A PUTNAM AREA INEQUALITY FOR THE SPECTRUM OF n-TUPLES OF p-HYPONORMAL OPERATORS

B. P. DUGGAL
Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana
(Southern Africa)

(Received 16 December, 1997)

Abstract

We prove an n-tuple analogue of the Putnam area inequality for the spectrum of a single p-hyponormal operator.

Let $B(H)$ denote the algebra of operators (i.e. bounded linear transformations) on a separable Hilbert space H. The operator $A \in B(H)$ is said to be p-hyponormal, $0<p \leq 1$, if $\left|A^{*}\right|^{2 p} \leq|A|^{2 p}$. Let $\mathcal{H}(p)$ denote the class of p-hyponormal operators. Then $\mathcal{H}(1)$ consists of the class of p-hyponormal operators and $\mathcal{H}\left(\frac{1}{2}\right)$ consists of the class of semi-hyponormal operators introduced by D. Xia. (See [11, p. 238] for the appropriate reference.) $\mathcal{H}(p)$ operators for a general p with $0<p<1$ have been studied by a number of authors in the recent past; (see [3, 4, 5] for further references). Generally speaking, $\mathcal{H}(p)$ operators $(0<p<1)$ have spectral properties very similar to those of hyponormal operators. In particular, a Putnam inequality relating the norm of the commutator $D_{p}=|A|^{2 p}-\left|A^{*}\right|^{2 p}$ of $A \in \mathcal{H}(p)$ to the area of the spectrum $\sigma(A)$ of A holds; indeed

$$
\begin{equation*}
\left\|D_{p}\right\| \leq \frac{p}{\pi} \int_{\sigma(A)} r^{2 p-1} \mathrm{~d} r \mathrm{~d} \theta \tag{1}
\end{equation*}
$$

(See [4, Theorem 3]; also see $[7,8]$ for the case $p=1$.)
Let $\mathcal{U}=\left(U_{1}, U_{2}, \ldots U_{n}\right)$ be a commuting n-tuple of unitaries, and let $\mathrm{E}(\cdot)$ denote the spectral measure of \mathcal{U}. Let $\partial \mathbb{D}$ denote the boundary of the unit disc in the complex plane \mathbb{C}, and let $\Gamma(\mathbf{z}), \mathbf{z}=\left(z_{1}, z_{2} \ldots z_{n}\right) \in \sigma(\mathcal{U})$ the Taylor joint spectrum of \mathcal{U}. Denote the set of (all) products $\Delta=\delta_{1} \times \delta_{2} \times \ldots \times \delta_{n}$ of open arcs $\delta_{i} \in \partial \mathbb{D}$ containing $z_{i}(i=1,2, \ldots, n)$. Let $\mathcal{A} \in B(H)$. The Xia spectrum of the non-commuting $(n+1)$-tuple $(\mathcal{U}, \mathcal{A})$, denoted $\sigma_{x}(\mathcal{U}, \mathcal{A})$, is defined to be the set

$$
\left\{(\mathbf{z}, r): \mathbf{z} \in \sigma(\mathcal{U}), r \in \bigcap_{\Delta \in \Gamma(\mathbf{z})} \sigma(E(\Delta) \mathcal{A} E(\Delta))\right\} .
$$

(see [10]). The concept of Xia spectrum has proved to be a very useful one: it has been used by Xia [10] to study the spectra of semi-hyponormal n-tuples, by Chen and Huang [2] to describe the Taylor spectrum of (and prove a Putnam area inequality for) n-tuples of hyponormal operators, and (recently) by Chō and Huruya [3] in their consideration of p-hyponormal tuples. Let $Q_{i}: B(H) \rightarrow B(H)$ be the operator $Q_{i} L=L-\mathcal{U}_{i} L \mathcal{U}_{i}^{*} ; \mathcal{U}_{i} s$, as above. Let $\mathcal{A} \geq 0$. Then $(\mathcal{U}, \mathcal{A})$ is said to be a p-hyponormal tuple if $Q_{i_{1}} Q_{i_{2}} \ldots Q_{i_{k}} \mathcal{A}^{2 p} \geq 0$, for all $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

Extending Xia's result on semi-hyponormal tuples [10], Chō and Huruya [3] have shown that if $(\mathcal{U}, \mathcal{A})$ is a p-hyponormal tuple, then

$$
\begin{equation*}
\left\|Q_{1} Q_{2} \ldots Q_{n} \mathcal{A}^{2 p}\right\| \leq \frac{2 p}{(2 \pi)^{n}} \int_{\sigma_{x}(\mathcal{U}, \mathcal{A})} \ldots \int r^{2 p-1} \mathrm{~d} \theta_{1} \mathrm{~d} \theta_{2} \ldots \mathrm{~d} \theta_{n} \mathrm{~d} r . \tag{2}
\end{equation*}
$$

In this note we prove an analogue of inequality (1) for n-tuples of doubly commuting $\mathcal{H} U(p)$ operators (notation as below).

It is an immediate consequence of the Löwner inequality [11, p. 5] that an $\mathcal{H}(p)$ operator is an $\mathcal{H}(q)$ operator, for all $0<q \leq p$; hence we may assume that $0<p<\frac{1}{2}$. If an $A \in \mathcal{H}(p), 0<p<\frac{1}{2}$, has equal defect and nullity, then the partial isometry U in the polar decomposition $A=U|A|$ may be taken to be a unitary. Let $\mathcal{H} U(p)$ denote those $A \in \mathcal{H}(p)$ for which the partial isometry $U($ in $A=U|A|)$ is unitary. Given an $A_{i} \in \mathcal{H} U(p), A_{i}=U_{i}\left|A_{i}\right|$, define $\hat{A}_{i}=V_{i}\left|\hat{A}_{i}\right|$ and $\tilde{A}_{i}=W_{i}\left|\tilde{A}_{i}\right|$ by $\hat{A}_{i}=\left|A_{i}\right|^{\frac{1}{2}} U_{i}\left|A_{i}\right|^{\frac{1}{2}}$ and $\tilde{A}_{i}=\left|\hat{A}_{i}\right|^{\frac{1}{2}} V_{i}\left|\hat{A}_{i}\right|^{\frac{1}{2}} ; \hat{A}_{i}$ then $\in \mathcal{H} U\left(p+\frac{1}{2}\right)$ and $\tilde{A}_{i} \in \mathcal{H} U(1)$. Let A denote the n-tuple $\mathbb{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right), A_{i} \in \underset{\sim}{\mathcal{H}} U(p)$ for all $1 \leq i \leq n$, and let $\breve{\mathbb{A}}$ denote the n-tuple $\breve{\mathrm{A}}=\left(U_{1} V_{1}\left|\tilde{A}_{i}\right|^{p}, \ldots, U_{n} V_{n}\left|\tilde{A}_{n}\right|^{p}\right)$. Define the commutators $D_{p i}, \tilde{D}_{p i}, \tilde{D}_{i}$ and $\breve{D}_{p i}$ as follows:

$$
\begin{aligned}
& D_{p i}=\left|A_{i}\right|^{2 p}-\left|A_{i}^{*}\right|^{2 p}(\geq 0), \tilde{D}_{p i}=\left|\tilde{A}_{i}\right|^{2 p}-\left|\tilde{A}_{i}^{*}\right|^{2 p}(\geq 0), \\
& \tilde{D}_{i}=\left|\tilde{A}_{i}\right|^{2}-\left|\tilde{A}_{i}^{*}\right|^{2}(\geq 0) \text { and } \breve{D}_{p i}=\left|\tilde{A}_{i}\right|^{2 p}-U_{i} V_{i}\left|\tilde{A}_{i}^{*}\right|^{2 p} V_{i}^{*} U_{i}^{*}
\end{aligned}
$$

Let

$$
D_{p}=\prod_{i=1}^{n} D_{p i}, \quad \tilde{D}=\prod_{i=1}^{n} \tilde{D}_{i} \quad \text { and } \quad \breve{D}_{p}=\prod_{i=1}^{n} \breve{D}_{p i} .
$$

Let $\mathrm{d} \nu$ denote the Lebesgue volume measure in \mathbb{C}^{n}, let m denote the (normalized) Haar measure on $\partial \mathbb{D}$ and let μ denote the linear Lebesgue measure. For a given $A_{i} \in \mathcal{H} U(p)$, let P_{i} denote the pure part (= completely non-normal part) of A_{i}. We prove the following result.

Theorem. If \mathbb{A} is doubly commuting, then

$$
\begin{equation*}
\left\|D_{p}\right\| \leq \min \left\{\frac{2 p}{(2 \pi)^{n}} \int_{\sigma_{x}\left(\mathcal{U}, \mathcal{A}_{n}\right)} \ldots \int \mathrm{d} \theta_{1} \mathrm{~d} \theta_{2} \ldots \mathrm{~d} \theta_{n} \mathrm{~d} r, \frac{1}{\pi^{n}} \int_{\sigma(\widetilde{A})} \int \mathrm{d} \nu\right\}, \tag{3}
\end{equation*}
$$

where $\mathcal{A}_{n}=\prod_{i=1}^{n}\left|\tilde{A}_{i}\right|$ and \mathcal{U} is as defined in Lemma 3 (below). If also either
(i) $m\left(\sigma\left(U_{i} V_{i}\right)\right)=0$ or (ii) $\mu\left(\sigma\left|P_{i}\right|\right)=0$, for all $1 \leq i \leq n$, then

$$
\begin{equation*}
\left\|D_{p}\right\| \leq \frac{1}{\pi^{n p}}\left(\int_{\sigma(\mathrm{A})} \int_{\mathrm{d}} \mathrm{~d} v\right)^{p} \tag{4}
\end{equation*}
$$

Remark. The hypothesis that $\mu\left(\sigma\left(\left|P_{i}\right|\right)\right)=0$ implies that there exists a finite or countably infinite number of pairwise disjoint annuli $0_{n}=\left\{\lambda: a_{n}<|\lambda|<b_{n}\right\}$, $n=1,2, \ldots$, such that $\sigma\left(P_{i}\right)=U 0_{n}$ (see [9, Theorem 9]).

The proof of the theorem proceeds through a number of steps, stated below as lemmas.

Lemma 1. $0 \leq D_{p i} \leq \breve{D}_{p i}$, for all $1 \leq i \leq n$.
Proof. Let $E_{i}^{1 / 2 p}=U_{i}^{*}\left|A_{i}\right|^{2 p} U_{i}, \quad F_{i}=\left|A_{i}\right|^{2 p}$ and $G_{i}=U_{i}\left|A_{i}\right|^{2 p} U_{i}^{*}$; then, since $A_{i} \in \mathcal{H} U(p), E_{i}=U_{i}^{*}\left|A_{i}\right|^{2 p} U_{i} \geq F_{i} \geq G_{i}$. It follows from an application of the Furuta inequality [6] that

$$
\left|A_{i}^{*}\right|^{2\left(p+\frac{1}{2}\right)} \leq\left|A_{i}\right|^{2\left(p+\frac{1}{2}\right)} \leq\left|\hat{A}_{i}\right|^{2\left(p+\frac{1}{2}\right)} .
$$

The operator A_{i} being $\mathcal{H} U\left(p+\frac{1}{2}\right)$ is $\mathcal{H} U\left(\frac{1}{2}\right)$, and so $V_{i}\left|A_{i}\right| V_{i}^{*} \leq\left|\hat{A}_{i}\right| \leq V_{i}^{*}\left|\hat{A}_{i}\right| V_{i}$. This (together with an additional argument, similar to the one above) implies that

$$
\left|\tilde{A}_{i}^{*}\right|^{2 p} \leq\left|\hat{A}_{i}\right|^{2 p} \leq\left|\tilde{A}_{i}\right|^{2 p} .
$$

Hence

$$
\begin{aligned}
\breve{D}_{p i} & =\left|\tilde{A}_{i}\right|^{2 p}-U_{i} V_{i}\left|\tilde{A}_{i}^{*}\right|^{2 p} V_{i}^{*} U_{i}^{*} \\
& \geq\left|\hat{A}_{i}\right|^{2 p}-U_{i} V_{i}\left|\hat{A}_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}=\left|\hat{A}_{i}\right|^{2 p}-U_{i}\left|\hat{A}_{i}^{*}\right|^{2 p} U_{i}^{*} \\
& \geq\left|A_{i}\right|^{2 p}-U_{i}\left|A_{i}\right|^{2 p} U_{i}^{*} \\
& =\left|A_{i}\right|^{2 p}-\left|A_{i}^{*}\right|^{2 p}=D_{p i} \geq 0 .
\end{aligned}
$$

Given $A, B, \in B(H)$, let $[A, B]=A B-B A$. Recall that the n-tuple A is said to be doubly commuting if

$$
\left[A_{i}, A_{j}\right]=0=\left[A_{i}, A_{j}^{*}\right]
$$

for all $1 \leq i \neq j \leq n$.
Lemma 2. If A is doubly commuting, then $\left[D_{p i}, D_{p j}\right]=0=\left[\breve{D}_{p i}, \breve{D}_{p j}\right]$, for all $1 \leq i$, $j \leq n$, and $0 \leq D_{p} \leq \breve{D}_{p}$.

Proof. The doubly commuting property of \mathbb{A} implies that $\left[S_{i}, T_{j}\right]=0$, for all $1 \leq i \neq j \leq n$, where S_{i} is either of ${\underset{\tilde{A}}{i}}^{i}, V_{i}, W_{i},\left|A_{i}\right|,\left|\hat{A}_{i}\right|$ and $\left|\tilde{A}_{i}\right|$, and (similarly) T_{j} is either $U_{j}, V_{j}, W_{j},\left|A_{j}\right|,\left|\hat{A}_{j}\right|$ and $\left|\tilde{A}_{j}\right|$. (See [5, Lemma 1].) This implies that
$\left[D_{p i}, D_{p j}\right]=0=\left[\breve{D}_{p i}, \breve{D}_{p j}\right]$, for all $1 \leq i, j \leq n$. The commutativity of $D_{p i}$ with $D_{p j}$ taken together with the positivity of $D_{p i}$, for all $1 \leq i \leq n$, implies that $D_{p} \geq 0$. Since $\breve{D}_{p i} \geq D_{p i}$, for all i, and $\breve{D}_{p i}$ commutes with $\breve{D}_{p j}$, for all $1 \leq i \neq j \leq n, \breve{D}_{p} \geq D_{p}$.

Let \mathbb{A} be doubly commuting; let \mathcal{A}_{n} and $U_{i}(1 \leq i \leq n)$ be the operators $\mathcal{A}_{n}=\prod_{i=1}^{n}\left|\tilde{A}_{i}\right|$ and $\mathcal{U}_{i}=$ sum of the $\binom{n}{i}$ combinations of $U_{1} V_{1} W_{1}, U_{2} V_{2} W_{2}, \ldots$, $U_{n} V_{n} W_{n}$ taken i at a time. Let

$$
\mathcal{U}=\left(\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots, \mathcal{U}_{n}\right)
$$

then the n-tuple \mathcal{U} consists of mutually commuting unitaries and the Xia spectrum $\sigma_{x}\left(\mathcal{U}, \mathcal{A}_{n}\right)$ is well defined.

Lemma 3. If \mathbb{A} is doubly commuting, then

$$
\left\|D_{p}\right\| \leq \frac{2 p}{(2 \pi)^{n}} \int_{\sigma_{x}\left(\mathcal{U}, \mathcal{A}_{n}\right)} \ldots \int r^{2 p-1} \mathrm{~d} \theta_{1} \mathrm{~d} \theta_{2} \ldots \mathrm{~d} \theta_{n} \mathrm{~d} r .
$$

Proof. Let $Q_{i}: B(H) \rightarrow B(H), 1 \leq i \leq n$, be defined as before. A straight forward computation (using the commutativity relations [S_{i}, T_{j}] of Lemma 2) shows that

$$
\begin{aligned}
0 \leq \prod_{j=1}^{k} D_{p i_{j}} & \leq \prod_{j=1}^{k} \breve{D}_{p i_{j}} \\
& =Q_{i_{1}} Q_{i_{2}} \ldots Q_{i_{k}}\left(\prod_{j=1}^{k}\left|\tilde{A}_{i_{j}}\right|\right)^{2 p} \\
& =Q_{i_{1}} Q_{i_{2}} \ldots Q_{i_{k}} \mathcal{A}_{k}^{2 p}
\end{aligned}
$$

for all $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$. Hence the $(n+1)$-tuple $\left(\mathcal{U}, \mathcal{A}_{n}\right)$ is p-hyponormal (equivalently, $\left(\mathcal{U}, \mathcal{A}_{n}^{2 p}\right)$ is semi-hyponormal). It follows from [3, Theorem 2] and [10, Theorem 5]) that

$$
\left\|D_{p}\right\| \leq\left\|\breve{D}_{p}\right\| \leq \frac{2 p}{(2 \pi)^{n}} \int_{\sigma_{x}\left(\mathcal{U}, \mathcal{A}_{n}\right)} \ldots \int r^{2 p-1} \mathrm{~d} \theta_{1} \mathrm{~d} \theta_{2} \ldots \mathrm{~d} \theta_{n} \mathrm{~d} r .
$$

Given an $A_{i} \in \mathcal{H} U(p)$, let $A_{i}=N_{i} \oplus P_{i}$ denote the direct sum decomposition of A_{i} into its normal and pure parts.

Lemma 4. Given $A_{i} \in \mathcal{H} U(p)$, we have

$$
\begin{align*}
\|\left|A_{i}\right|^{2 p} & -U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*} \| \\
& \leq \min \left\{\|\left|\left|A_{i}\right|^{2 p}\right| \mid m\left(\sigma\left(U_{i} V_{i}\right)\right), \mu\left(\sigma\left(\left|A_{i}\right|^{2 p}\right)\right)\right\} \tag{5}
\end{align*}
$$

Proof. Let $A_{i}=U_{i}\left|A_{i}\right| \in \mathcal{H} U(p)$; then

$$
\begin{aligned}
\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}= & U_{i}\left\{U_{1}^{*}\left|A_{i}\right|^{2 p} U_{i}-V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*}\right\} U_{i}^{*} \\
\geq & U_{i}\left\{\left|A_{i}\right|^{2 p}-V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*}\right\} U_{i}^{*}\left(\text { since } A_{i} \in \mathcal{H} U(p)\right) \\
\geq & U_{i}\left\{\left|A_{i}\right|^{2 p}-V_{i}\left|\hat{A}_{i}\right|^{2 p} V_{i}^{*}\right\} U_{i}^{*} \\
& \left(\text { since }\left|A_{i}\right|^{2 p} \leq\left|\hat{A}_{i}\right|^{2 p}\right. \text { by Lemma 1) } \\
= & U_{i}\left\{\left|A_{i}\right|^{2 p}-\left|\hat{A}_{i}^{*}\right|^{2 p}\right\} U_{i}^{*} \\
\geq & 0\left(\text { since }\left|\hat{A}_{i}^{*}\right|^{2 p} \leq\left|A_{i}\right|^{2 p} \text { - see Lemma 1) } .\right.
\end{aligned}
$$

Clearly, $P_{i} \in \mathcal{H} U(p)$. Let P_{i} have the polar decomposition $P_{i}=u_{i}\left|P_{i}\right|$ and define (the pure $\mathcal{H} U\left(p+\frac{1}{2}\right)$ operator) $\hat{P}_{i}=v_{i}\left|\hat{P}_{i}\right|$ by $\hat{P}_{i}=\left|P_{i}\right|^{\frac{1}{2}} u_{i}\left|P_{i}\right|^{\frac{1}{2}}$. Then $0 \leq\left|P_{i}\right|^{\frac{1}{2}}-u_{i} v_{i}\left|P_{i}\right|^{2 p} v_{i}^{*} u_{i}^{*}, u_{i}$ and v_{i} are unitaries; also

$$
\begin{aligned}
\left\|\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}\right\| & =\left\|0 \oplus\left(\left|P_{i}\right|^{2 p}-u_{i} v_{i}\left|P_{i}\right|^{2 p} v_{i}^{*} u_{i}^{*}\right)\right\| \\
& =\left\|\left|P_{i}\right|^{2 p}-u_{i} v_{i}\left|P_{i}\right|^{2 p} v_{i}^{*} u_{i}^{*}\right\| \\
& \leq \mu\left(\sigma\left(\left|P_{i}\right|^{2 p}\right)\right)(\text { by }[7, \text { p. 143; Problem 5(b) }]) \\
& \leq \mu\left(\sigma\left(\left|A_{i}\right|^{2 p}\right)\right) .
\end{aligned}
$$

Since $0 \leq\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*},\left\|\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}\right\| \leq\left\|\left|A_{i}\right|^{2 p}\right\| m\left(\sigma\left(U_{i} V_{i}\right)\right)$, (by [7, p. 143; Problem 5(a)]), the lemma is proved.

Proof of the Theorem. As seen in Lemmas 1 and $\underset{\sim}{2}, 0 \leq D_{p i} \leq \breve{D}_{p i}$ and $0 \leq D_{p} \leq \breve{D}_{p}$. Hence $\left\|D_{p}\right\| \leq\left\|\breve{D}_{p}\right\|$. Since the operator $U_{i} V_{i}\left|\tilde{A}_{i}\right|^{p}$ is hyponormal for all $1 \leq i \leq n, \breve{A}$ is a doubly commuting n-tuple of hyponormal operators. Hence, by [2, Theorem 5], we have

$$
\left\|D_{p}\right\| \leq \frac{1}{\pi^{n}} \int_{\sigma(\overline{\mathrm{A}})} \ldots \int \mathrm{d} v .
$$

Combining this with inequality (5) we have inequality (3). We now prove inequality (4).

$$
\text { Let } \prod_{i=1}^{n^{\prime}} D_{p i}=D_{p 1} D_{p 2} \ldots D_{p(i-1)} D_{p(i+1)} \ldots D_{p n}, \quad \hat{D}_{p i}=U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}-\left|A_{i}^{*}\right|^{2 p}
$$

If either of the hypotheses (i) or (ii) of the statement of the theorem holds, then $\left\|\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}\right\|=0$; (see the proof of Lemma 4). Suppose now that either (i) or (ii) holds. Then

$$
\begin{aligned}
\left\|D_{p}\right\| & \left.=\|\left(\prod_{i=1}^{n^{\prime}} D_{p i}\right)\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}+\hat{D}_{p i}\right) \| \\
& \leq\left\|\left(\prod_{i=1}^{n^{\prime}} D_{p i}\right)\right\|\left\|\left|A_{i}\right|^{2 p}-U_{i} V_{i}\left|A_{i}\right|^{2 p} V_{i}^{*} U_{i}^{*}\right\|+\left\|\left(\prod_{i=1}^{n^{\prime}} D_{p i}\right) \hat{D}_{p i}\right\| \\
& =\left\|\left(\prod_{i=1}^{n^{\prime}} D_{p i}\right) \hat{D}_{p i}\right\|
\end{aligned}
$$

and so, by repeating the argument, it follows that

$$
\begin{aligned}
\left\|D_{p}\right\| & \leq \ldots \leq\left\|\prod_{i=1}^{n} \hat{D}_{p i}\right\| \leq\left\|\prod_{i=1}^{n} U_{i} V_{i}\left(\left|\tilde{A}_{i}\right|^{2 p}-\left|\tilde{A}_{i}^{*}\right|^{2 p}\right) V_{i}^{*} U_{i}^{*}\right\| \\
& =\left\|\prod_{i=1}^{n} \tilde{D}_{p i}\right\|=\left\|\left(\prod_{i=1}^{n^{\prime}} \tilde{D}_{p i}\right)\left(\left|\tilde{A}_{i}\right|^{2 p}-\left|\tilde{A}_{i}^{*}\right|^{2 p}\right)\right\|
\end{aligned}
$$

(See the proof of Lemma 1.)
Let $\prod_{i=1}^{n^{\prime}} \tilde{D}_{p i}=\tilde{D}_{p 1} \tilde{D}_{p 2} \ldots \tilde{D}_{p(i-1)} \ldots \tilde{D}_{p(i+1)} \ldots \tilde{D}_{p n}=d$; then $d \geq 0$ and d commutes with \tilde{A}_{i}. Since \tilde{A}_{i} is hyponormal, we have

$$
\begin{aligned}
\left\|D_{p}\right\| & \leq\left\|\left(d^{\frac{1}{p}}\left|\tilde{A}_{i}\right|^{2}\right)^{p}-\left(d^{\frac{1}{p}}\left|\tilde{A}_{i}^{*}\right|^{2}\right)^{p}\right\| \\
& \leq\left\|\left\{\left.d^{\frac{1}{p}} \tilde{A}_{i}\right|^{2}-d^{\frac{1}{p}}\left|\tilde{A}_{i}^{*}\right|^{2}\right\}^{p}\right\|(\text { by }[\mathbf{1}, \text { Theorem 1] }) \\
& =\left\|d \tilde{D}_{i}^{p}\right\| .
\end{aligned}
$$

Hence, by repeating the argument, we obtain

$$
\left\|D_{p}\right\| \leq\left\|d \tilde{D}_{i}^{p}\right\| \leq \ldots \leq\left\|\left(\prod_{i=1}^{n} \tilde{D}_{i}\right)^{p}\right\| \leq\left\|\prod_{i=1}^{n} \tilde{D}_{i}\right\|^{p}
$$

(since $0<p<\frac{1}{2}$). The n-tuple $\tilde{\mathbb{A}}=\left(\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{n}\right)$ is a doubly commuting n-tuple of hyponormal operators; applying [2, Theorem 5] we obtain

$$
\left\|D_{p}\right\| \leq\left\|\prod_{i=1}^{n} \tilde{D}_{i}\right\|^{p} \leq \frac{1}{\pi^{n p}}\left(\int_{\sigma(\tilde{\mathbb{A}})} \int \mathrm{d} v\right)^{p} .
$$

Recall that $\sigma(\tilde{\mathbb{A}})=\sigma(\mathbb{A})$ by $[\mathbf{4}$; Theorem 1]; hence

$$
\left\|D_{p}\right\| \leq \frac{1}{\pi^{n p}}\left(\int_{\sigma(\tilde{A})} \int_{d} \mathrm{~d} \nu\right)^{p}
$$

This completes the proof.

Acknowledgements. It is my pleasure to thank Professor Muneo Chō for supplying me with a preprint copy of [3].

REFERENCES

1. T. Ando, Comparison of norms $\||f(A)-f(B) \||$ and $\||f(|A-B|)| \|$, Math. Z. 197 (1988), 403-409.
2. X. Chen and C. Huang, On the representation of the joint spectrum for a commuting n-tuple of non-normal operators, Acta Math. Sinica (New Series) 3(1987), 215-226.
3. M. Chō and T. Huruya, Putnam's inequality for p-hyponormal n-tuples, Glasgow Math. J. 41 (1999), 13-17.
4. M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 2435-2440.
5. B. P. Duggal, On the spectrum of n-tuples of p-hyponormal operators, Glasgow Math. J. 39 (1997), 405-413.
6. T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq B^{\frac{(p+2 r)}{q}}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
7. M. Martin and M. Putinar, Lectures on hyponormal operators (Birkhauser Verlag, Basel, 1989).
8. C. R. Putnam, Commutation properties of Hilbert space operators and related topics (Springer-Verlag, 1967).
9. C. R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc. 188 (1974), 419-428.
10. D. Xia, On the semi-hyponormal n-tuple of operators, Integral Equations Operator Theory 6 (1983), 879-898.
11. D. Xia, Spectral theory of hyponormal operators (Birkhauser Verlag, Basel, 1983).
