL-13, IL-15, IL-17, interferon 
(IFN)-γ, IFN-α2, IFN-γ inducible protein (IP)-10 (CXCL10), monokine induced by gamma interferon (MIG; 
CXCL9), macrophage in�ammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), monocyte chemotactic protein 
(MCP)-1 (CCL2), granulocyte–macrophage colony stimulating factor (GM-CSF), Eotaxin (CCL11), and tumor 
necrosis factor alpha (TNF-α). �e Luminex system was used in accordance to manufacturer’s instructions. 
 NO2

-/NO3
- was measured (in µM) using the nitrate reductase/Griess assay (Cayman Chemical Co., Ann Arbor, 

MI). �e time courses of systemic in�ammatory mediators for each patient sub-group are shown in Supplemen-
tal Figure S1. Two-Way Analysis of Variance (ANOVA) was carried out to analyze the changes in in�ammatory 
mediators using SigmaPlot (Systat So�ware, San Jose, CA) as indicated.
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Dynamic Bayesian networks. �e next phase of our work�ow (Fig. 1B-D) involved inference of dynamic 
networks of circulating in�ammatory mediators. Network inference using in�ammatory mediator data was car-
ried out in MATLAB (�e MathWorks, Inc., Natick, MA), using a Dynamic Bayesian Network (DyBN) algo-
rithm adapted from Grzegorczyk &  Husmeier69 and recently used by our  group19,20,70,71. Given time-series data, 
DyBN analysis provides a way of inferring causal relationships among variables (e.g. in�ammatory mediators) 
based on probabilistic measure. Unlike standard correlative approaches, DyBNs consider the joint distribution 
of the entire dataset when making inferences about the dependencies between variables or nodes in the network. 
�e values of each node are assumed to be distributed according to a chosen model (e.g. Gaussian) and the rela-
tionships among nodes are de�ned by the structure of the directed network and the corresponding conditional 
probability distributions of the interacting nodes. Network structure is inferred by a sampling technique that 
iteratively proposes candidate structures and evaluates them based on how well they �t the observed data using 
a speci�ed scoring criterion, until reaching convergence on a network structure with the highest score. �e algo-
rithm uses an inhomogeneous dynamic changepoint model, with a Bayesian Gaussian with score equivalence 
(BGe) scoring criterion. �e output of the aforementioned algorithm is a �nal graph structure indicating the 
interactions. �is algorithm identi�ed MCP-1, MIG, and IP-10 (Fig. 1B-D) as central nodes (i.e., nodes exhib-
iting feedback to themselves as well as bidirectional interactions among themselves), with IL-6 (Fig. 1E) as a 
common output node. �ese core interactions were therefore chosen as the basis of a quasi-mechanistic logical 
(Boolean) model (see below).

Logical model. �e �nal step in our work�ow (Fig. 1E) was the generation of a quasi-mechanistic model 
derived from the inferred dynamic networks of systemic in�ammation. To study the properties of the core 
chemokine network motif, the logical model initially consisted of only the chemokines MCP-1, MIG, and IP-10. 
�is model was connected to injury severity as the initiating event, and IL-6 was added as a key output cytokine, 
as inferred from DyBN inference (see above; Fig. 1E). �e predicted trajectories of these variables were com-
pared to in�ammatory dynamics observed in sub-groups of trauma patients, strati�ed based on injury severity. 
�e elements in the model were connected as inferred in the DyBN analyses carried out on patients with mild, 
moderate, or severe trauma (Fig. 1B-D). Edges were assigned as stimulating or inhibiting based on plausible 
mechanisms upon reviewing the literature and �ne-tuned to reproduce observed cytokine trajectories. Logic 
rules that de�ned the combination of multiple inputs were chosen in a similar fashion. We started all elements as 
strictly two-state Boolean variables, except injury severity, which needed to have three states to represent mild, 
moderate, and severe injury. However, in order to reproduce the clinical data and avoid spurious oscillations, 
MCP-1, IP-10, and IL-6 were modi�ed to have three states as well. �ree-state elements were encoded by split-
ting their corresponding variables to “high” and “low” variables, the sum of which gives the �nal state for that 
element. Model simulations were run with synchronous updates and �xed injury severity, but with random ini-
tial conditions for all other variables, in order to mimic the variability of initial cytokine and chemokine values 
observed in the patient population. Since the initial states were speci�ed as “random”, we ran 1000 simulations 
to ensure that we covered all possible permutations of initial states. Results are presented as mean and standard 
deviation of the 1000 simulations. �e model was encoded and run using Booleannet  so�ware72 and can be 
found on GitHub (https:// github. com/ nazhar/ Chemo kineS witch).

Statistical analysis. All data were analyzed using SigmaPlot 11 so�ware (Systat So�ware, Inc., San 
Jose, CA). Statistical comparisons were performed using either Kruskal–Wallis one-way analysis of variance 
(ANOVA) followed by the Dunn’s post hoc test (for continuous data) or Fisher’s exact test (for categorical data), 
as appropriate.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information �les).
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