A q-analogue of de Finetti's theorem

Alexander Gnedin
Department of Mathematics
Utrecht University
the Netherlands
A.V.Gnedin@uu.nl

Grigori Olshanski *
Institute for Information
Transmission Problems
Moscow, Russia
and Independent University
of Moscow, Russia
olsh2007@gmail.com

Submitted: May 13, 2009; Accepted: June ???, 2009; Published: XX
Mathematics Subject Classification: 60G09; 60J50; 60C05

Abstract

A q-analogue of de Finetti's theorem is obtained in terms of a boundary problem for the q-Pascal graph. For q a power of prime this leads to a characterisation of random spaces over the Galois field \mathbb{F}_{q} that are invariant under the natural action of the infinite group of invertible matrices with coefficients from \mathbb{F}_{q}.

1 Introduction

The infinite symmetric group \mathfrak{S}_{∞} consists of bijections $\{1,2, \ldots\} \rightarrow\{1,2, \ldots\}$ which move only finitely many integers. The group \mathfrak{S}_{∞} acts on the product space $\{0,1\}^{\infty}$ by permutations of the coordinates. A random element of this space, that is a random infinite binary sequence, is called exchangeable if its probability law is invariant under the action of \mathfrak{S}_{∞}. De Finetti's theorem asserts that every exchangeable sequence can be generated in a unique way by the following two-step procedure: first choose at random the value of parameter p from some probability distribution on the unit interval $[0,1]$, then run an infinite Bernoulli process with probability p for 1 's.

One approach to this classical result, as presented in Feller [3, Ch. VII, §4], is based on the following exciting connection with the Hausdorff moment problem. By exchangeability, the law of a random infinite binary sequence is determined by the array ($v_{n, k}$),

[^0]where $v_{n, k}$ equals the probability of every initial sequence of length n with k 's. The rule of addition of probabilities yields the backward recursion
\[

$$
\begin{equation*}
v_{n, k}=v_{n+1, k}+v_{n+1, k+1}, \quad 0 \leq k \leq n, n=0,1, \ldots \tag{1}
\end{equation*}
$$

\]

which readily implies that the array can be derived by iterated differencing of the sequence $\left(v_{n, 0}\right)_{n=0,1, \ldots}$. Specifically, setting

$$
\begin{equation*}
u_{l}^{(k)}=v_{l+k, k}, \quad l=0,1, \ldots, \quad k=0,1, \ldots, \tag{2}
\end{equation*}
$$

and denoting by δ the difference operator acting on sequences $u=\left(u_{l}\right)_{l=0,1, \ldots}$ as

$$
(\delta u)_{l}=u_{l}-u_{l+1},
$$

the recursion (1) can be written as

$$
\begin{equation*}
u^{(k)}=\delta u^{(k-1)}, \quad k=1,2, \ldots \tag{3}
\end{equation*}
$$

Since $v_{n, k} \geq 0$, the sequence $u^{(0)}$ must be completely monotone, that is, componentwise

$$
\underbrace{\delta \circ \cdots \circ \delta}_{k} u^{(0)} \geq 0, \quad k=0,1, \ldots
$$

but then Hausdorff's theorem implies that there exists a representation

$$
\begin{equation*}
v_{n, k}=u_{n-k}^{(k)}=\int_{[0,1]} p^{k}(1-p)^{n-k} \mu(\mathrm{~d} p) \tag{4}
\end{equation*}
$$

with uniquely determined probability measure μ. De Finetti's theorem follows since $v_{n, k}=$ $p^{k}(1-p)^{n-k}$ for the Bernoulli process with parameter p. See 1 for other proofs and extensive survey of generalisations of this result.

The present note is devoted to variations on the q-analogue of de Finetti's theorem, which was briefly outlined in Kerov [10] within the framework of the boundary problem for generalised Stirling triangles. A related result is also contained in Pitman [12] (summary of a talk). The boundary problem for other weighted versions of the Pascal triangle was studied in [4], [7], and for more general graded graphs in [5], [10], 11].

Definition 1.1. Given $q>0$, let us say that a random binary sequence $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in$ $\{0,1\}^{\infty}$ is q-exchangeable if its probability law \mathbb{P} is \mathfrak{S}_{∞}-quasiinvariant with a specific cocycle, which is uniquely determined by the following condition: Denoting by $\mathbb{P}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ the probability of an initial sequence $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, we have for any $i=1, \ldots, n-1$

$$
\mathbb{P}\left(\varepsilon_{1}, \ldots, \varepsilon_{i-1}, \varepsilon_{i+1}, \varepsilon_{i}, \varepsilon_{i+2}, \ldots, \varepsilon_{n}\right)=q^{\varepsilon_{i}-\varepsilon_{i+1}} \mathbb{P}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)
$$

In words: under an elementary transposition of the form $(\ldots, 1,0, \ldots) \rightarrow(\ldots, 0,1, \ldots)$, probability is multiplied by q.

Theorem 1.2. Assume $0<q<1$. There is a bijective correspondence $\mathbb{P} \leftrightarrow \mu$ between the probability laws \mathbb{P} of infinite q-exchangeable binary sequences and the probability measures μ on the closed countable set

$$
\Delta_{q}:=\left\{1, q, q^{2}, \ldots\right\} \cup\{0\} \subset[0,1] .
$$

More precisely, a q-exchangeable sequence can be generated in a unique way by first choosing at random a point $x \in \Delta_{q}$ distributed according to μ and then running a certain q-analogue of the Bernoulli process indexed by x. Each law \mathbb{P} is uniquely determined by the infinite triangular array

$$
\begin{equation*}
v_{n, k}:=\mathbb{P}(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{n-k}), \quad 0 \leq k \leq n<\infty \tag{5}
\end{equation*}
$$

which in turn is given by a q-version of formula (4), with $[0,1]$ being replaced by Δ_{q} (Theorem 3.2). A similar result with switching the roles of 0 's and 1's and replacing q by q^{-1} also holds for $q>1$.

The approach taken in this note is extended to the real-valued random sequences in our forthcoming paper [6].

The rest of the note is organized as follows. In Section 2 we introduce the q-Pascal graph and formulate the q-exchangeability in terms of certain Markov chains on this graph. In Section 3 we find a characteristic recursion for the numbers (5), which is a q-deformation of (1), and we prove the main result, equivalent to Theorem 1.2, using the method of [11]. In Section 4 we discuss three examples: two q-analogues of the Bernoulli process and a q-analogue of Pólya's urn process. Finally, in Section 5, for q a power of a prime number, we provide an interpretation of the theorem in terms of random subspaces in an infinite-dimensional vector space over \mathbb{F}_{q}.

2 The q-Pascal graph

For $q>0$, the q-Pascal graph is a weighted directed graph $\Gamma(q)$ on the infinite vertex set

$$
\Gamma=\{(l, k): l, k=0,1, \ldots\} .
$$

Each vertex (l, k) has two weighted outgoing edges $(l, k) \rightarrow(l+1, k)$ and $(l, k) \rightarrow(l, k+1)$ with weights 1 and q^{l}, respectively. The vertex set is divided into levels $\Gamma_{n}=\{(l, k)$: $l+k=n\}$, so $\Gamma=\cup_{n \geq 0} \Gamma_{n}$ with Γ_{0} consisting of the sole root vertex (0,0). For a path in Γ connecting two vertices $(l, k) \in \Gamma_{l+k}$ and $(\lambda, \varkappa) \in \Gamma_{\lambda+\varkappa}$ we define the weight to be the product of weights of edges along the path. For instance, the weight of $(2,3) \rightarrow(2,4) \rightarrow$ $(3,4) \rightarrow(3,5)$ is $q^{5}=q^{2} \cdot 1 \cdot q^{3}$. Clearly, such a path exists if and only if $\lambda \geq l, \varkappa \geq k$.

We shall consider certain transient Markov chains $S=\left(S_{n}\right)$, with state-space Γ, which start at the root $(0,0)$ and move along the directed edges, so that $S_{n} \in \Gamma_{n}$ for every $n=0,1, \ldots$. Thus, a trajectory of S is an infinite directed path in Γ started at the root.

Definition 2.1. Adopting the terminology introduced by Vershik and Kerov (see [10]), we say that a Markov chain S on $\Gamma(q)$ is central if the following condition is satisfied for each vertex $(n-k, k) \in \Gamma_{n}$ visited by S with positive probability: given $S_{n}=(n-k, k)$, the conditional probability that S follows each particular path connecting $(0,0)$ and $(n-k, k)$ is proportional to the weight of the path.

Remark 2.2. If we only require the centrality condition to hold for all $(l, k) \in \Gamma_{\nu}$ for fixed ν, then we have it satisfied also for all (l, k) with $l+k \leq \nu$. From this it is easy to see that the centrality condition implies the Markov property of S in reversed time $n=\ldots, 1,0$, hence also implies the Markov property in forward time $n=0,1, \ldots$..

In the special case $q=1$ Definition 2.1 means that in the Pascal graph $\Gamma(1)$ all paths with common endpoints are equally likely.

Recall a bijection between the infinite binary sequences $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ and infinite directed paths in Γ started at the root $(0,0)$. Specifically, given a path, the nth digit ε_{n} is given the value 0 or 1 depending on whether l or k coordinate is increased by 1 . Indentifying a path with a sequence $\left(n-K_{n}, K_{n}\right)$ (where $0 \leq K_{n} \leq n$), the correspondence can be written as

$$
K_{n}=\sum_{j=1}^{n} \varepsilon_{j}, \quad \varepsilon_{n}=K_{n}-K_{n-1}, \quad n=1,2, \ldots
$$

Proposition 2.3. By virtue of the bijection between $\{0,1\}^{\infty}$ and the paths in Γ, each q exchangeable sequence corresponds to a central Markov chain on $\Gamma(q)$, and vice versa.

Proof. This follows readily from Remark 2.2, Definitions 1.1 and 2.1 and the structure of $\Gamma(q)$.

We shall use the standard notation

$$
[n]:=1+q+\ldots+q^{n-1}, \quad[n]!:=[1] \cdot[2] \cdots[n], \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!}
$$

for q-integers, q-factorials and q-binomial coefficients, respectively, with the usual convention that $\left[\begin{array}{l}n \\ k\end{array}\right]=0$ for $n<0$ or $k<0$. Furthermore, we set

$$
(x, q)_{k}:=\prod_{i=0}^{k-1}\left(1-x q^{i}\right), \quad 1 \leq k \leq \infty
$$

with the infinite product $(k=\infty)$ considered for $0<q<1$.
The following lemma justifies the name of the graph by relating it to the q-Pascal triangle of q-binomial coefficients.

Lemma 2.4. The sum of weights of all directed paths from the root $(0,0)$ to a vertex $(n-k, k)$, denoted $d_{n, k}$, is given by

$$
d_{n, k}=\left[\begin{array}{l}
n \tag{6}\\
k
\end{array}\right] .
$$

More generally, $d_{n, k}^{\nu, \sim}$, the sum of weights of all paths connecting two vertices $(n-k, k)$ and $(\nu-\varkappa, \varkappa)$ in Γ is given by

$$
d_{n, k}^{\nu, \varkappa}=q^{(\varkappa-k)(n-k)}\left[\begin{array}{l}
\nu-n \\
\varkappa-k
\end{array}\right] .
$$

Proof. Note that any path from $(0,0)$ to $(n-k, k)$ has the second component incrementing by 1 on some k edges $\left(l_{i}, i-1\right) \rightarrow\left(l_{i}, i\right)$, where $i=1,2, \ldots, k$ and $0 \leq l_{1} \leq \cdots \leq l_{k} \leq n-k$, thus the sum of weights is equal to

$$
\begin{equation*}
d_{n, k}=\sum_{0 \leq l_{1} \leq \cdots \leq l_{k} \leq n-k} q^{l_{1}+\cdots+l_{k}} \tag{7}
\end{equation*}
$$

This array satisfies the recursion

$$
\begin{equation*}
d_{n, k}=q^{n-k} d_{n-1, k-1}+d_{n-1, k}, \quad 0<k<n \tag{8}
\end{equation*}
$$

with the boundary conditions $d_{n, 0}=d_{n, n}=1$. On the other hand, it is well known that the array of q-binomial coefficients also satisfies this recursion [9], hence by the uniqueness $d_{n, k}$ is the q-binomial coefficient. In the like way the sum of weights of paths from $(n-k, k)$ to $(\nu-\varkappa, \varkappa)$ is

$$
d_{n, k}^{\nu \varkappa}=\sum_{n-k \leq l_{1} \leq \cdots \leq l_{k^{\prime}} \leq \nu-\varkappa} q^{l_{1}+\cdots+l_{k^{\prime}}}, \quad k^{\prime}:=\varkappa-k .
$$

Comparing with (7) we see that this is equal to $q^{(n-k) k^{\prime}}\left[\begin{array}{c}\nu-\varkappa \\ k^{\prime}\end{array}\right]$.
Remark 2.5. Changing (l, k) to (k, l) yields the dual q-Pascal graph $\Gamma^{*}(q)$, which has the same set of vertices and edges as $\Gamma(q)$, but different weights: the edge $(l, k) \rightarrow(l, k+1)$ has now weight 1 , and the edge $(l, k) \rightarrow(l+1, k)$ has weight q^{k}. The sum of weights of paths in Γ^{*} from $(0,0)$ to (l, k) is again (6), which is related to another recursion for q-binomial coefficients, $d_{n, k}=d_{n-1, k-1}+q^{k} d_{n-1, k}$.

Consider the recursion

$$
\begin{equation*}
v_{n, k}=v_{n+1, k}+q^{n-k} v_{n+1, k+1}, \quad \text { with } \quad v_{0,0}=1 \tag{9}
\end{equation*}
$$

which is dual to (8), and denote by \mathcal{V} the set of nonnegative solutions to (9).
Proposition 2.6. Formula

$$
\mathbb{P}\left\{S_{n}=(n-k, k)\right\}=d_{n, k} v_{n, k}, \quad(n-k, k) \in \Gamma
$$

establishes a bijective correspondence $\mathbb{P} \leftrightarrow v$ between the probability laws of central Markov chains $S=\left(S_{n}\right)$ on $\Gamma(q)$ and solutions $v \in \mathcal{V}$ to recursion (9).

Proof. Let S be a central Markov chain on Γ with probability law \mathbb{P}. Observe that the property in Definition 2.1 means precisely that the one-step backward transition probabilities (that is, transition probabilities in the inverse time) are of the form

$$
\begin{gather*}
\mathbb{P}\left\{S_{n-1}=(n-1, k) \mid S_{n}=(n-k, k)\right\}=\frac{d_{n-1, k}}{d_{n, k}}=\frac{[n-k]}{[n]} \tag{10}\\
\mathbb{P}\left\{S_{n-1}=(n-1, k-1) \mid S_{n}=(n-k, k)\right\}=\frac{d_{n-1, k-1} q^{n-k}}{d_{n, k}}=q^{n-k} \frac{[k]}{[n]} \tag{11}
\end{gather*}
$$

for every such S.
Introduce the notation

$$
\begin{equation*}
\tilde{v}_{n, k}:=\mathbb{P}\left\{S_{n}=(n-k, k)\right\}, \quad(n-k, k) \in \Gamma . \tag{12}
\end{equation*}
$$

Consistency of the distributions of S_{n} 's amounts to the rule of total probability

$$
\begin{align*}
\tilde{v}_{n, k}=\mathbb{P}\left\{S_{n}=(n-k, k) \mid\right. & \left.S_{n+1}=(n+1-k, k)\right\} \tilde{v}_{n+1, k} \\
& +\mathbb{P}\left\{S_{n}=(n-k, k) \mid S_{n+1}=(n-k, k+1)\right\} \tilde{v}_{n+1, k+1} . \tag{13}
\end{align*}
$$

Rewriting (13), using (10) and (11), and setting

$$
\begin{equation*}
v_{n, k}=d_{n, k}^{-1} \tilde{v}_{n, k} \tag{14}
\end{equation*}
$$

we get (9), which means that $v \in \mathcal{V}$. Thus, we have constructed the correspondence $\mathbb{P} \mapsto v$.

Conversely, start with a solution $v \in \mathcal{V}$ and pass to $\tilde{v}=\left(\tilde{v}_{n, k}\right)$ according to (14). For each n consider the measure on Γ_{n} with weights $\tilde{v}_{n, 0}, \ldots, \tilde{v}_{n, n}$. Since the weight of the root is 1 , it follows from (9) by induction in n that these are probability measures. Again by (9), the marginal measures are consistent with the backward transition probabilities, hence determine the probability law of a central Markov chain on $\Gamma(q)$. Thus, we get the inverse correspondence $v \mapsto \mathbb{P}$.

By virtue of Propositions 2.3 and [2.6, the law of q-exchangeable infinite binary sequence is determined by some $v \in \mathcal{V}$, with the entries $v_{n, k}$ having the same meaning as in (5). In the sequel this law will be sometimes denoted \mathbb{P}_{v}.

3 The boundary problem

The set \mathcal{V} is a Choquet simplex, meaning a convex set which is compact in the product topology of the space of functions on Γ and has the property of uniqueness of the barycentric decomposition of each $v \in \mathcal{V}$ over the set of extreme elements of \mathcal{V} (see, e. g., [8, Proposition 10.21]).

The boundary problem for the q-Pascal graph amounts to describing extreme nonnegative solutions to the recursion (9). Each extreme solution $v \in \mathcal{V}$ corresponds to ergodic
process $\left(S_{n}\right)$ for which the tail sigma-algebra is trivial. In this context, the set of extremes is also known as the minimal boundary.

With each array $v \in \mathcal{V}, v=\left(v_{n, k}\right)$, it is convenient to associate another array $\tilde{v}=\left(\tilde{v}_{n, k}\right)$ related to v via (14). Clearly, the mapping $v \leftrightarrow \tilde{v}$ is an isomorphism of two Choquet simplexes \mathcal{V} and $\widetilde{\mathcal{V}}=\{\tilde{v}\}$. Recall that the meaning of the quantities $\tilde{v}_{n, k}$ is explained in (12).

A common approach to the boundary problem calls for identifying a possibly larger Martin boundary (see [11], [7], 4] for applications of the method). To this end, we need to consider multistep backward transition probabilities, which by Lemma 6 are given by a q-analogue of the hypergeometric distribution

$$
\begin{align*}
\tilde{v}_{n, k}(\nu, \varkappa):=\mathbb{P}\left\{S_{n}=(n-k, k)\right. & \left.\mid S_{\nu}=(\nu-\varkappa, \varkappa)\right\} \\
& =q^{(\varkappa-k)(n-k)}\left[\begin{array}{c}
\nu-n \\
\varkappa-k
\end{array}\right]\left[\begin{array}{l}
n \\
k
\end{array}\right] /\left[\begin{array}{c}
\nu \\
\varkappa
\end{array}\right], \quad k=0, \ldots, n, \tag{15}
\end{align*}
$$

and to examine the limiting regimes for $\varkappa=\varkappa(\nu)$ as $\nu \rightarrow \infty$, under which the probabilities (15) converge for all fixed $(n-k, k) \in \Gamma$. If the limits exist, the limiting array

$$
\tilde{v}_{n, k}:=\lim _{(\nu, \varkappa)} \tilde{v}_{n, k}(\nu, \varkappa)
$$

belongs necessarily to $\widetilde{\mathcal{V}}$.
Suppose $0<q<1$ and introduce polynomials

$$
\begin{equation*}
\Phi_{n, k}(x):=q^{-k(n-k)} x^{n-k}\left(x, q^{-1}\right)_{k}, \quad \widetilde{\Phi}_{n, k}=d_{n, k} \Phi_{n, k}, \quad 0 \leq k \leq n \tag{16}
\end{equation*}
$$

Obviously, the degree of $\Phi_{n, k}$ is n; we will consider the polynomial as a function on Δ_{q}. Observe also that $\Phi_{n, k}(x)$ vanishes at points $x=q^{\varkappa}$ with $\varkappa<k$, because of vanishing of $\left(x, q^{-1}\right)_{k}$.

Lemma 3.1. Suppose $0<q<1$, and let in (15) the indices n and k remain fixed, while $\nu \rightarrow \infty$ and $\varkappa=\varkappa(\nu)$ varies in some way with ν. Then the limit of (15) is $\widetilde{\Phi}_{n, k}\left(q^{\varkappa}\right)$ if \varkappa is constant for large enough ν. If $\varkappa \rightarrow \infty$ then the limit is $\widetilde{\Phi}_{n, k}(0)=\delta_{n, k}$.

Proof. Assume first $\varkappa \rightarrow \infty$ and show that the limit of (15) is $\delta_{n k}$. Since the quantities $\tilde{v}_{n, k}(\nu, \varkappa)$, where $k=0, \ldots, n$, form a probability distribution, it suffices to check that the limit exists and is equal to 1 for $k=n$. In this case the right-hand side of (15) becomes

$$
\prod_{i=1}^{n} \frac{[\varkappa-n+i]}{[\nu-n+i]}
$$

Because $\lim _{m \rightarrow \infty}[m]=1 /(1-q)$ for $q<1$, this indeed converges to 1 provided that $\varkappa \rightarrow \infty$.

Now suppose \varkappa is fixed for all large enough ν. The right-hand side of (15) is 0 for $k>\varkappa$. For $k \leq \varkappa$ using $\lim _{m \rightarrow \infty}[m-j]!/[m]!=(1-q)^{j}$ we obtain

$$
\begin{align*}
& {\left[\begin{array}{c}
\nu-n \\
\varkappa-k
\end{array}\right] /\left[\begin{array}{c}
\nu \\
\varkappa
\end{array}\right]=\frac{[\nu-n]!}{[\nu]!} \frac{[\nu-\varkappa]!}{[\nu-\varkappa-(n-k)]!} \frac{[\varkappa]!}{[\varkappa-k]!} } \\
& \rightarrow \frac{(1-q)^{k}[\varkappa]!}{[\varkappa-k]!}=\widetilde{\Phi}_{n, n}\left(q^{\varkappa}\right) . \tag{17}
\end{align*}
$$

Part (i) of the next theorem appeared in [10, Chapter 1, Section 4, Corollary 6]. Kerov pointed out that the proof could be concluded from the Kerov-Vershik 'ring theorem' (see [5. Section 8.7]), but did not give details.

For μ a measure, we shall write $\mu(x)$ instead of $\mu(\{x\})$, meaning atomic mass at x.
Theorem 3.2. Assume $0<q<1$.
(i) The formulas

$$
\tilde{v}_{n, k}=\sum_{x \in \Delta_{q}} \widetilde{\Phi}_{n, k}(x) \mu(x), \quad v_{n, k}=\sum_{x \in \Delta_{q}} \Phi_{n, k}(x) \mu(x)
$$

establish a linear homeomorphism between the set $\widetilde{\mathcal{V}}$ (respectively, \mathcal{V}) and the set of all probability measures μ on Δ_{q}.
(ii) Given $\tilde{v} \in \widetilde{\mathcal{V}}$, the corresponding measure μ is determined by

$$
\mu\left(q^{\varkappa}\right)=\lim _{\nu \rightarrow \infty} \tilde{v}_{\nu, \varkappa}, \quad \varkappa=0,1, \ldots ; \quad \mu(0)=1-\sum_{\varkappa \in\{0,1, \ldots\}} \mu\left(q^{\varkappa}\right) .
$$

Proof. As in [11], the assertions (i) and (ii) are consequences of the following claims (a), (b) and (c).
(a) For each $\nu=0,1,2, \ldots$, the vertex set Γ_{ν} is embedded into Δ_{q} via the map $(\nu, \varkappa) \mapsto q^{\varkappa}$. Observe that, as $\nu \rightarrow \infty$, the image of Γ_{ν} in Δ_{q} expands and in the limit exhausts the whole set Δ_{q}, except point 0 , which is a limit point. In this sense, Δ_{q} is approximated by the sets Γ_{ν} as $\nu \rightarrow \infty$.
(b) The multistep backward transition probabilities (15) converge to $\widetilde{\Phi}_{n, k}\left(q^{\varkappa}\right)$, for $0 \leq \varkappa \leq \infty$, in the regimes described by Lemma 3.1.
(c) The linear span of the functions $\widetilde{\Phi}_{n, k}(x),(n-k, k) \in \Gamma$, is the space of all polynomials, so that it is dense in the Banach space $C\left(\Delta_{q}\right)$.

Note that part (ii) of the theorem can be rephrased as follows: given $\tilde{v} \in \widetilde{\mathcal{V}}$, consider the probability distribution on Γ_{n} determined by $\tilde{v}_{n, \bullet}$ and take its pushforward under the embedding $\Gamma_{\nu} \hookrightarrow \Delta_{q}$. The resulting probability measure on Δ_{q} weakly converges to μ as $n \rightarrow \infty$.

Corollary 3.3. For $0<q<1$ we have:
(i) The extreme elements of \mathcal{V} are parameterised by the points $x \in \Delta_{q}$ and have the form

$$
\begin{equation*}
v_{n, k}=\Phi_{n, k}(x), \quad 0 \leq k \leq n . \tag{18}
\end{equation*}
$$

(ii) The Martin boundary of the graph $\Gamma(q)$ coincides with its minimal boundary and can be identified with $\Delta_{q} \subset[0,1]$ via the function $v \mapsto v_{1,0}$.
Proof. All the claims are immediate. We only comment on the fact the parameter $x \in \Delta_{q}$ is recovered as the value of $v_{1,0}$: this holds because $\Phi_{1,0}(x)=x$.

Letting $q \rightarrow 1$ we have a phase transition: the discrete boundary Δ_{q} becomes more and more dense and eventually fills the whole of $[0,1]$ at $q=1$.

As is seen from (16), the polynomial $\Phi_{n, k}(x)$ can be viewed as a q-analogue of the polynomial $x^{n-k}(1-x)^{k}$, so that (18) is a q-analogue of (4). Keep in mind that $x=q^{x}$ is a counterpart of $1-p$, the probability of $\varepsilon_{1}=0$. The following q-analogue of the Hausdorff problem of moments emerges. Introduce a modified difference operator acting on sequences $u=\left(u_{l}\right)_{l=0,1, \ldots}$ as

$$
\left(\delta_{q} u\right)_{l}=q^{-l}\left(u_{l}-u_{l+1}\right), \quad l=0,1, \ldots
$$

Corollary 3.4. Assume $0<q<1$. A real sequence $u=\left(u_{l}\right)_{l=0,1, \ldots}$ with $u_{0}=1$ is a moment sequence of a probability measure μ supported by $\Delta_{q} \subset[0,1]$ if and only if u is ' q-completely monotone' in the sense that for every $k=0,1, \ldots$ we have componentwise

$$
\underbrace{\delta_{q} \circ \cdots \circ \delta_{q}}_{k} u \geq 0, \quad k=0,1, \ldots
$$

Proof. Using the notation $v_{l+k, k}=u_{l}^{(k)}$ as in (2), we see that the recursion (9) is equivalent to $u^{(k)}=\delta_{q} u^{(k-1)}$, cf. (3). Then we use the fact that $\Phi_{n, 0}(x)=x^{n}$ and repeat in the reverse order the argument of Section 1.

The case $q>1$.

This case can be readily reduced to the case with parameter $0<\bar{q}<1$, where $\bar{q}:=q^{-1}$. It is convenient to adopt a more detailed notation $[n]_{q}$ for the q-integers.
Lemma 3.5. For every $q>0, \bar{q}=q^{-1}$, the backward transition probabilities (10), (11) for the graph $\Gamma(q)$ and the dual graph $\Gamma^{*}(\bar{q})$ are the same.
Proof. Indeed, by virtue of (10), (11), this is reduced to the equality

$$
\frac{[n-k]_{q}}{[n]_{q}}=\bar{q}^{k} \frac{[n-k]_{\bar{q}}}{[n]_{\bar{q}}} .
$$

The lemma implies that the boundary problem for $q>1$ can be treated by passing to $q^{-1}<1$ and changing (l, k) to (k, l). In terms of the binary encoding of the path, this means switching 0 's with 1 's.

Kerov [10, Chapter 1, Section 2.2] gives more examples of 'similar' graphs, which have different edge weights but the same backward transition probabilities.

4 Examples

A q-analogue of the Bernoulli process.

Our first example is a description of the extreme q-exchangeable infinite binary sequences.
With each infinite binary sequence we associate some T-sequence $\left(T_{0}, T_{1}, T_{2}, \ldots\right)$ of nonnegative integers, where T_{j} is the length of j th run of 0 's. That is to say, T_{0} is the number of 0 's before the first $1, T_{1}$ is the number of 0 's between the first and second 1 's, T_{2} is the number of 0 's between the second and third 1's, and so on. Clearly, this is a bijection, i.e. a binary sequence can be recovered from its T-sequence as

$$
(\underbrace{0, \ldots, 0}_{T_{0}}, 1, \underbrace{0, \ldots, 0}_{T_{1}}, 1, \underbrace{0, \ldots, 0}_{T_{2}}, 1, \ldots) .
$$

If $q=1$, then the Bernoulli process with parameter p has a simple description in terms of the associated random T-sequence: all T_{i} are independent and have the same geometric distribution with parameter $1-p$.

Proposition 4.1. Assume $0<q<1$. For $x \in \Delta_{q}$, let $v(x)=\left(v_{n, k}(x)\right)$ be the extreme element of \mathcal{V} corresponding to x. Consider q-exchangeable infinite binary sequence $\varepsilon=$ $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ under the probability law $\mathbb{P}_{v(x)}$ and let $\left(T_{0}, T_{1}, \ldots\right)$ be the associated random T-sequence.
(i) If $x=q^{\varkappa}$ with $\varkappa=1,2, \ldots$ then $T_{0}, \ldots, T_{\varkappa-1}$ are independent, $T_{\varkappa} \equiv \infty$, and T_{i} has geometric distribution with parameter $q^{\varkappa-i}$ for $0 \leq i \leq \varkappa-1$.
(ii) If $x=1$ then $T_{0} \equiv \infty$, which means that with probability one ε is the sequence $(0,0, \ldots)$ of only 0 's.
(iii) If $x=0$ then $T_{0} \equiv T_{1} \equiv \cdots \equiv 0$, which means that with probability one ε is the sequence $(1,1, \ldots)$ of only 1 's.

Proof. Consider the central Markov chain $S=\left(S_{n}\right)$ corresponding to the extreme element $v\left(q^{\chi}\right)$. Computing the forward transition probabilities, from (18) and (10), for $0 \leq k \leq \varkappa$ we have

$$
\begin{align*}
\mathbb{P}\left\{S_{n+1}=(n+1-k, k) \mid S_{n}=(n-k, k)\right. & \\
& =\frac{\left(q^{n+1-k}-1\right)}{\left(q^{n}-1\right)} \frac{d_{n+1, k} \Phi_{n+1, k}\left(q^{\varkappa}\right)}{d_{n, k} \Phi_{n, k}\left(q^{\chi}\right)}=q^{\varkappa-k} . \tag{19}
\end{align*}
$$

This implies (i) and (ii). In the limit case $x=0$ corresponding to $\varkappa \rightarrow+\infty$, the above probability equals 0 , which entails (iii).

The analogy with the Bernoulli process is evident from the above description of the binary sequence $\varepsilon\left(q^{\chi}\right)$. Moreover, the Bernoulli process appears as a limit. Indeed, fix $p \in(0,1)$ and suppose \varkappa varies with q, as $q \uparrow 1$, in such a way that

$$
\varkappa \sim \frac{-\log (1-p)}{1-q} .
$$

In this limiting regime, $q^{\varkappa-k} \rightarrow 1-p$ for every k, hence $\left(T_{0}, T_{1}, \ldots\right)$ weakly converges to an infinite sequence of i.i.d. geometric variables with parameter $1-p$, and the random binary sequence $\varepsilon\left(q^{\varkappa}\right)$ converges in distribution to the Bernoulli process with the frequency of 0 's equal to $1-p$.

Another q-analogue of Bernoulli process.

Following [10], another q-analogue of Bernoulli process is suggested by the q-binomial formula (see [9])

$$
(-\theta, q)_{n}=\sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right] \theta^{k} .
$$

For $\theta \in[0, \infty]$ we define a probability law $\mathbb{P}_{w^{\theta}}$ for $S=\left(S_{n}\right)$ by setting

$$
\begin{equation*}
w_{n, k}^{\theta}:=\frac{\theta^{k} q^{k(k-1) / 2}}{(-\theta, q)_{n}}, \quad \mathbb{P}_{w^{\theta}}\left\{S_{n}=(n-k, k)\right\}:=d_{n, k} w_{n, k}^{\theta}, \quad(n, k) \in \Gamma \tag{20}
\end{equation*}
$$

Checking (9) is immediate. Computing forward transition probabilities,

$$
\mathbb{P}_{w^{\theta}}\left\{S_{n+1}=(n+1-k, k) \mid S_{n}=(n-k, k)\right\}=1 /\left(1+\theta q^{n}\right),
$$

shows that under $\mathbb{P}_{w^{\theta}}$ the process $S_{n}=\left(n-K_{n}, K_{n}\right)$ has independent inhomogeneous increments, with probability $\theta q^{n-1} /\left(1+\theta q^{n-1}\right)$ for increment $K_{n}-K_{n-1}=1$. For $q=1$ we are back to the ergodic Bernoulli process, but for $0<q<1$ the process is not extreme. To obtain the barycentric decomposition of w^{θ} over extremes,

$$
w^{\theta}=\sum_{0 \leq \varkappa \leq \infty} v^{\varkappa} \mu\left(q^{\varkappa}\right)
$$

we can apply Theorem 3.2(ii) to compute from (20)

$$
\mu\left(q^{\varkappa}\right)=\lim _{n \rightarrow \infty} \mathbb{P}_{w^{\theta}}\left\{S_{n}=(n-\varkappa, \varkappa)\right\}=\frac{1}{(-\theta, q)_{\infty}} \frac{q^{\varkappa(\varkappa-1) / 2} \theta^{\varkappa}}{(1-q)^{\varkappa}[\varkappa]!}
$$

This measure μ may be viewed as a q-analogue of the Poisson distribution.

A q-analogue of Pólya's urn process.

The conventional Pólya's urn process is described in [3, Section 7.4]. Here we provide its natural deformation.

Fix $a, b>0$ and $0<q<1$. Consider the Markov chain $\left(S_{n}\right)$ on Γ with the forward transition probabilities from $(n-k, k)$ to $(n+1-k, k)$ and from $(n-k, k)$ to $(n-k, k+1)$ given by

$$
\frac{[b+n-k]}{[a+b+n]} \text { and } \frac{[a+k]}{[a+b+n]} q^{n-k+b}
$$

respectively. Then the distribution at time n is

$$
\begin{align*}
\mathbb{P}\left\{S_{n}=(n-k, k)\right\}=\left[\begin{array}{l}
n \\
k
\end{array}\right] & q^{b k} \\
& \times \frac{[a][a+1] \cdots[a+k-1][b][b+1] \cdots[b+n-k-1]}{[a+b][a+b+1] \cdots[a+b+n-1]} . \tag{21}
\end{align*}
$$

Checking consistency (9) is easy. The conventional Pólya's urn process appears in the limit $q \rightarrow 1$. The corresponding probability measure μ is computable from Theorem 3.2 (ii) as

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{S_{n}=(n-\varkappa, \varkappa)\right\}
$$

For $a=1$, the limit distribution of the coordinate \varkappa is geometric with parameter $1-q^{b}$. For general a, b we obtain a measure on Δ_{q}

$$
\mu\left(q^{\varkappa}\right)=\frac{\left(q^{a}, q\right)_{\varkappa}\left(q^{b}, q\right)_{\infty}}{(q, q)_{\varkappa}\left(q^{a+b} ; q\right)_{\infty}} q^{\varkappa b}, \quad q^{\varkappa} \in \Delta_{q}
$$

which may be viewed as a q-analogue of the beta distribution on $[0,1]$.

5 Grassmannians over a finite field

For q a power of a prime number, let \mathbb{F}_{q} be the Galois field with q elements. Define V_{n} to be the n-dimensional space of sequences $\left(\xi_{1}, \xi_{2}, \ldots\right)$ with entries from \mathbb{F}_{q}, which satisfy $\xi_{i}=0$ for $i>n$. The spaces $\{0\}=V_{0} \subset V_{1} \subset V_{2} \subset \ldots$ comprise a complete flag, and the union $V_{\infty}:=\cup_{n \geq 0} V_{n}$ is a countable, infinite-dimensional space over \mathbb{F}_{q}.

By the Grassmannian $\operatorname{Gr}\left(V_{\infty}\right)$ we mean the set of all vector subspaces $X \subseteq V_{\infty}$. Likewise, for $n \geq 0$ let $\operatorname{Gr}\left(V_{n}\right)$ be the set of all vector subspaces in V_{n}, with $\operatorname{Gr}\left(V_{0}\right)$ being a singleton. Consider the projection $\pi_{n+1, n}: \operatorname{Gr}\left(V_{n+1}\right) \rightarrow \operatorname{Gr}\left(V_{n}\right)$ which sends a subspace of V_{n+1} to its intersection with V_{n}.

Lemma 5.1. There is a canonical bijection $X \leftrightarrow\left(X_{n}\right)$ between the Grassmannian $\operatorname{Gr}\left(V_{\infty}\right)$ and the set of sequences $\left(X_{n} \in \operatorname{Gr}\left(V_{n}\right), n \geq 0\right)$ satisfying the consistency condition $X_{n}=\pi_{n+1, n}\left(X_{n+1}\right)$ for each n.

Proof. Indeed, the mapping $X \mapsto\left(X_{n}\right)$ is given by setting $X_{n}=X \cap V_{n}$ for each n, while the mapping $\left(X_{n}\right) \mapsto X$ is defined by $X=\cup X_{n}$.

The lemma shows that $\operatorname{Gr}\left(V_{\infty}\right)$ can be identified with a projective limit of the finite sets $\operatorname{Gr}\left(V_{n}\right)$, the projections being the maps $\pi_{n+1, n}$. Using this identification we endow $\operatorname{Gr}\left(V_{\infty}\right)$ with the corresponding topology, in which $\operatorname{Gr}\left(V_{\infty}\right)$ becomes a totally disconnected compact space. For $X \in \operatorname{Gr}\left(V_{\infty}\right)$, a fundamental system of its neighborhoods is comprised of the sets of the form $\left\{X^{\prime} \in \operatorname{Gr}\left(V_{\infty}\right): X_{n}^{\prime}=X_{n}\right\}$, where $n=1,2, \ldots$.

Let $\mathscr{G}_{n}=G L\left(n, \mathbb{F}_{q}\right)$ be the group of invertible linear transformations of the space V_{n}, realised as the group of transformations of V_{∞} which may only change the first n
coordinates. We have then $\{e\}=\mathscr{G}_{0} \subset \mathscr{G}_{1} \subset \mathscr{G}_{2} \subset \ldots$ and we define $\mathscr{G}_{\infty}:=\cup \mathscr{G}_{n}$. The countable group \mathscr{G}_{∞} consists of infinite invertible matrices $\left(g_{i j}\right)$, such that $g_{i j}=\delta_{i j}$ for large enough $i+j$. The group \mathscr{G}_{∞} acts on V_{∞} hence also acts on $\operatorname{Gr}\left(V_{\infty}\right)$.

A probability distribution on $\operatorname{Gr}\left(V_{\infty}\right)$ defines a random subspace of V_{∞}. We look at random subspaces of V_{∞} whose distribution is invariant under the action of \mathscr{G}_{∞}. Observe that the action of \mathscr{G}_{n} splits $\operatorname{Gr}\left(V_{n}\right)$ into orbits

$$
G(n, k)=\left\{X \in \operatorname{Gr}\left(V_{n}\right), \operatorname{dim} X=k\right\}, \quad 0 \leq k \leq n,
$$

where $\# G(n, k)=d_{n, k}$ is the number of k-dimensional subspaces of V_{n}. Therefore, a probability distribution on $\operatorname{Gr}\left(V_{\infty}\right)$ is \mathscr{G}_{∞}-invariant if and only if the conditional distribution on each $G(n, k)$ is uniform.

It must be clear that this setting of ' q-exchangeability' of linear spaces is analogous to the framework of de Finetti's theorem: exchangeability of a random binary sequence means that the conditional measure is uniform on sequences of length n with k 1's. See [1], [2] for more on symmetries and sufficiency.

Lemma 5.2. Formula

$$
\tilde{v}_{n, k}=P\left\{X \in \operatorname{Gr}\left(V_{\infty}\right): X \cap V_{n} \in G(n, k)\right\}, \quad(n, k) \in \Gamma
$$

establishes a linear homeomorphism between $\widetilde{\mathcal{V}}$ and \mathscr{G}_{∞}-invariant probability measures on the Grassmannian $\operatorname{Gr}\left(V_{\infty}\right)$.

Proof. We first spell out more carefully the remark before the lemma. Consider projections

$$
\pi_{\infty, n}: \operatorname{Gr}\left(V_{\infty}\right) \rightarrow \operatorname{Gr}\left(V_{n}\right), \quad X \mapsto X \cap V_{n}, \quad X \in \operatorname{Gr}\left(V_{\infty}\right), \quad n=1,2, \ldots
$$

If P is a Borel probability measure on the space $\operatorname{Gr}\left(V_{\infty}\right)$, then, for any n, the pushforward $P_{n}:=\pi_{\infty, n}(P)$ is a probability measure on $\operatorname{Gr}\left(V_{n}\right)$, and the measures P_{n} are consistent with respect to the projections $\pi_{n+1, n}$, that is,

$$
P_{n}=\pi_{n+1, n}\left(P_{n+1}\right), \quad n=0,1,2, \ldots
$$

Conversely, if a sequence $\left(P_{n}\right)$ of probability measures is consistent, then it determines a probability measure P on $\operatorname{Gr}\left(V_{\infty}\right)$. Moreover, P is \mathscr{G}_{∞}-invariant if and only if each P_{n} is \mathscr{G}_{n}-invariant. Next, observe that if P_{n} is a \mathscr{G}_{n}-invariant probability measure, then it assigns the same weight to each k-dimensional space $X_{n} \in G(n, k)$; let us denote this weight by $v_{n, k}$.

Fix $X_{n} \in G(n, k)$. We claim that there are precisely $q^{n-k}+1$ subspaces $X_{n+1} \in$ $\operatorname{Gr}\left(V_{n+1}\right)$ such that $X_{n+1} \cap V_{n}=X_{n}$: one subspace from $G(n+1, k)$ and q^{n-k} subspaces from $G(n+1, k+1)$. Indeed, $\operatorname{dim} X_{n+1}$ equals either k or $k+1$. In the former case $X_{n+1}=X_{n}$, while in the latter case X_{n+1} is spanned by X_{n} and a nonzero vector from $V_{n+1} \backslash V_{n}$. Such a vector is defined uniquely up to a scalar multiple and addition of an
arbitrary vector from X_{n}. Therefore, the number of options is equal to the number of lines in V_{n+1} / X_{n} not contained in V_{n} / X_{n}, which equals

$$
\frac{q^{n+1-k}-1}{q-1}-\frac{q^{n-k}-1}{q-1}=q^{n-k} .
$$

Now, let P be a \mathscr{G}_{∞}-invariant probability measure on $\operatorname{Gr}\left(V_{\infty}\right)$, with projections $\left(P_{n}\right)$ specified by the corresponding array of weights $v=\left(v_{n, k}\right)$. Then the relations $P_{n}=$ $\pi_{n+1, n}\left(P_{n+1}\right)$ together with the dimension computation imply that v satisfies (9).

Conversely, given $v \in \mathcal{V}$, we can construct a sequence $\left(P_{n}\right)$ of measures such that P_{n} lives on $\operatorname{Gr}\left(V_{n}\right)$, is invariant under \mathscr{G}_{n} and agrees with P_{n+1} under $\pi_{n+1, n}$. Since P_{0}, which lives on a singleton, is obviously a probability measure, we obtain by induction that all P_{n} are probability measures. Taking their projective limit we get a \mathscr{G}_{∞}-invariant probability measure P on $\operatorname{Gr}\left(V_{\infty}\right)$.

Rephrasing Theorem 3.2 we have from the lemma
Corollary 5.3. The ergodic \mathscr{G}_{∞}-invariant probability measures on $\operatorname{Gr}\left(V_{\infty}\right)$ are parameterised by $\varkappa \in\{0,1, \ldots, \infty\}$. For $\varkappa=0$ the measure is the Dirac mass at V_{∞}, for $\varkappa=\infty$ it is the Dirac mass at V_{0}, and for $0<\varkappa<\infty$ the measure is supported by the set of subspaces of V_{∞} of codimension \varkappa.

The following random algorithm describes explicitly the dynamics of the growing space $X_{n} \in \operatorname{Gr}\left(V_{n}\right)$ as n varies, under the ergodic measure with parameter \varkappa. Recall the notation $\bar{q}=q^{-1}$. Start with $X_{0}=V_{0}$. With probability \bar{q}^{\varkappa} choose $X_{1}=V_{1}$, and with probability $1-\bar{q}^{\varkappa}$ choose $X_{1}=X_{0}$. Suppose $X_{n} \subseteq V_{n}$ has been constructed and has dimension $n-k$ with $k \leq \varkappa$. Then let $X_{n+1}=X_{n}$ with probability $1-\bar{q}^{\varkappa-k}$, and with probability $\bar{q}^{\varkappa-k}$ choose uniformly at random a nonzero vector $\xi \in V_{n+1} \backslash V_{n}$ and let X_{n+1} be the linear span of X_{n} and ξ.

Duality.

We finish with a dual version of our construction. Let V^{∞} denote the set of all sequences $\eta=\left(\eta_{1}, \eta_{2}, \ldots\right)$ with entries from \mathbb{F}_{q}. This is again a vector space over \mathbb{F}_{q}, strictly larger than V_{∞} since we do not require η to have finitely many nonzero entries. That is to say, V^{∞} is just the infinite product space $\left(\mathbb{F}_{q}\right)^{\infty}$, which we endow with the product topology. Let $\operatorname{Gr}\left(V^{\infty}\right)$ denote the set of all closed subspaces $Y \subseteq V^{\infty}$. A dual version of Lemma 5.1 says that such subspaces Y are in a bijective correspondence with the sequences $\left(Y_{n} \in \operatorname{Gr}\left(V_{n}\right), n \geq 0\right)$ such that $Y_{n}=\pi_{n+1, n}^{\prime}\left(Y_{n+1}\right)$, where $\pi_{n+1, n}^{\prime}$ is induced by the projection map $V_{n+1} \rightarrow V_{n}$ which sets the $(n+1)$ th coordinate of a vector $\xi \in V_{n+1}$ equal to 0 . The branching of $G(n, k)$'s under these projections corresponds to the graph $\Gamma^{*}\left(q^{-1}\right)$.
Lemma 5.4. The operation of passing to the orthogonal complement with respect to the bilinear form

$$
\langle\xi, \eta\rangle:=\sum_{i=1}^{\infty} \xi_{i} \eta_{i}, \quad \xi \in V_{\infty}, \quad \eta \in V^{\infty}
$$

is a bijection $\operatorname{Gr}\left(V_{\infty}\right) \leftrightarrow \operatorname{Gr}\left(V^{\infty}\right)$.
Proof. First of all, note that the bilinear form is well defined, because the coordinates ξ_{i} of $\xi \in V_{\infty}$ vanish for i large enough. This form determines a bilinear pairing $V_{\infty} \times V^{\infty} \rightarrow \mathbb{F}_{q}$. We claim that it brings the spaces V_{∞} and V^{∞} into duality, where V^{∞} is viewed as a vector space with nontrivial topology defined above, and the topology on V_{∞} is discrete.

Indeed, it is evident that the pairing is nondegenerate and that any linear functional on V_{∞} is given by a vector of V^{∞}. A minor reflection also shows that, conversely, any continuous linear functional on V^{∞} is given by a vector from V_{∞}. Thus, the spaces V_{∞} and V^{∞} are indeed dual to one another. They are also dual as commutative locally compact topological groups: one is discrete and the other is compact.

Using the duality, it is readily checked that if X is an arbitrary subspace in V_{∞}, then its orthogonal complement X^{\perp} is a closed subspace in V^{∞}, whose orthogonal complement $\left(X^{\perp}\right)^{\perp}$ coincides with X. Likewise, starting with a closed subspace $Y \subseteq V^{\infty}$, we have $Y^{\perp} \subseteq V_{\infty}$ and $\left(Y^{\perp}\right)^{\perp}=Y$. Thus, the operation of taking the orthogonal complement is a bijection.

The group \mathscr{G}_{∞} acts on both V_{∞} and V^{∞} and preserves the pairing between these vector spaces. Under the identification $\operatorname{Gr}\left(V^{\infty}\right)=\operatorname{Gr}\left(V_{\infty}\right)$, the group \mathscr{G}_{∞} acts by homeomorphisms on this compact space. In the dual picture, the ergodic measures with $\varkappa<\infty$ live on the set of \varkappa-dimensional subspaces of V^{∞}. The case $\varkappa=\infty$ corresponds then to the zero subspace in V_{∞} (or the full space V^{∞}). There is a simple explanation why we have to fix codimension in the V_{∞}-picture and dimension in the V^{∞}-picture, and not vice versa. Namely, the subspaces in V_{∞} of fixed nonzero finite dimension form a countable set, which is a single \mathscr{G}_{∞}-orbit, and such a \mathscr{G}_{∞}-space cannot carry a finite invariant measure.

References

[1] D. J. Aldous, Exchangeability and related topics. In: École d'été de probabilités de Saint-Flour, XIII-1983, Lecture Notes in Math., 1117 (1985), 1-198. Springer, Berlin.
[2] P. Diaconis and D. Freedman, Partial exchangeability and sufficiency. In: J. K. Ghosh and J. Roy (Eds). Statistics: Applications and New Directions; Proceedings of the Indian Statistical Institute Golden Jubilee International Conference; Sankhya A. Indian Statistical Institute, 1984, 205-236.
[3] W. Feller (1971), An Introduction to Probability Theory and its Applications, Vol. II, Wiley, NY.
[4] A. Gnedin and G. Olshanski, The boundary of the Eulerian number triangle. Moscow Mathematical Journal 6 (2006), 461-465.
[5] A. Gnedin and G. Olshanski, Coherent random permutations with descent statistic and the boundary problem for the graph of zigzag diagrams. Intern. Math. Res. Notices 2006 (2006), Article ID 51968, 1-39.
[6] A. Gnedin and G. Olshanski, q-Exchangeability via quasi-invariance, in preparation.
[7] A. Gnedin and J. Pitman, Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences 138 (2006), 5674-5685.
[8] K. R. Goodearl, Partially ordered abelian groups with interpolation. Mathematical Surveys and Monographs 20, American Mathematical Society, Providence, R.I., 1986, xxii +336 pp .
[9] V. Kac and P. Cheung, Quantum Calculus, Springer, 2001.
[10] S. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003.
[11] S. Kerov, A. Okounkov, and G. Olshanski, The boundary of Young graph with Jack edge multiplicities. Intern. Math. Res. Notices 1998 (1998), no. 4, 173-199.
[12] J. W. Pitman, An extension of de Finetti's theorem, Adv. Appl. Probab. 10 (1978), No. 2, 268-270.

[^0]: *Supported by a grant from the Utrecht University, by the RFBR grant 08-01-00110, and by the project SFB 701 (Bielefeld University).

