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Abstract
This paper introduces a simplified presentation of a new computing procedure for solving the fuzzy Pythagorean transportation
problem. To design the algorithm, we have described the Pythagorean fuzzy arithmetic and numerical conditions in three
different models in Pythagorean fuzzy environment. To achieve our aim, we have first extended the initial basic feasible
solution. Then an existing optimality method is used to obtain the cost of transportation. To justify the proposed method, few
numerical experiments are given to show the effectiveness of the new model. Finally, some conclusion and future work are
discussed.
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Introduction

Zadeh [1] introduced the uncertainty theory which is very
useful to cope with imprecise data in many real-life prob-
lems. There are certain situations in real life where we tend
to find the maximum or minimum, optimum solutions for
existing problems. However, in most of the cases, the data
to be handled are uncertain, imprecise and inconsistence, the
obtained results are not consistent, and, therefore, uncertainty
theory came into existence. During the last few decades, the
topic of fuzzy optimization has achieved substantial popular-
ity among researchers because of its widespread applications
in different branches of networkflowproblem [2], production
[3], shortest path problem [4–8], pick up delivery problem
[9], travel salesman problem [10], traffic assignment problem
[11].

Transportation problems play a significant role in many
real-life applications. This problem aims to maintain the
supply from source to destination. Traditionally, it has been
generally assumed that transversal costs of supply/demand
are expressed in terms of crisp numbers. However, these
values are generally imprecise or vague. Consequently, var-
ious attempts have been made by researchers for different
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types of transportation problems in the fuzzy environment.
In 1984, Chanas et al. [12] suggested fuzzy transportation
problems. Since then many authors test the transportation
problems in various fuzzy environments such as integer
fuzzy [13], multi-objective [14, 15], type-2 fuzzy [16–19],
interval-valued fuzzy fractional [20], interval integer fuzzy
[21], interval-valued intuitionistic fuzzy [22]. Moreover, we
noticed that there are numerous methods to solve this trans-
portation problem such as extension principle [23], ranking
function [24], modified Vogel’s approximation method [25],
Simplex type algorithm [26], fuzzy linear programming [27],
fuzzyRussell’smethod [28],modified best candidatemethod
[29], zero point and zero suffix methods [30] and so on.
However, the fuzzy set takes only a membership function.
Here, the degree of the non-membership function is just
a compliment of the degree of the membership function.
There may be a situation where the sum of the member-
ship function and non-membership function is greater than
one. Thus, Yager [31, 32] recently introduced another class
of non-standard fuzzy subset, i.e., Pythagorean fuzzy set
(PFS), where the square sum of the membership and the non-
membership degrees sum is equal to or less than one. There
are various methods in the field of PFS to solve multi-criteria
decision-making problems such as: extension of TOPSIS
[33], Similarity measure [34], Weighted geometric opera-
tor [35], alternative queuing method [36], analytic hierarchy
process (AHP) [37], Hamacher operation [38], Einstein oper-
ations [39, 40],Maclaurin symmetricmean operator [41, 42],
extended TODIM methods [43], Bonferroni mean [44], cor-
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Table 1 Important influences of different researchers: real-life applica-
tions of operators for decision making

Author and references Year Significance influences

Li et al. [54] 2018 To handle supplier selection
situation

Zhou et al. [55] 2018 Pythagorean normal cloud
model for handling the
economic decisions

Bolturk [56] 2018 Pythagorean fuzzy CODAS
were introduced to handle
supplier selection process
in a manufacturing firm

Qin [57] 2018 To handle multiple attribute
SIR group decision model

Wan et al. [58] 2018 To handle the haze
management problem

Lin et al. [59] 2018 To analysis of inpatient
stroke rehabilitation

Chen [60] 2018 To handle the financial
decision

Ilbahar et al. [61] 2018 To handle risk assessment
for occupational health
and safety

Karasan et al. [62] 2018 To handle landfill site
selection problem

Zeng et al. [63] 2018 To evaluate classroom
teaching quality

Ejegwa [64] 2019 Application in medical
diagnosis

relation coefficients [45], confidence level [46], improved
score function [47, 48], and so on; see also [49–53].We
have tabulated all those important influences of different
researchers who have introduced these real-life applications
under the Pythagorean fuzzy environment in Table 1.

Table 2 charts some significant influences towards trans-
portation problem (TP). Based on the previous discussions on
TP and currently available data, there are no existingmethods
which are available for TP under Pythagorean fuzzy environ-
ment. Therefore, there is a need to establish a new algorithm
for Pythagorean fuzzy transportation problem.

To the nice of our facts, there are no optimization models
in literature for TP under Pythagorean fuzzy environment.
This complete scenario has motivated us to come up with a
newmethod for solving TPwith the Pythagorean fuzzy range
which are formulated and solvedwith the use of the proposed
algorithm for the first time.

Pythagorean set theory is documented technique to man-
age uncertainty in the optimization problem. The most
contributions of this paper are as follows.

• This approach helps to resolve a new set of problem with
the Pythagorean fuzzy number.

Table 2 Significance influences of the different authors towards TP
under various environment

Author and references Year Significance influences

Korukoğlu and Ballı [65] 2011 Crisp environment

Kumar [66] 2018 Fuzzy environment PSK
method

Chhibber et al. [67] 2019 Type 1 and type 2 fuzzy
environment

Celik and Akyuz [68] 2018 Interval type 2 fuzzy
environment

Bharati [69] 2019 Trapezoidal intuitionistic
fuzzy environment

Bharati and Singh [22] 2018 Interval-valued intuitionistic
fuzzy environment

Ahmad and Adhami [70] 2018 Neutrosophic fuzzy
environment

• We define the TP problem below normal Pythagorean
fuzzy surroundings and recommend an efficient solution
to locate the corresponding crisp valued.

• Within the literature of Pythagorean fuzzy set, we tend
to introduce a scoring approach in conjunction with the
proposed method.

This paper is organized as follows: in the next section,
some basic knowledge, concepts on Pythagorean fuzzy set
theory and arithmetic operation on Pythagorean FuzzyNum-
bers (PFNs) are presented. The following section includes the
existing method under crisp and fuzzy transportation prob-
lems. In the next following section, the proposed method
for solving the transportation problem is discussed. In sec-
tion before conclusion, a few numerical examples are given
to reveal the effectiveness of the proposed model. Finally,
some conclusions are provided in the last section.

Preliminaries

Definition 2.1 [31, 71] Let X is a fixed set, a Pythagorean
fuzzy set (PFS) is an object having the form

P � {〈x , (θP (x), δP (x))〉|x ∈ X }, (1)

where the function θP (x): X → [0, 1] and δP (x): X →
[0, 1] are the degree of membership and non-membership of
the element x ∈ X to P , respectively. Also for every x ∈ X ,
it holds that

(θP (x))
2 + (δP (x))

2 ≤ 1 (2)
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Definition 2.2 [31, 71] Let ã P
1 � (

θ P
i , δPs

)
and b̃P1 �(

θ P
o , δPf

)
be two Pythagorean Fuzzy Numbers (PFNs).Then

the arithmetic operations are as follows:

(i) Additive property: ã P
1 ⊕ b̃P1 �(√(

θ P
i

)2
+

(
θ P
o

)2 − (
θ P
i

)2 · (
θ P
o

)2, δPs · δPf

)

(ii) Multiplicative property: ã P
1 ⊗ b̃P1 �(

θ P
i · θ P

o ,

√
(
δPs

)2 +
(
δPf

)2 − (
δPs

)2 ·
(
δPf

)2
)

(iii) Scalar product: k · ã P
1 �

(√
1 − (

1 − θ P
i

)k
,
(
δPs

)k
)
,

where k is nonnegative const..i.e.k 
 0

Definition 2.3 [31, 71] (Comparison of two PFNs) Let ã P
1 �

(
θ P
i , δPs

)
and b̃P1 �

(
θ P
o , δPf

)
be two PFNs such that the

score and accuracy function are as follows:

(i) Score function: S
(
ã P
1

) � 1
2

(
1 − (

θ P
i

)2 − (
δPs

)2)

(ii) Accuracy function: H
(
ã P
1

) � (
θ P
i

)2
+

(
δPs

)2

Then the following five cases arise:

Case 1 ã P
1 
 b̃P1 iff S

(
ã P
1

) 
 S
(
b̃P1

)

Case 2 ã P
1 ≺ b̃P1 iff S

(
ã P
1

) ≺ S
(
b̃P1

)

Case 3 i f S
(
ã P
1

) � S
(
b̃P1

)
and H

(
ã P
1

) ≺ H
(
b̃P1

)
then ã P

1 ≺ b̃P1

Case 4 i f S
(
ã P
1

) � S
(
b̃P1

)
and H

(
ã P
1

) 
 H
(
b̃P1

)
then ã P

1 
 b̃P1

Case 5 i f S
(
ã P
1

) � S
(
b̃P1

)
and H

(
ã P
1

) � H
(
b̃P1

)
then ã P

1 � b̃P1

Existingmodel in the crisp transportation
environment

Let us consider “m” sources and “n” destinations. In the trans-
portation problem, the objective is to minimize the cost of
distributing a product from these sources to the destinations,
but the demand and supply of the product with the following
assumptions and constraints are crisp:

m The total number of sources existing in the network
n The total number of destination nodes
i The source index for all m
j The destination index for all n

xi j The number of unit of product transported from source
to destination

cPi j The Pythagorean fuzzy cost of one unit quantity trans-
ported from ith source to jth destination

ci j The crisp cost of one unit of quantity
ai j The available supply quantity in the crisp environment

from each source
aP
i j The available supply quantity in the Pythagorean fuzzy

environment from each source
bi j The market demand quantity in the crisp environment

from each destination
bPi j The market demand quantity in the Pythagorean fuzzy

environment from each destination.

Then, the crisp transportation problem is as follows:

Min Z �
m∑

i�0

n∑

j�0

xi j · ci j (3)

Subject to

n∑

j�0

xi j � ai � supply, where i � 1, . . . , m

m∑

i�0

xi j � bi � demand, where j � 1, . . . , m

xi j ≥ 0 ∀ i , j .

Furthermore, if we replaced the parameter ci j fromEq. (3)
into Pythagorean fuzzy (PyF) parameters, i.e., cPi j , then the
newLPmodel obtained is called as Type I Pythagorean fuzzy
transportation (T1PyFT) problem, and it is shown as the fol-
lowing:

Min Z �
m∑

i�0

n∑

j�0

xi j · cPi j . (4)

Subject to

n∑

j�0

xi j � ai � supply, where i � 1, . . . , m

m∑

i�0

xi j � bi � demand, where j � 1, . . . , m

xi j ≥ 0 ∀ i , j .

Again, if the decision maker will not be sure about the
unit transportation supply and demand units, we replace the
parameters ai j and bi j into PyF parameters. Then this type of
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problem is known as Type II Pythagorean fuzzy transporta-
tion (T2PyFT) problem and it is shown in the below model:

Min Z �
m∑

i�0

n∑

j�0

xi j · ci j . (5)

Subject to

n∑

j�0

xi j � aP
i ,

m∑

i�0

xi j � bPj ,

xi j ≥ 0 ∀ i , j .

Lastly, if the decision maker will not be sure about the
transportation cost, supply and demand unit, we replace the
parameter ci j , ai j and bi j into PyF parameters. Then this type
of problem is known as Type III Pythagorean fuzzy trans-
portation (T3PyFT) problem and it is shown in the following
model:

Min Z �
m∑

i�0

n∑

j�0

xi j · cPi j . (6)

Subject to

n∑

j�0

xi j � aP
i ,

m∑

i�0

xi j � bPj ,

xi j ≥ 0 ∀ i , j .

Proposed algorithms for solving three
different types of PyF transportationmodels

In this section,wepropose a newalgorithm (MainAlgorithm)
to solve all types of TP under Pythagorean fuzzy environ-
ment. This method contains two sub-algorithms. The first
sub-algorithm (Algorithm 1) presents a method to find an
initial basic feasible solution for TP and the second sub-
algorithm (Algorithm 2) is an existing optimality method for
calculation of the cost of transportation. These algorithms
are as follows:

Main Algorithm
Start,
Step 1: First, choose any of the models to solve the PyFN transportation problem.

Step 1a: If it is Type-I PyFN transportation problem, then calculate the score value of each PyFN cost and 
replace all the PyFN costs by its score value to obtain the classical transportation problem.

Step 1b: If it is Type-II PyFN transportation problem, then calculate the score value of each PyFN supply 
and demand unit and replace all the PyFN supply and demand unit by its score value to obtain the 
classical transportation problem. 

Step 1c: If it is Type-III PyFN transportation problem, then calculate the score value of each PyFN cost, 
PyFN supply, PyFN demand unit and replace all the PyFN cost, PyFN supply, and PyFN demand unit by 
its score value to obtain the classical transportation problem.

Step 2: To check the balance of transportation, we execute:

0 0

n m

i i
j i

b a
= =

=∑ ∑ (7)

i.e., Demand supply.=
If demand is not equal to supply, then add dummy variable on Demand/Supply and make it balance and 
Proceed with the balanced problem.

Step 3: To find the initial basic feasible solution, use the Algorithm 1.
Step 4: Formulate the transportation problem into crisp transportation problem.
Step 5: Test the optimality of the transportation problem by Algorithm 2.
Step 6: Substitute all ijx in the objective function to get the transportation cost.
End.
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Algorithm 1: A method to find an initial basic feasible solution
Start,
Step 1: Consider the table from Step 1 of the main algorithm.
Step 2: Calculate the difference between the minimum and next to the minimum of the transportation costs and 

denote it as a penalty.
Step 3: In the row/column, corresponding to the maximum penalty, make the allotment in the cell having the 

minimum transportation cost.
Step 4: If the maximum penalty corresponding to:

Case 1: more than one row, select the topmost row,
Case 2: more than one column, then select the leftmost column. 
Repeat steps 3 and 4 until all the supplies are thoroughly exhausted, and the demands are satisfied.

End

Algorithm 2: A method to test the optimality
Start,
Step 1: Consider the LP model from Step 4 in the main algorithm.
Step 2: Find the optimal solution using any of the optimal software such as lingo or MATLAB and find all the 

value of ijx
End

Illustrative example

In this section, some examples are provided to illustrate the
potential application of the proposed method.

Example 5.1 (T1PyFNmodel) Consider a transportation
problem with the conditions of Table 3.

Step 1 Calculate the score value of each PFN cost, replace
all them by its score value and obtain a crisp transportation
problem. This step is shown in Table 4.

Step 2 To check the balance of transportation we execute:

Table 3 Input data for Pythagorean transportation problem of type-I

D1 D2 D3 D4 Supply

O1 (0.4, 0.7) (0.5, 0.4) (0.8, 0.3) (0.6, 0.3) 26

O2 (0.4, 0.2) (0.7, 0.3) (0.4, 0.8) (0.7, 0.3) 24

O3 (0.7, 0.1) (0.8, 0.1) (0.6, 0.4) (0.9, 0.1) 30

Demand 17 23 28 12

Table 4 The defuzzified Pythagorean fuzzy transportation problem of
Example 5.1

D1 D2 D3 D4 Supply

O1 0.335 0.545 0.775 0.635 26

O2 0.56 0.7 0.26 0.7 24

O3 0.74 0.815 0.6 0.9 30

Demand 17 23 28 12

∑
ai � 26 + 24 + 30 � 80 and

∑
bi � 17 + 23 + 28 + 12 � 80.

Therefore, it is a balanced transportation problem.
Step 3 Now to find an initial basic feasible solution, we

proceed with Algorithm 1 as it mentions in the main algo-
rithm. After maximum allotting in the cell (2, 3) we get a
new table. Table 5 shows the first allotment with penalties
(Tables 6, 7, 8).

Table 9 shows the initial basic feasible solution of Exam-
ple 5.1.

Hence, the initial basic feasible solution (IBFS) is as fol-
lows:

(O1, D1) � x11 � 17, (O1, D2) � x12 � 9,

(O2, D3) � x23 � 24, (O3, D2) � x32 � 14,

(O3, D3) � x33 � 4, and (O3, D4) � x34 � 12.

Table 5 First allotment with penalties in Example 5.1

D1 D2 D3 D4 Supply Penalties

O1 0.335 0.545 0.775 0.635 26 0.21

O2 0.56 0.7 0.26 24 0.7 24 0.3

O3 0.74 0.815 0.6 0.9 30 0.14

Demand 17 23 4 12

Penalties 0.225 0.155 0.34 0.065
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Table 6 Second allotment with
penalties in Example 5.1 D1 D2 D3 D4 Supply Penalties

O1 0.335 17 0.545 0.775 0.635 9 0.21

O2 0.560 0.700 0.26 24 0.700 – –

O3 0.740 0.815 0.600 0.900 30 0.14

Demand 17 23 4 12

Penalties 0.405 0.27 0.175 0.265

Table 7 Third allotment with
penalties in Example 5.1 D1 D2 D3 D4 Supply Penalties

O1 0.335 17 0.545 9 0.775 0.635 9 0.09

O2 0.560 0.700 0.26 24 0.700 – –

O3 0.740 0.815 0.600 0.900 30 0.215

Demand – 14 4 12

Penalties – 0.27 0.175 0.265

Table 8 Complete allotment in
Example 5.1 D1 D2 D3 D4 Supply Penalties

O1 0.335 17 0.545 9 0.775 0.635 – 0.09

O2 0.560 0.700 0.26 24 0.700 – –

O3 0.740 0.815 14 0.60 4 0.900 12 30 0.215

Demand – 14 4 12

Penalties – 0.27 0.175 0.265

Also, the minimum cost of IBFS is obtained as follows:

Min � 17 × 0.335 + 9 × 0.545 + 24 × 0.26 + 14

× 0.815 + 4 × 0.6 + 12 × 0.9 � 41.45.

Steps 4–5Now,we test the optimality of the transportation
problem. Since them + n− 1� 6, it is a degenerate solution,
and we need to proceed to test the optimality. To obtain the
optimality, we use Lingo software. Therefore, the optimal
solution is as follows:

(O1, D1) � x11 � 17, (O1, D2) � x12 � 9,

(O2, D3) � x23 � 24, (O3, D2) � x32 � 14,

(O3, D3) � x33 � 4, and (O3, D4) � x34 � 12.

Step 6 Now put all xi j in the above equation; so we get:

Min � 17 × 0.335 + 9 × 0.545 + 24 × 0.26

+ 14 × 0.815 + 4 × 0.6 + 12 × 0.9.

Minimum cost � 41.45.

Example 5.2 (T2PyFNmodel) Consider type-II PyFN prob-
lemwith the conditions of Table 10 where the costs are crisp,
but the demand and supply are PFN. The supplies are denoted
as Pythagorean fuzzy numbers, i.e.,

s̃ P1 �
(
θ P , δP

)
≈ (0.7, 0.1), s̃ P2 ≈ (0.8, 0.1),

s̃ P3 ≈ (0.9, 0.1).

Similarly, the demands are also denoted as Pythagorean
fuzzy numbers, respectively. We note that θ P , δP represent
the maximum degree of the membership (i.e., the degree of
acceptance of quantity) and the non-membership (i.e., the
degree of rejection of quantity) respectively. Moreover, they
will also satisfy the inconsistence information under these

conditions, i.e., 0 ≤ θ P ≤ 1, 0 ≤ δP ≤ 1, 0 ≤ (
θ P

)2
+

(
δP

)2 ≤ 1.

Table 9 The initial basic
feasible solution of Example 5.1 D1 D2 D3 D4 Supply

O1 0.335 17 0.545 9 0.775 0.635 26

O2 0.560 0.700 0.260 24 0.700 24

O3 0.740 0.815 14 0.600 4 0.900 12 30

Demand 17 23 28 12
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Table 10 Input data for Pythagorean transportation problem of type-II

D1 D2 D3 D4 Supply

O1 0.0335 0.0545 0.0775 0.0635 (0.7, 0.1)

O2 0.056 0.07 0.026 0.07 (0.8, 0.1)

O3 0.074 0.0815 0.06 0.09 (0.9, 0.1)

Demand (0.4, 0.7) (0.7, 0.3) (0.8, 0.1) (0.60832,
0.4)

Solution After executing the steps 1–3, we get the initial
basic feasible solution as follows:

(O1, D1) � x11 � 0.3350, (O1, D2) � x12 � 0.405,

(O2, D3) � x23 � 0.8150, (O3, D2) � x32 � 0.295, and

(O3, D4) � x34 � 0.6050.

Also, theminimumcost of an initial basic feasible solution
is

Min � 0.0335× 0.3350 + 0.0545× 0.405+ 0.295× 0.0815

+ 0.026 × 0.8150 + 0.07 × 0.6050 � 0.132978.

Again, execute the steps 4–6,we get the optimumsolution,
i.e.:

(O1, D1) � x11 � 0.3350, (O1, D2) � x12 � 0.405,

(O2, D3) � x23 � 0.8150, (O3, D2) � x32 � 0.295, and

(O3, D4) � x34 � 0.6050.

Min � 0.0335 × 0.3350 + 0.0545 × 0.405 + 0.295

× 0.0815 + 0.026 × 0.8150 + 0.07 × 0.6050,

Minimum cost � 0.132978.

Example 5.3 Consider type-III PyFN problem with the con-
ditions of Table 11. Here, the supplies are denoted as
Pythagorean fuzzy. Similarly, the demands are also denoted
as Pythagorean fuzzy numbers

(
θ P , δP

)
, respectively. We

note that θ P , δP represent the maximum degree of the mem-
bership (i.e., the degree of acceptance of quantity) and the
non-membership (i.e., the degree of rejection of quantity),
respectively. The cost values are also in Pythagorean fuzzy
numbers where CP ≈ (CP

a , C
P
r ) represents the degree of

acceptance and rejection of cost.

Solution After executing the steps 1–3, we get the initial
basic feasible solution as follows.

After executing the step 1–3, we get the initial basic
feasible solution, i.e., (O2, D1) � x21 � 0.335, (O1,
D2) � x12 � 0.135, (O2, D2) � x22 � 0.48, (O2,
D3) � x23 � 0.085, (O3, D3) � x33 � 0.815, and
(O1, D4) � x14 � 0.6050; so the minimum IBFS cost is
0.322775.

Again, by steps 4–6,we get the optimum solution i.e., (O2,
D1) � x21 � 0.335, (O1, D2) � x12 � 0.22, (O2, D2) �
x22 � 0.48, (O3, D4) � x34 � 0.085, (O3, D3) � x33 �
0.815, and (O1, D4) � x14 � 0.52, , that the minimum cost
is 0.31895.

Results and discussion

In Example 5.1, it is clear that the PyFN transportation cost
of IBFS is 41.45which is same as the optimum transportation
cost of PyFN transportation problem. Hence, this shows that
the optimal value is not more than the IBFS and in Example
5.2, the PyFN transportation cost of IBFS is 0.132978 which
is the same as the optimum transportation cost of PyFN trans-
portation problem. Again we observe that the optimum value
is not more than the IBFS. However, in Example 5.3 the
optimum transportation cost of PyFN transportation prob-
lem is 0.31895, which is less than the transportation cost of
IBFS i.e. 0.322775. Therefore, we can say that the proposed
methodproduces lower optimumvalueswhen comparedwith
IBFS. The logical comparison for all the above three dis-
cussed examples is shown in Table 12. In this table, we can
see that the optimal value of PyFN transportation problem is
either equal or less than the IBFS solution.

Therefore, we can conclude that our proposed algorithm is
a newway to handle the uncertainty in the crisp environment.

Conclusions

In this paper, the fuzzy Pythagorean transportation problem
has been investigated. At that point, we proposed another
arrangement approach for understanding whole number
esteemed Pythagorean fuzzy transportation problem. More-
over, we study three different models in the Pythagorean
fuzzy environment. The existing arithmetic operations on

Table 11 Input data for
Pythagorean transportation
problem of type-III

D1 D2 D3 D4 Supply

O1 (0.1, 0.9) (0.2, 0.8) (0.1, 0.8) (0.1, 0.9) (0.7, 0.1)

O2 (0.01, 0.99) (0.3, 0.9) (0.3, 0.8) (0.1, 0.7) (0.8, 0.1)

O3 (0.1, 0.8) (0.4, 0.8) (0.4, 0.9) (0.2, 0.9) (0.9, 0.1)

Demand (0.4, 0.7) (0.7, 0.3) (0.8, 0.1) (0.60832, 0.4)
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Table 12 Logical comparison of
IBFS with optimum value Sr. no. Example Logical comparison with initial basic feasible solution and optimal solution

1. Example 5.1 Initial basic feasible solution ≥ after optimality test

2. Example 5.2 Initial basic feasible solution ≥ after optimality test

3. Example 5.3 Initial basic feasible solution > after optimality test

the Pythagorean fuzzy numbers and a score function are
employed to find the optimum solutions. The proposed algo-
rithm is a new way to handle the uncertainty in the crisp
environment. In the future, the proposed method can be
applied to real-world problems in the field of assignment,
job scheduling, shortest path problem, and so on.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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