
163

correspondence

A Python library for probabilistic analysis of
single-cell omics data
To the Editor — Methods for analyzing
single-cell data1–4 perform a core set
of computational tasks. These tasks
include dimensionality reduction, cell
clustering, cell-state annotation, removal of
unwanted variation, analysis of differential
expression, identification of spatial
patterns of gene expression, and joint
analysis of multi-modal omics data. Many
of these methods rely on likelihood-based
models to represent variation in the
data; we refer to these as ‘probabilistic

models’. Probabilistic models provide
principled ways to capture uncertainty in
biological systems and are convenient for
decomposing the many sources of variation
that give rise to omics data5.

Despite the appeal of probabilistic
models, several obstacles impede their
community-wide adoption. The first
obstacle, coming from the perspective
of the end user, relates to the difficulty
of implementing and running such
models. Because probabilistic models

are often implemented using Python
machine-learning libraries, users are often
required to interact with interfaces and
objects that are lower level in nature than
those used in popular environments for
single-cell data analysis like Bioconductor6,
Seurat7 or Scanpy8.

A second obstacle relates to the
development of new probabilistic models.
From the perspective of developers,
there are many necessary routines to
implement in support of a probabilistic

Fig. 1 | User perspective of scvi-tools. a, Overview of single-cell omics analysis pipeline with scvi-tools. Datasets may contain multiple layers of omic
information, along with metadata at the cell and feature levels. QC and preprocessing are done with popular packages like Scanpy, Seurat and Scater.
Subsequently, datasets can be analyzed with scvi-tools, which contains implementations of probabilistic models that offer a range of capabilities for various
omics. Finally, results are further investigated or visualized, typically through a nearest neighbors graph, and through environments like VISION or cellxgene
or by directing back to Scanpy or Seurat. b, Left, overview of the functionality of models implemented in scvi-tools covers core single-cell analysis tasks.
Right, each model has a simple and consistent user interface; the code snippet shown applies scVI to a dataset read from a h5ad file and then performs
dimensionality reduction and differential expression.

Total_counts

pc
t_

co
un

ts
_m

t

0 5,000 10,000 15,000
0

5

10

15

20

Single-cell omics data QC and preprocessing Downstream inspectionProbabilistic analysis

 1 import scvi
 2 adata = scvi.data.read_h5ad("pbmc.h5ad")

 3 scvi.model.SCVI.setup_anndata(adata)

 4 model = scvi.model.SCVI(adata)

 5 model.train()

 6 latent = model.get_latent_representation()

 7 de_df = model.differential_expression(

 8 groupby="cell_type",

 9 group1="CD4",

10 group2="CD8",

11)

12 norm = model.get_normalized_expression()

13 model.save("save_dir")

Consistent user experience

RNA-seq
AAAAA

CITE-seq
AAAAA

Spatial

Dimensionality reduction Differential comparison

Removal of unwanted variation
(dataset integration)

Automated annotation

Transfer learningDeconvolution

scVI
LDVAE
scANVI
CellAssign
AutoZI
Solo PeakVI

Group A
Group B

Expression

Observed nuisance factors

Assignment probability

Train

Update

a

b

ATAC-seq gimVI
Stereoscope
DestVI

totalVI

LDA
MultiVI
scArches

Doublet detection Factor analysis

Factor 5 Factor 5

Score

Gene A
Gene B
Gene C
Gene D
Gene E
Gene F
Gene G
Gene H

Modality imputation

Singlet Doublet

AAAAA
AAAAA

Train multimodal model

Predict missing modality
AAAAA

AAAAA

Scanpy

Seurat

Scater

Scanpy

Seurat

VISION

Cellxgene

RNA-seq Spatial CITE-seq

ATAC-seq

Multiple

scvi-tools

Nature Biotechnology | VOL 40 | February 2022 | 163–166 | www.nature.com/naturebiotechnology

http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-021-01206-w&domain=pdf
http://www.nature.com/naturebiotechnology

164

correspondence

model, including data handling, tensor
computations, training routines that handle
device management (for example, GPU
(graphic processing unit) computing), and
the underlying optimization, sampling and
numerical procedures. Although higher level
machine-learning packages that automate
some of these routines (for example,
PyTorch Lightning9 or Keras10) are becoming
popular, they do not work seamlessly with
single-cell omics data.

To address these limitations, we present
scvi-tools (https://scvi-tools.org/), a Python
library for deep probabilistic analysis of
single-cell omics data. From the end user’s
perspective (Supplementary Note 1),
scvi-tools offers standardized access to

methods for many single-cell data analysis
tasks, such as integration of single-cell RNA
sequencing (scRNA-seq) data (scVI11 or
scArches12), annotation of single-cell profiles
(CellAssign13 or scANVI14), deconvolution
of bulk spatial transcriptomics profiles
(Stereoscope15 or DestVI16), doublet
detection (Solo17) and multi-modal
analysis of CITE-seq (cellular indexing of
transcriptomes and epitopes by sequencing)
data (totalVI18).

In the broader analysis pipeline,
scvi-tools sits downstream of initial quality
control (QC)-driven preprocessing and
generates outputs that may be further
interpreted via general single-cell analysis
tools (Fig. 1a). At its core, scvi-tools

implements several key functionalities that
are accessible across data modalities, such as
differential analysis and dataset integration.
All 14 models (Supplementary Table 1)
currently implemented in scvi-tools interact
with Scanpy through the annotated dataset
(AnnData19) format, and the models share
a consistent user interface (Fig. 1b). The
scvi-tools library also has an interface with R
such that each model may be used in Seurat
or Bioconductor pipelines.

We also illustrate two new features of
scvi-tools applicable to several types of
omics data. The first feature offers the
ability to remove unwanted variation due to
multiple nuisance factors simultaneously,
including both discrete (for example, batch

1. Define probabilistic model
 and inference mechanism 3. Organize into module class

class MyModule(BaseModuleClass):

 def generative(self, latent_variables):

 z = latent_variables["z"]
 mean = self.f_1(z)

 return Normal(mean, self.sigma)

 def inference(self, data_tensors):

 x = data_tensors["x"]

 return Normal(self.f_2(x), self.f_3(x))

 def loss(inference_out, generative_out):
 # compute Evidence Lower Bound

ba

2. Use scvi-tools components

z x x z

Generative Inference

z ~ N(0, I) z ~ N(f2(x), f3(x))
x ~ N(f1(z), σ2)

−log p(x | z) + KL(q(z | x)||p(z))

Distributions Neural networks

TrainingPlan

Mixins

AnnDataLoader

User-facing object performing inference
and downstream analysis

To implement

Precoded

Defines procedure to fit
module parameters

Load registered data into module

Downstream analysis methods;
e.g., differential expression

Module
Contains parameters used in
generative process and inference,
and defines loss to be optimized

Code statisticsec

ScStereoscope

ScSignatureModule

10x Visium

Spatial cell-type
topography

Learn cell type
signatures

Stereoscope description

Deconvolution

scRNA-seq

Spatial AnnData

Learn cell type
signaturesRNA AnnData

d Implementation

Deconvolution

SpatialStereoscope

DeconvModule

1.0 1.5 2.0 2.5 3.0
Complexity

scvi-tools

Original

0 500 1,000 1,500

Source lines

scvi-tools

Original

E
xa

m
p

le
: V

A
E

Model Module

Cell types

G
en

es

Loss (negative evidence lower bound)

Fig. 2 | The scvi-tools API for developers and reimplementation of Stereoscope. a, For every probabilistic method implemented in scvi-tools, users interact
with a high-level ‘model’ object. The model relies on several lower level components for training a model and analyzing data. The ‘module’, which must be
implemented, systematically encapsulates the probabilistic specification of the method. The rest of the lower level components rely on precoded objects
in scvi-tools, such as AnnDataLoader for loading data from AnnData objects, TrainingPlan for updating the parameters of the module, and Mixin classes
for downstream analyses. b, The creation of a new module in scvi-tools involves three key steps. First, the generative model and inference procedure are
mathematically specified. Second, users may either choose from our wide range of precoded neural network architectures and distributions or implement
their own with PyTorch. Finally, those elements are combined together and organized into a class that inherits from the abstract class BaseModuleClass (note:
presentation is pseudocode). The generative method maps latent variables to the data-generating distribution. The inference method maps input data to
the variational distribution (specific to variational inference). The loss method specifies the objective function for the training procedure, here the evidence
lower bound (and specifically depicted for a variational autoencoder (VAE)). c, Overview of the Stereoscope method. Stereoscope takes as input a spatial
transcriptomics dataset, as well as a single-cell RNA sequencing dataset, and outputs the proportion of cell types in every spot. d, Short description of the
steps required to reimplement Stereoscope into the codebase. For each of the two models of Stereoscope, we created a module class as well as a model class.
e, Average cyclomatic code complexity and total number of source code lines for each of scvi-tools implementation and the original implementation.

Nature Biotechnology | VOL 40 | February 2022 | 163–166 | www.nature.com/naturebiotechnology

https://scvi-tools.org/
http://www.nature.com/naturebiotechnology

165

correspondence

category) and continuous (for example,
percent mitochondrial reads) factors. In
Supplementary Note 2, we apply this in
the context of an scRNA-seq dataset of
Drosophila wing development that suffered
from nuisance variation due to cell cycle, sex
and replicate. The second feature extends
several scvi-tools integration methods
to iteratively integrate new ‘query’ data
into a pretrained ‘reference’ model via the
recently proposed scArches neural network
architecture surgery12. This feature is
particularly useful for incorporating new
samples into an analysis without having
to reprocess the entire set of samples.
Supplementary Note 3 presents a case study
of applying this approach with totalVI
by projecting data from patients with
COVID-19 into an atlas of immune cells.

From the perspective of a methods
developer, scvi-tools offers a set of building
blocks that make it easy to implement new
models and modify existing models with
minimal code overhead (Fig. 2a,b and
Supplementary Note 4). These building
blocks use popular libraries, such as
AnnData12, PyTorch20, PyTorch Lightning9
and Pyro21, and facilitate probabilistic model
design with neural network components
and GPU acceleration. This allows
method developers to primarily focus on
developing probabilistic models instead
of on data management, model training
and user-interface code. We demonstrate
how these building blocks can be used
for efficient model development through
a reimplementation of Stereoscope, in
which we demonstrate a substantial
reduction in code complexity (Fig. 2c–e
and Supplementary Note 5). This example
demonstrates the broad scope of analyses
that may be powered by scvi-tools.

On the scvi-tools documentation
website, we feature the application
programming interface (API) reference of
each model, as well as tutorials describing
the functionality of each model and its
interaction with other single-cell tools.
We also make these tutorials available
via Google Colab, which provides a free
computing environment and GPU and can
even support large-scale analyses.

In the development of scvi-tools, we
aimed to bridge the gap that exists between
the single-cell software ecosystem and
the contemporary machine-learning
frameworks for constructing and deploying
this class of models. Thus, developers
can now expect to build models that are
immediately accessible to end users in the
single-cell community while continuing to
rely on popular machine-learning libraries.
On our documentation website, we provide
a series of tutorials on building a model

with scvi-tools, walking through the steps
of data management, module construction
and model development. We also built a
template repository on GitHub that enables
developers to quickly create a Python
package that uses unit testing, automated
documentation and popular code styling
libraries. This repository demonstrates
how the scvi-tools building blocks can
be used for external model deployment.
We anticipate that most models built with
scvi-tools will be deployed in this way as
independent packages while adhering to
standard API and coding conventions,
which will make them more readily
accessible for new users.

As scvi-tools remains under active
development, end users can expect that
scvi-tools will continually evolve, adding
support for new models, new workflows
and new features. We anticipate that these
resources will serve the single-cell community
by facilitating the prototyping of new models,
creating a standard for the deployment of
probabilistic analysis software and enhancing
the scientific discovery pipeline. ❐

Adam Gayoso   1,23, Romain Lopez   2,23,
Galen Xing1,3,23, Pierre Boyeau2,4,
Valeh Valiollah Pour Amiri   1,2,
Justin Hong   1,2, Katherine Wu2,
Michael Jayasuriya2, Edouard Mehlman4,5,
Maxime Langevin5,18,19, Yining Liu2,20,
Jules Samaran6, Gabriel Misrachi5,21,
Achille Nazaret5,20, Oscar Clivio4,22,
Chenling Xu   1, Tal Ashuach1,
Mariano Gabitto1,2,
Mohammad Lotfollahi   7,8,
Valentine Svensson9,
Eduardo da Veiga Beltrame10,
Vitalii Kleshchevnikov11,
Carlos Talavera-López11,12, Lior Pachter   10,13,
Fabian J. Theis   7,8, Aaron Streets   1,3,14,
Michael I. Jordan   1,2,15, Jeffrey Regier   16
and Nir Yosef   1,2,3,17 ✉
1Center for Computational Biology, University
of California, Berkeley, Berkeley, CA, USA.
2Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley,
Berkeley, CA, USA. 3Chan Zuckerberg Biohub,
San Francisco, CA, USA. 4École Normale Supérieure
Paris-Saclay, Gif-sur-Yvette, France. 5Centre de
Mathématiques Appliquées, École polytechnique,
Palaiseau, France. 6Mines Paristech, PSL University,
Paris, France. 7Institute of Computational Biology,
Helmholtz Center Munich, Munich, Germany.
8School of Life Sciences Weihenstephan, Technical
University of Munich, Munich, Germany. 9Serqet
Therapeutics, Cambridge, MA, USA. 10Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, CA, USA.
11Cellular Genetics Programme, Wellcome Sanger
Institute, Wellcome Genome Campus, Cambridge,
UK. 12EMBL-European Bioinformatics Institute,

Wellcome Genome Campus, Cambridge, UK.
13Department of Computing and Mathematical
Sciences, California Institute of Technology,
Pasadena, CA, USA. 14Department of Bioengineering,
University of California, Berkeley, Berkeley, CA, USA.
15Department of Statistics, University of California,
Berkeley, Berkeley, CA, USA. 16Department of
Statistics, University of Michigan, Ann Arbor, MI,
USA. 17Ragon Institute of Massachusetts General
Hospital, MIT and Harvard, Cambridge, MA,
USA. 18Present address: Pasteur, Department
of Chemistry, École Normale Supérieure, PSL
University, Paris, France. 19Present address:
Molecular Design Sciences – Integrated Drug
Discovery, Sanofi R&D, Vitry-sur-Seine, France.
20Present address: Department of Computer Science,
Columbia University, New York, NY, USA. 21Present
address: Gleamer, Paris, France. 22Present address:
Department of Statistics, University of Oxford,
Oxford, UK. 23These authors contributed equally:
Adam Gayoso, Romain Lopez and Galen Xing
✉e-mail: niryosef@berkeley.edu

Published online: 7 February 2022
https://doi.org/10.1038/s41587-021-01206-w

References
	1.	 Svensson, V., da Veiga Beltrame, E. & Pachter, L. Database 2020,

baaa073 (2020).
	2.	 Lee, J., Hyeon, D. Y. & Hwang, D. Exp. Mol. Med. 52,

1428–1442 (2020).
	3.	 Wagner, A., Regev, A. & Yosef, N. Nat. Biotechnol. 34,

1145–1160 (2016).
	4.	 Zappia, L., Phipson, B. & Oshlack, A. PLOS Comput. Biol. 14

(2018).
	5.	 Lopez, R., Gayoso, A. & Yosef, N. Mol. Syst. Biol. 16, e9198 (2020).
	6.	 Gentleman, R. C. et al. Genome Biol. 5, R80 (2004).
	7.	 Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A.

Nat. Biotechnol. 33, 495–502 (2015).
	8.	 Wolf, F. A., Angerer, P. & Theis, F. J. Genome Biol. 19, 15 (2018).
	9.	 Falcon, W. & The PyTorch Lightning team. PyTorch Lightning

(Version 1.4). (2019); https://doi.org/10.5281/zenodo.3828935
	10.	Chollet, F. et al. Keras. https://keras.io (2015).
	11.	Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N.

Nat. Methods 15, 1053–1058 (2018).
	12.	Lotfollahi, M. et al. Nat. Biotechnol. 40, 121–130 (2022).
	13.	Zhang, A. W. et al. Nat. Methods 16, 1007–1015 (2019).
	14.	Xu, C. et al. Mol. Syst. Biol. 17, e9620 (2021).
	15.	Andersson, A. et al. Commun. Biol. 3, 565 (2020).
	16.	Lopez, R. et al. Preprint at bioRxiv https://doi.

org/10.1101/2021.05.10.443517 (2021).
	17.	Bernstein, N. J. et al. Cell Syst. 11, 95–101.e5 (2020).
	18.	Gayoso, A. et al. Nat. Methods 18, 272–282 (2021).
	19.	Angerer, P., Wolf, A., Virshup, I. & Rybakov, S. AnnData. GitHub

https://github.com/theislab/anndata (2019).
	20.	Paszke, A. et al. Adv. Neural Inf. Process. Syst. 32,

8026–8037 (2019).
	21.	Bingham, E. et al. J. Mach. Learn. Res. 20, 1–6 (2019).

Acknowledgements
We acknowledge members of the Streets and Yosef
laboratories for general feedback. We thank all the GitHub
users who contributed code to scvi-tools over the years.
We thank Nicholas Everetts for help with the analysis of
the Drosophila data. We thank David Kelley and Nick
Bernstein for help implementing Solo. We thank Marco
Wagenstetter and Sergei Rybakov for help with the
transition of the scGen package to use scvi-tools, as well
as feedback on the scArches implementation. We thank
Hector Roux de Bézieux for insightful discussions about
the R ecosystem. We thank Kieran Campbell and Allen
Zhang for clarifying aspects of the original CellAssign
implementation. We thank the Pyro team, including Eli
Bingham, Martin Jankowiak and Fritz Obermeyer, for help

Nature Biotechnology | VOL 40 | February 2022 | 163–166 | www.nature.com/naturebiotechnology

http://orcid.org/0000-0001-9537-0845
http://orcid.org/0000-0003-0495-738X
http://orcid.org/0000-0002-2008-5297
http://orcid.org/0000-0003-2115-9101
http://orcid.org/0000-0001-9610-7627
http://orcid.org/0000-0001-6858-7985
http://orcid.org/0000-0002-9164-6231
http://orcid.org/0000-0002-2419-1943
http://orcid.org/0000-0002-3909-8389
http://orcid.org/0000-0001-8935-817X
http://orcid.org/0000-0002-1472-5235
http://orcid.org/0000-0001-9004-1225
mailto:niryosef@berkeley.edu
https://doi.org/10.1038/s41587-021-01206-w
https://doi.org/10.5281/zenodo.3828935
https://keras.io
https://doi.org/10.1101/2021.05.10.443517
https://doi.org/10.1101/2021.05.10.443517
https://github.com/theislab/anndata
http://www.nature.com/naturebiotechnology

166

correspondence

integrating Pyro in scvi-tools. Research reported in this
manuscript was supported by the NIGMS of the National
Institutes of Health under award number R35GM124916
and by the Chan-Zuckerberg Foundation Network under
grant number 2019-02452. O.C. is supported by the EPSRC
Centre for Doctoral Training in Modern Statistics and
Statistical Machine Learning (EP/S023151/1, studentship
2420649). A.G. is supported by NIH Training Grant
5T32HG000047-19. A.S. and N.Y. are Chan Zuckerberg
Biohub investigators.

Author contributions
A.G., R.L and G.X. contributed equally. A.G. designed
the scvi-tools application programming interface with
input from G.X. and R.L. G.X. and A.G. led development
of scvi-tools with input from R.L. G.X. reimplemented
scVI, totalVI, AutoZI and scANVI with input from A.G.
R.L. implemented Stereoscope with input from A.G.

Data analysis in this manuscript was led by A.G., R.L.
and G.X, with input from N.Y. A.G., R.L., P.B., E.M., M.
Langevin., Y.L., J.S., G.M. and A.N., O.C. worked on the
initial version of the codebase (scvi package), with input
from M.I.J, J.R. and N.Y. R.L., E.M. and C.X. contributed
the scANVI model, with input from J.R. and N.Y. A.G.
implemented totalVI with input from A.S. and N.Y.
T.A. implemented peakVI with input from A.G. A.G
implemented scArches with input from M. Lotfollahi.,
F.J.T and N.Y. V.S. made several contributions to the
codebase, including the LDVAE model. P.B. contributed
the differential expression programming interface. E.d.V.B.
and C.T.-L. provided tutorials on differential expression
and deconvolution of spatial transcriptomics, with input
from L.P. K.W. implemented CellAssign in the codebase
with input from A.G. V.V.P.A., J.H. and M.J. made general
code contributions and helped maintain scvi-tools. J.H.
implemented LDA. T.A. and M.G. implemented MultiVI.

V.K. improved Pyro support in scvi-tools and ported
Cell2Location to use scvi-tools. N.Y. supervised all research.
A.G., R.L., G.X., J.R. and N.Y. wrote the manuscript.

Competing interests
V.S. is a full-time employee of Serqet Therapeutics and
has ownership interest in Serqet Therapeutics. F.J.T.
reports consulting fees from Roche Diagnostics GmbH
and Cellarity Inc., and ownership interest in Cellarity, Inc.
N.Y. is an advisor to and/or has equity in Cellarity, Celsius
Therapeutics and Rheos Medicines. The remaining authors
declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at https://doi.
org/10.1038/s41587-021-01206-w.

Nature Biotechnology | VOL 40 | February 2022 | 163–166 | www.nature.com/naturebiotechnology

https://doi.org/10.1038/s41587-021-01206-w
https://doi.org/10.1038/s41587-021-01206-w
http://www.nature.com/naturebiotechnology

	A Python library for probabilistic analysis of single-cell omics data

	Acknowledgements

	Fig. 1 User perspective of scvi-tools.
	Fig. 2 The scvi-tools API for developers and reimplementation of Stereoscope.

