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A Python library for probabilistic analysis of 
single-cell omics data
To the Editor — Methods for analyzing 
single-cell data1–4 perform a core set  
of computational tasks. These tasks  
include dimensionality reduction, cell 
clustering, cell-state annotation, removal of 
unwanted variation, analysis of differential 
expression, identification of spatial  
patterns of gene expression, and joint 
analysis of multi-modal omics data. Many 
of these methods rely on likelihood-based 
models to represent variation in the  
data; we refer to these as ‘probabilistic 

models’. Probabilistic models provide 
principled ways to capture uncertainty in 
biological systems and are convenient for 
decomposing the many sources of variation 
that give rise to omics data5.

Despite the appeal of probabilistic 
models, several obstacles impede their 
community-wide adoption. The first 
obstacle, coming from the perspective 
of the end user, relates to the difficulty 
of implementing and running such 
models. Because probabilistic models 

are often implemented using Python 
machine-learning libraries, users are often 
required to interact with interfaces and 
objects that are lower level in nature than 
those used in popular environments for 
single-cell data analysis like Bioconductor6, 
Seurat7 or Scanpy8.

A second obstacle relates to the 
development of new probabilistic models. 
From the perspective of developers, 
there are many necessary routines to 
implement in support of a probabilistic 

Fig. 1 | User perspective of scvi-tools. a, Overview of single-cell omics analysis pipeline with scvi-tools. Datasets may contain multiple layers of omic 
information, along with metadata at the cell and feature levels. QC and preprocessing are done with popular packages like Scanpy, Seurat and Scater. 
Subsequently, datasets can be analyzed with scvi-tools, which contains implementations of probabilistic models that offer a range of capabilities for various 
omics. Finally, results are further investigated or visualized, typically through a nearest neighbors graph, and through environments like VISION or cellxgene 
or by directing back to Scanpy or Seurat. b, Left, overview of the functionality of models implemented in scvi-tools covers core single-cell analysis tasks. 
Right, each model has a simple and consistent user interface; the code snippet shown applies scVI to a dataset read from a h5ad file and then performs 
dimensionality reduction and differential expression.
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 1   import scvi 
 2 adata = scvi.data.read_h5ad("pbmc.h5ad")

 3 scvi.model.SCVI.setup_anndata(adata) 

 4 model = scvi.model.SCVI(adata)

 5 model.train()

 6 latent = model.get_latent_representation()

 7 de_df = model.differential_expression(

 8 groupby="cell_type", 

 9 group1="CD4",

10 group2="CD8",

11  )

12 norm = model.get_normalized_expression()

13 model.save("save_dir")
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model, including data handling, tensor 
computations, training routines that handle 
device management (for example, GPU 
(graphic processing unit) computing), and 
the underlying optimization, sampling and 
numerical procedures. Although higher level 
machine-learning packages that automate 
some of these routines (for example, 
PyTorch Lightning9 or Keras10) are becoming 
popular, they do not work seamlessly with 
single-cell omics data.

To address these limitations, we present 
scvi-tools (https://scvi-tools.org/), a Python 
library for deep probabilistic analysis of 
single-cell omics data. From the end user’s 
perspective (Supplementary Note 1),  
scvi-tools offers standardized access to 

methods for many single-cell data analysis 
tasks, such as integration of single-cell RNA 
sequencing (scRNA-seq) data (scVI11 or 
scArches12), annotation of single-cell profiles 
(CellAssign13 or scANVI14), deconvolution 
of bulk spatial transcriptomics profiles 
(Stereoscope15 or DestVI16), doublet 
detection (Solo17) and multi-modal 
analysis of CITE-seq (cellular indexing of 
transcriptomes and epitopes by sequencing) 
data (totalVI18).

In the broader analysis pipeline, 
scvi-tools sits downstream of initial quality 
control (QC)-driven preprocessing and 
generates outputs that may be further 
interpreted via general single-cell analysis 
tools (Fig. 1a). At its core, scvi-tools 

implements several key functionalities that 
are accessible across data modalities, such as 
differential analysis and dataset integration. 
All 14 models (Supplementary Table 1) 
currently implemented in scvi-tools interact 
with Scanpy through the annotated dataset 
(AnnData19) format, and the models share 
a consistent user interface (Fig. 1b). The 
scvi-tools library also has an interface with R 
such that each model may be used in Seurat 
or Bioconductor pipelines.

We also illustrate two new features of 
scvi-tools applicable to several types of 
omics data. The first feature offers the 
ability to remove unwanted variation due to 
multiple nuisance factors simultaneously, 
including both discrete (for example, batch 
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class MyModule(BaseModuleClass):

 def generative(self, latent_variables):

  z = latent_variables["z"]
  mean = self.f_1(z)

          return Normal(mean, self.sigma)
    
 def inference(self, data_tensors):

  x = data_tensors["x"]

          return Normal(self.f_2(x), self.f_3(x))

 def loss(inference_out, generative_out):
  # compute Evidence Lower Bound
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Fig. 2 | The scvi-tools API for developers and reimplementation of Stereoscope. a, For every probabilistic method implemented in scvi-tools, users interact 
with a high-level ‘model’ object. The model relies on several lower level components for training a model and analyzing data. The ‘module’, which must be 
implemented, systematically encapsulates the probabilistic specification of the method. The rest of the lower level components rely on precoded objects 
in scvi-tools, such as AnnDataLoader for loading data from AnnData objects, TrainingPlan for updating the parameters of the module, and Mixin classes 
for downstream analyses. b, The creation of a new module in scvi-tools involves three key steps. First, the generative model and inference procedure are 
mathematically specified. Second, users may either choose from our wide range of precoded neural network architectures and distributions or implement 
their own with PyTorch. Finally, those elements are combined together and organized into a class that inherits from the abstract class BaseModuleClass (note: 
presentation is pseudocode). The generative method maps latent variables to the data-generating distribution. The inference method maps input data to 
the variational distribution (specific to variational inference). The loss method specifies the objective function for the training procedure, here the evidence 
lower bound (and specifically depicted for a variational autoencoder (VAE)). c, Overview of the Stereoscope method. Stereoscope takes as input a spatial 
transcriptomics dataset, as well as a single-cell RNA sequencing dataset, and outputs the proportion of cell types in every spot. d, Short description of the 
steps required to reimplement Stereoscope into the codebase. For each of the two models of Stereoscope, we created a module class as well as a model class. 
e, Average cyclomatic code complexity and total number of source code lines for each of scvi-tools implementation and the original implementation.
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category) and continuous (for example, 
percent mitochondrial reads) factors. In 
Supplementary Note 2, we apply this in 
the context of an scRNA-seq dataset of 
Drosophila wing development that suffered 
from nuisance variation due to cell cycle, sex 
and replicate. The second feature extends 
several scvi-tools integration methods 
to iteratively integrate new ‘query’ data 
into a pretrained ‘reference’ model via the 
recently proposed scArches neural network 
architecture surgery12. This feature is 
particularly useful for incorporating new 
samples into an analysis without having 
to reprocess the entire set of samples. 
Supplementary Note 3 presents a case study 
of applying this approach with totalVI  
by projecting data from patients with 
COVID-19 into an atlas of immune cells.

From the perspective of a methods 
developer, scvi-tools offers a set of building 
blocks that make it easy to implement new 
models and modify existing models with 
minimal code overhead (Fig. 2a,b and 
Supplementary Note 4). These building 
blocks use popular libraries, such as 
AnnData12, PyTorch20, PyTorch Lightning9 
and Pyro21, and facilitate probabilistic model 
design with neural network components 
and GPU acceleration. This allows 
method developers to primarily focus on 
developing probabilistic models instead 
of on data management, model training 
and user-interface code. We demonstrate 
how these building blocks can be used 
for efficient model development through 
a reimplementation of Stereoscope, in 
which we demonstrate a substantial 
reduction in code complexity (Fig. 2c–e 
and Supplementary Note 5). This example 
demonstrates the broad scope of analyses 
that may be powered by scvi-tools.

On the scvi-tools documentation  
website, we feature the application 
programming interface (API) reference of 
each model, as well as tutorials describing 
the functionality of each model and its 
interaction with other single-cell tools. 
We also make these tutorials available 
via Google Colab, which provides a free 
computing environment and GPU and can 
even support large-scale analyses.

In the development of scvi-tools, we 
aimed to bridge the gap that exists between 
the single-cell software ecosystem and 
the contemporary machine-learning 
frameworks for constructing and deploying 
this class of models. Thus, developers 
can now expect to build models that are 
immediately accessible to end users in the 
single-cell community while continuing to 
rely on popular machine-learning libraries. 
On our documentation website, we provide 
a series of tutorials on building a model 

with scvi-tools, walking through the steps 
of data management, module construction 
and model development. We also built a 
template repository on GitHub that enables 
developers to quickly create a Python 
package that uses unit testing, automated 
documentation and popular code styling 
libraries. This repository demonstrates 
how the scvi-tools building blocks can 
be used for external model deployment. 
We anticipate that most models built with 
scvi-tools will be deployed in this way as 
independent packages while adhering to 
standard API and coding conventions, 
which will make them more readily 
accessible for new users.

As scvi-tools remains under active 
development, end users can expect that 
scvi-tools will continually evolve, adding 
support for new models, new workflows 
and new features. We anticipate that these 
resources will serve the single-cell community 
by facilitating the prototyping of new models, 
creating a standard for the deployment of 
probabilistic analysis software and enhancing 
the scientific discovery pipeline. ❐
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