A PUTNAM AREA INEQUALITY FOR THE SPECTRUM OF *n*-TUPLES OF *p*-HYPONORMAL OPERATORS

B. P. DUGGAL

Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana (Southern Africa)

(Received 16 December, 1997)

Abstract. We prove an *n*-tuple analogue of the Putnam area inequality for the spectrum of a single *p*-hyponormal operator.

Let B(H) denote the algebra of operators (i.e. bounded linear transformations) on a separable Hilbert space H. The operator $A \in B(H)$ is said to be *p*-hyponormal, $0 , if <math>|A^*|^{2p} \le |A|^{2p}$. Let $\mathcal{H}(p)$ denote the class of *p*-hyponormal operators. Then $\mathcal{H}(1)$ consists of the class of *p*-hyponormal operators and $\mathcal{H}(\frac{1}{2})$ consists of the class of semi-hyponormal operators introduced by D. Xia. (See [11, p. 238] for the appropriate reference.) $\mathcal{H}(p)$ operators for a general *p* with 0 have beenstudied by a number of authors in the recent past; (see [3, 4, 5] for further refer $ences). Generally speaking, <math>\mathcal{H}(p)$ operators. In particular, a Putnam inequality relating the norm of the commutator $D_p = |A|^{2p} - |A^*|^{2p}$ of $A \in \mathcal{H}(p)$ to the area of the spectrum $\sigma(A)$ of A holds; indeed

$$||D_p|| \le \frac{p}{\pi} \int_{\sigma(A)} r^{2p-1} \mathrm{d}r \, \mathrm{d}\theta \tag{1}$$

(See [4, Theorem 3]; also see [7,8] for the case p = 1.)

Let $\mathcal{U} = (U_1, U_2, ..., U_n)$ be a commuting *n*-tuple of unitaries, and let $E(\cdot)$ denote the spectral measure of \mathcal{U} . Let $\partial \mathbb{D}$ denote the boundary of the unit disc in the complex plane \mathbb{C} , and let $\Gamma(\mathbf{z}), \mathbf{z} = (z_1, z_2 ... z_n) \in \sigma(\mathcal{U})$ the Taylor joint spectrum of \mathcal{U} . Denote the set of (all) products $\Delta = \delta_1 \times \delta_2 \times ... \times \delta_n$ of open arcs $\delta_i \in \partial \mathbb{D}$ containing z_i (i = 1, 2, ..., n). Let $\mathcal{A} \in B(\mathcal{H})$. The Xia spectrum of the non-commuting (n + 1)-tuple (\mathcal{U}, \mathcal{A}), denoted $\sigma_x(\mathcal{U}, \mathcal{A})$, is defined to be the set

$$\{(\mathbf{z},r): \mathbf{z} \in \sigma(\mathcal{U}), r \in \bigcap_{\Delta \in \Gamma(\mathbf{z})} \sigma(E(\Delta)\mathcal{A}E(\Delta))\}.$$

(see [10]). The concept of Xia spectrum has proved to be a very useful one: it has been used by Xia [10] to study the spectra of semi-hyponormal *n*-tuples, by Chen and Huang [2] to describe the Taylor spectrum of (and prove a Putnam area inequality for) *n*-tuples of hyponormal operators, and (recently) by Chō and Huruya [3] in their consideration of *p*-hyponormal tuples. Let $Q_i : B(H) \rightarrow B(H)$ be the operator $Q_i L = L - U_i L U_i^*; U_i s$, as above. Let $A \ge 0$. Then (U, A) is said to be a *p*-hyponormal tuple if $Q_{i_1} Q_{i_2} \dots Q_{i_k} A^{2p} \ge 0$, for all $1 \le i_1 < i_2 < \dots < i_k \le n$. Extending Xia's result on semi-hyponormal tuples [10], Chō and Huruya [3] have shown that if $(\mathcal{U}, \mathcal{A})$ is a *p*-hyponormal tuple, then

$$||Q_1Q_2\dots Q_n\mathcal{A}^{2p}|| \leq \frac{2p}{(2\pi)^n} \int_{\sigma_x(\mathcal{U},\mathcal{A})} \dots \int r^{2p-1} d\theta_1 d\theta_2\dots d\theta_n dr.$$
(2)

In this note we prove an analogue of inequality (1) for *n*-tuples of doubly commuting $\mathcal{H}U(p)$ operators (notation as below).

It is an immediate consequence of the Löwner inequality [11, p. 5] that an $\mathcal{H}(p)$ operator is an $\mathcal{H}(q)$ operator, for all $0 < q \leq p$; hence we may assume that $0 . If an <math>A \in \mathcal{H}(p)$, 0 , has equal defect and nullity, then the partial isometry <math>U in the polar decomposition A = U|A| may be taken to be a unitary. Let $\mathcal{H}U(p)$ denote those $A \in \mathcal{H}(p)$ for which the partial isometry U (in A = U|A|) is unitary. Given an $A_i \in \mathcal{H}U(p)$, $A_i = U_i|A_i|$, define $\hat{A}_i = V_i|\hat{A}_i|$ and $\tilde{A}_i = W_i|\tilde{A}_i|$ by $\hat{A}_i = |A_i|^{\frac{1}{2}}U_i|A_i|^{\frac{1}{2}}$ and $\tilde{A}_i = |\hat{A}_i|^{\frac{1}{2}}V_i|\hat{A}_i|^{\frac{1}{2}}$; \hat{A}_i then $\in \mathcal{H}U(p + \frac{1}{2})$ and $\tilde{A}_i \in \mathcal{H}U(1)$. Let \mathbb{A} denote the *n*-tuple $\mathbb{A} = (A_1, A_2, \ldots, A_n)$, $A_i \in \mathcal{H}U(p)$ for all $1 \leq i \leq n$, and let \mathbb{A} denote the *n*-tuple $\mathbb{A} = (U_1V_1|\tilde{A}_i|^p, \ldots, U_nV_n|\tilde{A}_n|^p)$. Define the commutators D_{pi} , \tilde{D}_{pi} , \tilde{D}_i and \tilde{D}_{pi} as follows:

$$D_{pi} = |A_i|^{2p} - |A_i^*|^{2p} (\ge 0), \ \tilde{D}_{pi} = |\tilde{A}_i|^{2p} - |\tilde{A}_i^*|^{2p} (\ge 0),$$

$$\tilde{D}_i = |\tilde{A}_i|^2 - |\tilde{A}_i^*|^2 (\ge 0) \text{ and } \ \tilde{D}_{pi} = |\tilde{A}_i|^{2p} - U_i V_i |\tilde{A}_i^*|^{2p} V_i^* U_i^*.$$

Let

$$D_p = \prod_{i=1}^n D_{pi}, \quad \tilde{D} = \prod_{i=1}^n \tilde{D}_i \text{ and } \breve{D}_p = \prod_{i=1}^n \breve{D}_{pi}$$

Let $d\nu$ denote the Lebesgue volume measure in \mathbb{C}^n , let *m* denote the (normalized) Haar measure on $\partial \mathbb{D}$ and let μ denote the linear Lebesgue measure. For a given $A_i \in \mathcal{H}U(p)$, let P_i denote the pure part (=completely non-normal part) of A_i . We prove the following result.

THEOREM. If \mathbb{A} is doubly commuting, then

$$||D_p|| \le \min\left\{\frac{2p}{(2\pi)^n} \int\limits_{\sigma_x(\mathcal{U},\mathcal{A}_n)} \dots \int d\theta_1 d\theta_2 \dots d\theta_n dr, \frac{1}{\pi^n} \int\limits_{\sigma(\check{\mathbb{A}})} \int d\nu\right\},\tag{3}$$

where $A_n = \prod_{i=1}^n |\tilde{A}_i|$ and U is as defined in Lemma 3 (below). If also either

(i)
$$m(\sigma(U_iV_i)) = 0$$
 or (ii) $\mu(\sigma|P_i|) = 0$, for all $1 \le i \le n$, then

$$||D_p|| \le \frac{1}{\pi^{np}} \left(\int_{\sigma(\mathbb{A})} \int \mathrm{d}\nu \right)^p.$$
(4)

REMARK. The hypothesis that $\mu(\sigma(|P_i|)) = 0$ implies that there exists a finite or countably infinite number of pairwise disjoint annuli $0_n = \{\lambda : a_n < |\lambda| < b_n\}, n = 1, 2, ...,$ such that $\sigma(P_i) = U 0_n$ (see [9, Theorem 9]).

The proof of the theorem proceeds through a number of steps, stated below as lemmas.

LEMMA 1. $0 \le D_{pi} \le \check{D}_{pi}$, for all $1 \le i \le n$.

Proof. Let $E_i^{1/2p} = U_i^* |A_i|^{2p} U_i$, $F_i = |A_i|^{2p}$ and $G_i = U_i |A_i|^{2p} U_i^*$; then, since $A_i \in \mathcal{H}U(p)$, $E_i = U_i^* |A_i|^{2p} U_i \ge F_i \ge G_i$. It follows from an application of the Furuta inequality [6] that

$$|A_i^*|^{2\left(p+\frac{1}{2}\right)} \le |A_i|^{2\left(p+\frac{1}{2}\right)} \le |\hat{A}_i|^{2\left(p+\frac{1}{2}\right)}.$$

The operator A_i being $\mathcal{H}U(p+\frac{1}{2})$ is $\mathcal{H}U(\frac{1}{2})$, and so $V_i|A_i|V_i^* \le |\hat{A}_i| \le V_i^*|\hat{A}_i|V_i$. This (together with an additional argument, similar to the one above) implies that

$$|\tilde{A}_i^*|^{2p} \le |\hat{A}_i|^{2p} \le |\tilde{A}_i|^{2p}.$$

Hence

$$\begin{split} \check{D}_{pi} &= |\tilde{A}_i|^{2p} - U_i V_i |\tilde{A}_i^*|^{2p} V_i^* U_i^* \\ &\geq |\hat{A}_i|^{2p} - U_i V_i |\hat{A}_i|^{2p} V_i^* U_i^* = |\hat{A}_i|^{2p} - U_i |\hat{A}_i^*|^{2p} U_i^* \\ &\geq |A_i|^{2p} - U_i |A_i|^{2p} U_i^* \\ &= |A_i|^{2p} - |A_i^*|^{2p} = D_{pi} \geq 0. \end{split}$$

Given $A, B, \in B(H)$, let [A, B] = AB - BA. Recall that the *n*-tuple A is said to be *doubly commuting* if

$$[A_i, A_j] = 0 = [A_i, A_j^*],$$

for all $1 \le i \ne j \le n$.

LEMMA 2. If \mathbb{A} is doubly commuting, then $[D_{pi}, D_{pj}] = 0 = [\check{D}_{pi}, \check{D}_{pj}]$, for all $1 \leq i$, $j \leq n$, and $0 \leq D_p \leq \check{D}_p$.

Proof. The doubly commuting property of \mathbb{A} implies that $[S_i, T_j] = 0$, for all $1 \le i \ne j \le n$, where S_i is either of $U_i, V_i, W_i, |A_i|, |\hat{A}_i|$ and $|\tilde{A}_i|$, and (similarly) T_j is either $U_j, V_j, W_j, |A_j|, |\hat{A}_j|$ and $|\tilde{A}_j|$. (See [5, Lemma 1].) This implies that

 $[D_{pi}, D_{pj}] = 0 = [\check{D}_{pi}, \check{D}_{pj}]$, for all $1 \le i, j \le n$. The commutativity of D_{pi} with D_{pj} taken together with the positivity of D_{pi} , for all $1 \le i \le n$, implies that $D_p \ge 0$. Since $\check{D}_{pi} \ge D_{pi}$, for all *i*, and \check{D}_{pi} commutes with \check{D}_{pj} , for all $1 \le i \ne j \le n, \check{D}_p \ge D_p$.

Let \mathbb{A} be doubly commuting; let \mathcal{A}_n and $U_i (1 \le i \le n)$ be the operators $\mathcal{A}_n = \prod_{i=1}^n |\tilde{\mathcal{A}}_i|$ and $\mathcal{U}_i = \text{sum of the } \binom{n}{i}$ combinations of $U_1 V_1 W_1$, $U_2 V_2 W_2$, ..., $U_n V_n W_n$ taken *i* at a time. Let

$$\mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_n);$$

then the *n*-tuple \mathcal{U} consists of mutually commuting unitaries and the Xia spectrum $\sigma_x(\mathcal{U}, \mathcal{A}_n)$ is well defined.

LEMMA 3. If A is doubly commuting, then

$$||D_p|| \leq \frac{2p}{(2\pi)^n} \int_{\sigma_x(\mathcal{U},\mathcal{A}_n)} \dots \int r^{2p-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2 \dots \mathrm{d}\theta_n \mathrm{d}r.$$

Proof. Let $Q_i : B(H) \to B(H), 1 \le i \le n$, be defined as before. A straight forward computation (using the commutativity relations $[S_i, T_i]$ of Lemma 2) shows that

$$0 \leq \prod_{j=1}^{k} D_{pi_j} \leq \prod_{j=1}^{k} \check{D}_{pi_j}$$
$$= Q_{i_1} Q_{i_2} \dots Q_{i_k} \left(\prod_{j=1}^{k} |\tilde{A}_{i_j}| \right)^{2p}$$
$$= Q_{i_1} Q_{i_2} \dots Q_{i_k} \mathcal{A}_k^{2p},$$

for all $1 \le i_1 < i_2 < \ldots < i_k \le n$. Hence the (n + 1)-tuple $(\mathcal{U}, \mathcal{A}_n)$ is *p*-hyponormal (equivalently, $(\mathcal{U}, \mathcal{A}_n^{2p})$ is semi-hyponormal). It follows from [3, Theorem 2] and [10, Theorem 5]) that

$$||D_p|| \le ||\check{D}_p|| \le \frac{2p}{(2\pi)^n} \int_{\sigma_x(\mathcal{U},\mathcal{A}_n)} \dots \int r^{2p-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2 \dots \mathrm{d}\theta_n \mathrm{d}r.$$

Given an $A_i \in \mathcal{H}U(p)$, let $A_i = N_i \oplus P_i$ denote the direct sum decomposition of A_i into its normal and pure parts.

LEMMA 4. Given $A_i \in \mathcal{H}U(p)$, we have

$$|||A_{i}|^{2p} - U_{i}V_{i}|A_{i}|^{2p}V_{i}^{*}U_{i}^{*}|| \leq \min\{|||A_{i}|^{2p}||m(\sigma(U_{i}V_{i})), \mu(\sigma(|A_{i}|^{2p}))\}.$$
(5)

Proof. Let $A_i = U_i |A_i| \in \mathcal{H}U(p)$; then

$$\begin{split} |A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^* &= U_i \{ U_1^* |A_i|^{2p} U_i - V_i |A_i|^{2p} V_i^* \} U_i^* \\ &\ge U_i \{ |A_i|^{2p} - V_i |A_i|^{2p} V_i^* \} U_i^* \text{ (since } A_i \in \mathcal{H}U(p)) \\ &\ge U_i \{ |A_i|^{2p} - V_i |\hat{A}_i|^{2p} V_i^* \} U_i^* \\ &\text{ (since } |A_i|^{2p} \le |\hat{A}_i|^{2p} \text{ by Lemma 1)} \\ &= U_i \{ |A_i|^{2p} - |\hat{A}_i^*|^{2p} \le |A_i|^{2p} \text{ cman 1)}. \end{split}$$

Clearly, $P_i \in \mathcal{H}U(p)$. Let P_i have the polar decomposition $P_i = u_i |P_i|$ and define (the pure $\mathcal{H}U(p + \frac{1}{2})$ operator) $\hat{P}_i = v_i |\hat{P}_i|$ by $\hat{P}_i = |P_i|^{\frac{1}{2}} u_i |P_i|^{\frac{1}{2}}$. Then $0 \leq |P_i|^{\frac{1}{2}} - u_i v_i |P_i|^{2p} v_i^* u_i^*$, u_i and v_i are unitaries; also

$$|||A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^*|| = ||0 \oplus (|P_i|^{2p} - u_i v_i |P_i|^{2p} v_i^* u_i^*)||$$

= |||P_i|^{2p} - u_i v_i |P_i|^{2p} v_i^* u_i^*||
$$\leq \mu(\sigma(|P_i|^{2p})) \text{ (by [7, p. 143; Problem 5(b)])}$$

$$\leq \mu(\sigma(|A_i|^{2p})).$$

Since $0 \le |A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^*$, $||A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^*|| \le ||A_i|^{2p} ||m(\sigma(U_i V_i))$, (by [7, p. 143; Problem 5(a)]), the lemma is proved.

Proof of the Theorem. As seen in Lemmas 1 and 2, $0 \le D_{pi} \le \check{D}_{pi}$ and $0 \le D_p \le \check{D}_p$. Hence $||D_p|| \le ||\check{D}_p||$. Since the operator $U_i V_i |\tilde{A}_i|^p$ is hyponormal for all $1 \le i \le n$, \check{A} is a doubly commuting *n*-tuple of hyponormal operators. Hence, by [2, Theorem 5], we have

$$||D_p|| \leq \frac{1}{\pi^n} \int_{\sigma(\check{\mathbb{A}})} \dots \int \mathrm{d}\nu$$

Combining this with inequality (5) we have inequality (3). We now prove inequality (4).

Let
$$\prod_{i=1}^{n'} D_{pi} = D_{p1} D_{p2} \dots D_{p(i-1)} D_{p(i+1)} \dots D_{pn}, \quad \hat{D}_{pi} = U_i V_i |A_i|^{2p} V_i^* U_i^* - |A_i^*|^{2p}.$$

If either of the hypotheses (i) or (ii) of the statement of the theorem holds, then $|||A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^*|| = 0$; (see the proof of Lemma 4). Suppose now that either (i) or (ii) holds. Then

B. P. DUGGAL

$$\begin{split} ||D_p|| &= ||\left(\prod_{i=1}^{n'} D_{pi}\right) |A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^* + \hat{D}_{pi})|| \\ &\leq ||\left(\prod_{i=1}^{n'} D_{pi}\right)|| \mid ||A_i|^{2p} - U_i V_i |A_i|^{2p} V_i^* U_i^*|| + ||\left(\prod_{i=1}^{n'} D_{pi}\right) \hat{D}_{pi}|| \\ &= ||\left(\prod_{i=1}^{n'} D_{pi}\right) \hat{D}_{pi}||, \end{split}$$

and so, by repeating the argument, it follows that

$$||D_p|| \le \dots \le ||\prod_{i=1}^n \hat{D}_{pi}|| \le ||\prod_{i=1}^n U_i V_i(|\tilde{A}_i|^{2p} - |\tilde{A}_i^*|^{2p}) V_i^* U_i^*||$$
$$= ||\prod_{i=1}^n \tilde{D}_{pi}|| = ||\left(\prod_{i=1}^{n'} \tilde{D}_{pi}\right)(|\tilde{A}_i|^{2p} - |\tilde{A}_i^*|^{2p})||.$$

(See the proof of Lemma 1.)

Let $\prod_{i=1}^{n'} \tilde{D}_{pi} = \tilde{D}_{p1}\tilde{D}_{p2}\dots\tilde{D}_{p(i-1)}\dots\tilde{D}_{p(i+1)}\dots\tilde{D}_{pn} = d$; then $d \ge 0$ and d commutes with \tilde{A}_i . Since \tilde{A}_i is hyponormal, we have

$$||D_p|| \le ||(d^{\frac{1}{p}}|\tilde{A}_i|^2)^p - (d^{\frac{1}{p}}|\tilde{A}_i^*|^2)^p|| \le ||\{d^{\frac{1}{p}}|\tilde{A}_i|^2 - d^{\frac{1}{p}}|\tilde{A}_i^*|^2\}^p|| \text{ (by [1, Theorem 1])} = ||d \tilde{D}_i^p||.$$

Hence, by repeating the argument, we obtain

$$||D_p|| \le ||d \ \tilde{D}_i^p|| \le \ldots \le ||\left(\prod_{i=1}^n \tilde{D}_i\right)^p|| \le ||\prod_{i=1}^n \tilde{D}_i||^p,$$

(since 0). The*n* $-tuple <math>\tilde{\mathbb{A}} = (\tilde{A}_1, \tilde{A}_2, \dots, \tilde{A}_n)$ is a doubly commuting *n*-tuple of hyponormal operators; applying [**2**, Theorem 5] we obtain

$$||D_p|| \leq ||\prod_{i=1}^n \tilde{D}_i||^p \leq \frac{1}{\pi^{np}} \left(\int_{\sigma(\tilde{\mathbb{A}})} \int d\nu \right)^p.$$

Recall that $\sigma(\tilde{\mathbb{A}}) = \sigma(\mathbb{A})$ by [4; Theorem 1]; hence

$$||D_p|| \leq \frac{1}{\pi^{np}} \left(\int_{\sigma(\tilde{\mathbb{A}})} \int \mathrm{d}\nu \right)^p.$$

This completes the proof.

390

ACKNOWLEDGEMENTS. It is my pleasure to thank Professor Muneo $Ch\bar{o}$ for supplying me with a preprint copy of [3].

REFERENCES

1. T. Ando, Comparison of norms |||f(A) - f(B)||| and |||f(|A - B|)|||, *Math. Z.* **197** (1988), 403–409.

2. X. Chen and C. Huang, On the representation of the joint spectrum for a commuting *n*-tuple of non-normal operators, *Acta Math. Sinica (New Series)* **3** (1987), 215–226.

3. M. Chō and T. Huruya, Putnam's inequality for *p*-hyponormal *n*-tuples, *Glasgow Math. J.* **41** (1999), 13–17.

4. M. Chō and M. Itoh, Putnam's inequality for *p*-hyponormal operators, *Proc. Amer. Math. Soc.* **123** (1995), 2435–2440.

5. B. P. Duggal, On the spectrum of *n*-tuples of *p*-hyponormal operators, *Glasgow Math. J.* **39** (1997), 405–413. (p+2r)

Math. J. **39** (1997), 405–413. **6.** T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{\frac{1}{q}} \ge B^{\frac{(p+2r)}{q}}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, *Proc. Amer. Math. Soc.* **101** (1987), 85–88.

7. M. Martin and M. Putinar, *Lectures on hyponormal operators* (Birkhauser Verlag, Basel, 1989).

8. C. R. Putnam, Commutation properties of Hilbert space operators and related topics (Springer-Verlag, 1967).

9. C. R. Putnam, Spectra of polar factors of hyponormal operators, *Trans. Amer. Math. Soc.* 188 (1974), 419–428.

10. D. Xia, On the semi-hyponormal *n*-tuple of operators, *Integral Equations Operator Theory* **6** (1983), 879–898.

11. D. Xia, Spectral theory of hyponormal operators (Birkhauser Verlag, Basel, 1983).