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Abstract—This paper presents a power system analysis tool,
called DOME, entirely based on Python scripting language as
well as on public domain efficient C and Fortran libraries. The
objects of the paper are twofold. First, the paper discusses the
features that makes the Python language an adequate tool for
research, massive numerical simulations and education. Then the
paper describes the architecture of the developed software tool
and provides a variety of examples to show the advanced features
and the performance of the developed tool.

Index Terms—Python language, scripting, power flow analysis,
eigenvalue analysis, time domain integration.

I. INTRODUCTION

THE basic requirements that a programming language has

to satisfy to be eligible for scientific studies and, in

particular, for power system analysis, are the availability of

efficient and easy-to-use libraries for:

• Basic mathematical functions (e.g., trigonometric func-

tions and complex numbers).

• Multi-dimensional arrays (e.g., element by element oper-

ations and slicing).

• Sparse matrices and linear algebra (e.g., sparse complete

LU factorization).

• Eigenvalue analysis of non-symmetrical matrices.

• Advanced and publishing-quality plots.

The requirements above reduce the choice to a only a

handful of programming languages. This is clearly captured by

the software tools for power system analysis that are currently

actively developed. Neglecting proprietary software tools, that

are out of the scope of this paper, open-source packages are

mainly developed in scientific languages, e.g., Matlab, and

in well-structured system languages, e.g., Java. An in-depth

discussion about advantages and drawbacks of scientific and

system programming languages is given in [1].

Among Matlab-based packages there are PST [2], PSAT

[3], and MatPower [4]. Among packages based on system

programming languages there are InterPSS [5], developed in

Java, OpenDSS [6], developed in Delphi, and UWPFLOW [7],

developed in C. In recent years, the Python language have

been chosen by some small project such as PYPOWER [8],

which is a port of MatPower to Python, and minpower [9]. A

comprehensive description of open-source software packages

for power system analysis can be found in [10].

The main object of this paper is to show that the Python lan-

guage is mature enough for power system analysis. Moreover,

the paper discusses how Python can be extended by means

of open-source scientific libraries to provide a performance

The author is supported by the Ministry of Science and Innovation of Spain,
MICINN Projects ENE2009-07685 and ENE2012-31326.

comparable to proprietary solutions. Specific contributions of

the paper are:

1) To show that the Python language is an adequate tool

for power system analysis studies.

2) To describe the architecture of the developed Python-

based software tool, namely DOME.

3) To provide a comparison through power system simula-

tions of the performance of some open-source scientific

libraries.

The paper is organized as follows. Section II provides the

rationale for using Python as the main language for a power

system analysis tool. Section III provides a description of the

developed Python-based software tool. Section IV provides a

variety of examples aimed to compare the performances of

efficient open-source mathematical libraries. Conclusions and

future work are indicated in Section V.

II. PYTHON AS A SCRIPTING LANGUAGE FOR POWER

SYSTEM ANALYSIS

Python is a dynamically and safely typed language. Poly-

morphism, meta-programming, introspection and lazy evalua-

tion are easy to implement and to use. Parallel programming,

such as multitreading, concurrency and multiprocessing, is

also possible even if with some limitations. The interested

reader can find an in-depth discussion on types in [11] while an

introduction to parallel programming techniques is [12]. Other

concepts cited above are defined and extensively discussed in

[13]. Moreover, [14] provides a monograph on power system

modeling and scripting with plenty of examples written in

Python.

Other relevant features of Python are the following.

• Python is a modern language fully based on well-

structured classes (unlike most scientific languages such

as Matlab and R), which make easy creating, maintaining

and reusing modular object-oriented code.

• As most recent scripting languages, Python inherits the

best features and concepts of both system languages

(such as C and Fortran) and structural languages (such

as Haskell).

• Libraries such NumPy and CVXOPT provide a link to

legacy libraries (e.g., BLAS, LAPACK, UMFPACK, etc.)

for manipulating multidimensional arrays, linear algebra,

eigenvalue analysis and sparse matrices. As the number

crunching is done by efficient libraries, the slowness of

the Python interpreter is not a bottle-neck.

• Thanks to graphical libraries such as Matplotlib, the

ability of producing publication quality 2D figures in

Python is as powerful as in Matlab.
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Fig. 1. Qualitative representation of the structure of DOME.

• The huge variety of free third-party libraries available for

Python, allows easily and quickly extending the features

of an application well beyond the scope of the original

project (e.g., the Python profiler and the multiprocessing

modules).

• Python is free and open source. Hence Python promotes

the implementation and distribution of open projects.

• Python syntax is relatively simple, neat, compact and ele-

gant. Hence, Python is particularly adequate for education

and illustrative examples.

The features listed above can be likely found in other

scripting languages and do not imply that Python is flawless.

However, such features have proved to be flexible and reliable

enough to successfully develop and maintain the software tool

described in this paper.

III. OUTLINES OF THE DEVELOPED PYTHON-BASED

SOFTWARE TOOL

The developed software tool, called DOME [15] has its roots

on PSAT [3], which is a Matlab-based tool for power system

analysis. Based on the experience of PSAT, the architecture has

been rethought from scratch in order to avoid structural issues

and, whenever possible, to provide fully-fledged solutions.

The main idea on which the Python-based tool is founded is

the modularity and reusability of the code. Basically no part of

the code, except for a tiny kernel, is really necessary. Rather,

the code is based on a reduced number of milestones that have

to be available, but how such milestones solve their duty is

not relevant for the main kernel. The milestones are only four:

1) Parsing the data file and initializing device models.

2) Solving the power flow analysis.

3) Solving other analyses, e.g., time domain simulation.

4) Dumping data to adequate output files.

Each milestone is composed by several independent Python

modules. The user can also provided his own custom modules.

Figure 1 illustrates the concepts discusses so far. The only

requirement that each module has to satisfy is the communi-

cation protocol with DOME core functions. This is obtained

by passing to each module a pointer to a core common class,

called system. This modular structure is the key, along

with the versatility of Python classes, for a quick and easy

developement of the code.

Currently, DOME provides about 50 parsers for input data,

including most popular power system formats such as PSS/E

developers
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Fig. 2. Layer organization of DOME.

and GE and SIMPOW formats; about 300 devices ranging

from standard power flow models, synchronous machines,

AVRs and other basic controllers to a variety of wind turbines,

energy storage devices and distributed energy sources; 10
analysis tools including standard power flow analysis as well

as three-phase unbalanced power flow, continuation power

flow, OPF, time domain simulation, electromagnetic transients,

eigenvalue analysis, short circuit analysis, equivalencing pro-

cedures and load admission control strategies for smart grids;

and 10 output formats, including LATEX, Excel, and 2D and

3D visualization tools.

Despite the vastness of the tools and models provided,

DOME remains fundamentally a light tool. Thanks to lazi-

ness, only needed modules are loaded at run-time. These

are generally less than 1% of available modules. Hence, the

project can grow indefinitely without affecting performance.

Modularity and laziness has also the advantage of allowing

parallel development of new modules: if a beta-version of

a new function is broken, all users that are not using such

function can continue using DOME smoothly. Moreover, no

forking is necessary as different versions of the same module

can coexist.

Another important aspect is the possibility of using DOME

as a didactic tool at different levels: undergraduate, master

and Ph.D. In fact, only a very surface knowledge of the code

is needed to develop a new device model. This allows using

DOME for undergraduate final projects. To develop a new

routine requires a deeper knowledge, which can be achieved

by Master and Ph.D. students. Figure 2 illustrates the layer

organization of DOME. A description of didactic aspects of

DOME can be found in [16].

IV. CASE STUDY

This section provides some examples of simulations that

can be solved using the developed software tool. The goal is

not simply to show the performance of the code but, rather, to

illustrate the features that makes DOME an unique tool among

currently available power system software packages.

This section illustrates the following features:

1) Ability of including a variety of efficient libraries for the

factorization of sparse matrices. With this regard, DOME

can be conveniently used to test mathematical libraries

and define their suitability for power system analysis.

2) Ability of numerically integrating stochastic differential

equations (SDAEs). A variety of stochastic device mod-
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TABLE I
COMPARISON OF THE PERFORMANCE OF SPARSE MATRIX FACTORIZATION

LIBRARIES FOR THE SOLUTION OF THE POWER FLOW PROBLEM

Library Total CPU 1
st fact. Next fact.

time [s] time [s] time [s]

KLU 0.0933 0.0044 0.0026

CXSPARSE 0.0936 0.0043 0.0027

UMFPACK 0.1750 0.0126 0.0095

SUPERLU 0.1927 0.0247 0.0082

LUSOL 0.3112 0.0360 0.0195

els are included in the proposed case study. Multipro-

cessing is also exploited to run these simulations.

3) Ability of solving the eigenvalue analysis of delayed

differential equations (DDAEs). This analysis is particu-

larly demanding as the size of the problem can be huge

even for small systems. Also in this case, a variety of

mathematical libraries are compared.

All simulations are solved on a server equipped with two

processors Intel Xeon Six Core 2.66 GHz, an Intel SSD of

256 GB, and 64 GB of RAM, and mounting a Linux 64 bits

operating system.

A. Comparison of Sparse Matrix Factorization Libraries

This subsection compares the performance of a variety of

sparse matrix factorization libraries through power system

analysis. Only open-source libraries are considered. These are:

CXSPARSE, UMFPACK, KLU, LUSOL, and SUPERLU. The

former three libraries are part of the SuiteSparse package [17],

whereas SUPERLU and LUSOL are available at [18] and [19],

respectively. A 1254-bus 1944-line network that models that

UCTE 2002 Winter Off-peak is used as benchmark system.

Details on this system can be found in [20].

Table I shows the results obtained for the considered li-

braries which are compared in terms of the CPU time required

to solve the power flow analysis for the UCTE 2002 Winter

Off-peak. Eight iterations are required to solve the power flow

problem by means of a standard Newton-Raphson technique.

This relatively high number of iterations is due to the fact that

the voltages of some buses are higher than 1.1 pu, which leads

PQ loads to switch to constant impedance models.

Table I indicates the total time required to solve the power

flow analysis, which includes the Jacobian matrix factorization

as well as the time to build the Jacobian matrix itself and by

the overall power flow algorithm; the CPU time to factorize

for the first time the Jacobian matrix, which includes both the

symbolic and the numeric factorization steps; and the time for

solving the factorization the second and following iterations,

which implies only the numeric factorization step.

The two most efficient libraries are KLU and CXSPARSE.

KLU is known to be particularly suited for factorizing sparse

matrices that describe electrical circuits. As a matter of fact,

KLU is the library used in the OpenDSS project [6]. On the

other hand, the efficiency of CXSPARSE was not expected,

as its main purpose is didactic. Other libraries, such as UMF-

PACK (used in Matlab) and SUPERLU (which is a fork of

KLU) are not particularly efficient for solving the power flow

analysis problem. Finally, LUSOL, which is a legacy Fortran

library used, for example, in GAMS [21], is the slowest of all

the considered libraries.

The comparison given in Table I cannot be fully fair as

each library stores sparse matrices in a slightly different way.

The representation used in DOME is a C object that stores

the matrix in the compact compressed column storage (CCS)

format. This is the well-known Harwell-Boeing sparse matrix

representation. In particular, DOME uses the CCS implemen-

tation provided by the CVXOPT package [22]. This C object

is fully compatible only with KLU and UMFPACK libraries,

whereas extra memory allocation is required to link the other

libraries, so that their performance can be affected.

B. Time Domain Integration of SDAEs

This subsection illustrates the ability of DOME to simulate

SDAE systems. DOME includes implicit A-stable time integra-

tion schemes for stiff DAE systems. These are the backward

Euler, the trapezoidal method and the backward differentiation

formula of order 2. Moreover, DOME includes the possibility

to model and numerically integrate stochastic processes, such

as the Wiener and the Orstein-Uhlenbeck processes, which

have been proposed in the literature [23], [24]. Continuous

SDAE wind models based on the Weibull distribution are

also included [25]. Stochastic processes are integrated using

Maryuama-Euler and Milstein schemes [26].

As previously discussed, DOME allows including new de-

vices with the minimal effort. Then, Python classes and

metaprogramming allow easily implementing stochastic mod-

els. These features allows defining a stochastic version of any

device by simply merging together the original device class

and the class implementing the stochastic process. Moreover,

a special meta-device that adds stochastic processes to an

arbitrary state or algebraic variable allows to modify the

behavior of any implemented device.

Figure 3 shows 1000 trajectories (strong solutions of the

SDAE) as well as the mean trajectory (weak solution of the

SDAE) for the IEEE 14-bus system that includes stochastic

processes in the bus voltage phasors, machine rotor speeds as

well as load power consumption. All standard dynamic data

of this system can be found in [14]. The simulations consist

in applying the outage of line 2-4 at t = 1 s. All devices are

perturbed through Orstein-Uhlenbeck processes, which allows

bounding the standard deviation thanks to the mean-reverting

feature of this process [23]. The diffusion term of all stochastic

processes is considered constant and is assumed to be 1%
of the mean value. These processes account for harmonics,

vibrations, and load randomness.

Integrating SDAEs requires is a demanding task. In general,

one has to solve a few thousands of time domain integrations

with different generations of the normal distributions used to

define the stochastic processes. These high number of solutions

is required to properly define the statistical properties of the

resulting trajectories (e.g., standard deviation, autocorrelation,

etc.). However, since each simulation is fully decoupled from

all others, parallelization can be easily exploited. DOME in-

cludes some basic mechanism to parallelize simulations by dis-

tributing multiple tasks over available processors. As a matter
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Fig. 3. Active power injected at bus 1 for the IEEE 14-bus system. Gray
lines are the 1000 computed trajectories; the black line is the mean value.

of fact, multiprocessing is particularly easy in Python (thanks

to the built-in multiprocessing module), especially if

processes do not share memory. As a result, solving the 1000
simulations with a fixed time step of 0.05 s and a standard

dishonest Newton-Raphson solver takes about 8.5 seconds on

the 24 processors (12 processors are virtual) available on the

server used in this case study.

C. Eigenvalue Analysis of DDAEs

This subsection describes the small-signal stability analysis

of a power system modeled as a delayed DAE. As it is

well-known, the number of eigenvalues λ of a DDAEs with

constant delays is infinite, as it is the solution of the following

characteristic equation:

∆(λ) = λIn −A0 −

ν∑

i=1

Aie
−λτi (1)

where A0 is the standard state matrix, In is the identity matrix

of order n, Ai are the characteristic matrix for each constant

delay τi [27].

The technique implemented in DOME attempts to compute a

reduced number of eigenvalues of (1) using the approximation

proposed in [28]–[30]. These methods are based on a dis-

cretization of the partial differential equation (PDE) represen-

tation of the DDAE. The implementation of such discretization

is surprisingly simple while results proved to be accurate.

The idea is to transform the original DDAE problem into an

equivalent PDE system of infinite dimensions. Then, instead

of computing the roots of retarded functional differential

equations, one has to solve a finite, though possibly large,

matrix eigenvalue problem of the discretized PDE system.

Without entering into mathematical details (the interested

reader can find an exhaustive discussion in [31]), let simply say

that the resulting problem to be solved is a standard eigenvalue

analysis of a highly sparse square matrix whose size is N×n,

where n is the number of state variable of the system and

N is the number of nodes of the Chebyshev grid used to

approximate the PDE representation of the DDAE [29]. As

Fig. 4. Full spectrum for the IEEE 14-bus system with 5 ms time delay in
the AVR measured voltage signals.

it can be easily noted, even for small N the computational

burden of the solution of the eigenvalue problem dramatically

increases. Fortunately, only a reduced set of eigenvalue is

needed for the purpose of stability analysis, i.e., those whose

real part is close to the imaginary axis. Hence, efficient

algorithms able to compute a reduced number of eigenvalues

with a given property are to be used.

The case study considered in this subsection is again the

IEEE 14-bus system as described in [14]. The dynamic order

of this system is n = 49. Let assume that the terminal

voltage signal of the 5 AVRs of synchronous machines have

a measurement delay of τ = 5 ms. One can debate whether

considering the same delay for all AVRs is reasonable or not.

However, how to set-up the technique proposed in [29] to

include multiple time delays is currently an open question and

is out of the scope of this paper.

Figure 4 shows the full spectrum in the S-domain obtained

with N = 40. Hence, the total number of eigenvalues are

1960. The eigenvalues have been computed using the routine

for generalized matrix provided by the well-known LAPACK

library. The total simulation time is 28.3 s. Further increasing

N provides more details on the spectrum but do not alter the

values of eigenvalues close to the imaginary axis, which are

the only of interest for the stability analysis.

While the S-domain is widely used in power system anal-

ysis, there are alternative domain that can be used to solve

the eigenvalue analysis. In particular, DOME implements the

Z-domain bilinear transformation, as follows:

AZ = (AS + χI)(AS − χInx
)−1 (2)

where AS is the original state matrix, I the identity matrix of

the same size as AS , and χ is a weighting factor that, based

on heuristic considerations, can be set to χ = 8 [32].

Computing AZ is more expensive than AS but using

AZ can be useful to better visualize stiff systems (as the

eigenvalues falls within or close to the unitary circle) and

for fastening the determination of the maximum amplitude

eigenvalue (e.g., by means of the Arnoldi iteration), especially

in case of unstable equilibrium points with only one eigenvalue



5

TABLE II
COMPARISON OF THE PERFORMANCE OF LIBRARIES FOR EIGENVALUE

ANALYSIS OF LARGE SPARSE MATRICES.

Library Method CPU time [s]

ARPACK Arnoldi Iteration 2.15

SLEPC Arnoldi Iteration 2.16

SLEPC Krylov-Shur method 1.50

SLEPC Lanczos method 1.48

outside the unit circle. In fact, the eigenvalues in the Z-

plane are stable if their magnitude is lower than 1, and

unstable if greater than 1. Bifurcation points are on the unitary

circumference.

Since the critical eigenvalues in the Z-domain have magni-

tude close to 1, it is possible to take advantage of algorithms

that compute a reduced number of eigenvalues with a given

property. DOME provides C extensions to some efficient open-

source libraries such as ARPACK [33] and SLEPc [34]. The

latter library is based on PETSc, which is a C++ based suite

of data structures and routines for the scalable solution of

scientific applications [35].

Table II shows a comparison of different algorithms and

libraries to compute the 50 eigenvalues with largest magnitude

in the Z-domain for the IEEE 14-bus system with time delays

and N = 40. In particular, the Arnoldi iteration, the Krylov-

Shur method and the Lanczos method are compared. As it can

be observed, the Arnoldi iteration of ARPACK and SLEPc

implementations shows similar performance. On the other

hand, the Krylov-Shur and the Lanczos methods provide best

results.

V. CONCLUSIONS

This paper shows that Python is a modern, mature, complete

and versatile scripting language that is fully prepared for

scientific research and education on power system analysis.

The case studies discussed in the paper demonstrate that prop-

erly linking Python to efficient general purpose mathematical

libraries allows obtaining excellent performance.

Future work will focus on further developing DOME in

various directions, such as smart grid modeling, parallel com-

puting including GPUs and heterogeneous architectures, as

well as testing novel mathematical tools for power system

analysis.
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