
proceedings of the
american mathematical society
Volume 120, Number 3. March 1994
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Abstract. A second solution of the ^-difference equation of the Hahn-Exton

<?-Bessel function, corresponding to the classical Yv{x), is found. We introduce

a (^-extension of the Wronskian to determine that the two solutions form a

fundamental set.

1. Introduction

In mathematics very much attention is paid to the subject of differential equa-

tions. However, the theory of ^-extensions of differential equations has not yet

been developed to a great extent. This can partially be explained by the fact

that one is not very familiar with g-theory and the fact that basic differential

equations do not occur frequently in physics. But the most important fact is

probably the close relationship with difference equations instead of differential

equations, ^-differential (or ^-difference) equations may even properly be re-

garded as a part of the field of difference equations. Results on difference equa-

tions may sometimes be transformed into results on ^-difference equations and

vice versa. However, each subject has his own specific problems, and it would

therefore be desirable if a book on basic difference equations were available.

It is by no means our aim to give in this paper such a general theory of in-

difference equations. We will restrict ourselves to the necessary theory in order
to give ^-extensions of the solutions and their mutual relations of the Bessel
differential equation. We will obtain a solution, which is a ^-extension of the

classical Yv(x). In order to determine if two solutions form a fundamental

system, we will derive a ^-extension of the Wronskian. To our best knowledge,

this ^-Wronskian has not been stated elsewhere, although it is closely related to

Casorati's determinant (see, e.g., [7]). So it seems natural to give some general

results on the ^-Wronskian first, before discussing the Hahn-Exton ^-Bessel
difference equation.

2. The ^-Wronskian

In this section and everywhere else in this paper we will assume that q sat-

isfies the condition 0 < q < 1 . All functions are defined on (0, co).
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A special place in the theory of ^-difference equations take the so-called

^-periodic functions. A ^-periodic function is the solution of the first-order
^-difference equation

(1) Dqf(x) = 0,        x>0,

where the ^-difference operator Dq is defined by

(2) D'fw-%!T-
Solutions of (1) thus have the property that f(qx) = f(x) for all x > 0. It is
obvious that the constant function is a solution of (1). Another example of a

^-periodic function is

f(x) = sin(a logx)   with a log<? = 27t,

which has an awful singularity at x = 0.
In the next section, where we will consider solutions of a #-Bessel difference

equation, the class of solutions has a special form. We shall now show that the

only ^-periodic functions in that class of functions are the constant functions.

Let 4> denote a ^-periodic function. We consider three cases:
(1) Suppose lmvio <?K*) = L exists. Then for all x > 0 we have

<f>(x) = <t>(qx) = ■■■ = <t>(qnx) = lim <p(qnx) = L,
n—>oo

so 4> is the constant function.

(2) Suppose <f> has the form
oo

<P(X) = X" ]T anXn , X > 0 ,

n=0

with a0 # 0. Then if p > 0, the limit lim^o <t>(x) exists, so we are in case (1)
and <p(x) is a constant. If p < 0, we consider the function h(x) = x~P<p(x).

We have limxi0h(x) = ao ¥" 0. On the other hand, we have h(q"x) =
x~liq-nfi(j)(qnx) = q-^x-f^x) = q~n^h(x). Hence, the limit n -* oo yields

ao = 0 • h(x) = 0, which is a contradiction. So a ^-periodic function cannot be
of the form x* £~ 0 anxn , with a0 # 0, p < 0.

(3) Suppose <f> has the form
oo

(j)(x) =X^l0gX^fl„Xn, x>0,

n=0

with ao 7^ 0. Then if p > 0, the limit lim^o 4>(x) = 0 exists, so we are in

case (1) and <f>(x) is a constant. If p < 0, we consider the function h(x) =
x~P-cp(x) - arjlogx. Then limxioh(x) = 0. On the other hand, h(q"x) =

q-nnx-v^x) - arjlog* - aonlogq . The limit n —» oc now shows that <20 =

0, which is a contradiction. So a ^-periodic function cannot be of the form

x" logx Er=o anXn , with p < 0, a0 # 0.
So as long as we work in the class of functions of the form x** YH°=o a"xn or

xP- logx 2Z^=o a"x" 'tne omy ^-periodic functions are constant functions.

Now consider the first-order linear ^-difference equation

(3) Dqy(x) + a(x)y(x) = 0,       x>0,

where a(x) is analytic on the open interval (0, 00).
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Theorem 1. Let yo denote a solution of (3) such that yo(x) ^ 0 for all x > 0.
Then the complete solution of (3) can be represented by y(x) = <t>(x)yo(x), where

4> is an arbitrary q-periodic function.

Proof. An easy consequence of the definition (2) is the ^-analogue of the prod-

uct rule for differentiation

(4) DQ[f(x)g(x)] = f(qx)Dqg(x) + g(x)Dqf(x).

Let y denote a solution of (3). Put y(x) = y0(x)</>(x). Then using (4)

0 = Dqy(x) + a(x)y(x)

= y0(qx)Dq(p(x) + <p(x)Dqy0(x) + a(x)<p(x)y0(x) = y0(qx)Dq<p(x).

Hence, Dq<p(x) = 0 and <p(x) is a ^-periodic function. On the other hand, if

0 is a ^-periodic function, then y(x) = <p(x)yo(x) is a solution of (3).

We will now consider the second-order linear #-difference equation

(5) D2y(x) + a(x)Dqy(x) + b(x)y(xq) = 0,       x>0,

where a(x) and b(x) axe analytic on the open interval (0, oo) and D2 is

defined by

Dim=D,w,f(x)) = tM-{l+*™$+Mx).

Equation (5) can be rewritten as

(6) y($2x)-f-,4(x)y(<7x) + F(x)y(x) = 0,        x>0,

where

f A(x) = -(1 +q)- a(x)(l - q)xq + b(x)(l - q)2x2q,

U \B(x) = q + a(x)(l-q)xq.

We assume that A(x) and B(x) have no positive zeros.
If /i and f2 axe two solutions of (5) and if <px and <p2 axe ^-periodic

functions, then it is obvious that f(x) = <f>x(x)fx(x) + 4>2(x)f2(x) is a solution
of (5). Two solutions / and/2 of (5) are called a fundamental system of

solutions of (5) if every solution / of (5) can be written as f = 4>ifx + (j>ifi,

where <f>x and <f>2 axe <?-periodic functions.
To determine if two solutions of the linear ^-difference equation (5) form a

fundamental system, we introduce a g-analogue of the Wronskian.

Definition. If / and f2 axe two solutions of the linear ^-difference equation

(5), we define the ^-Wronskian by

,8) «4WW.JSW)«|J^«    D%)
= fi(x)Dqf2(x)-f2(x)Dqfx(x).

It is easy to see that, if q T 1, the <?-Wronskian tends to the ordinary Wronskian

(9)       W(fx(x),f2(x))-   f,{x)   f,{x)   -fx(x)-jr-f2(x)-jx-.
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Remark 1. When we apply the definition of the (7-difference operator (2) to the

^-Wronskian, (8) can be rewritten in the form

(.0) W,(4*]) = ̂ «.

Remark 2. By writing out the definition it is easy to see that the ^-Wronskian

has the properties

(11) Wq(f(x),cxgx(x) + c2g2(x)) = cxWq(f(x),gx(x)) + c2Wq(f(x),g2(x))

and

(12) Wq(f(x),f(x)) = 0.

Theorem 2 (<?-analogue of Abel's theorem). Let fx and f2 be solutions of the
q-difference equation (5), and let the q-Wronskian be defined by (8). Then it

satisfies the linear first-order q-difference equation

(13) DqWq(fx(x),f2(x)) + a(x)Wq(fx(x),f2(x)) = 0.

Proof. By the ^-product rule (4) and by (8) we have

DqWq{fx(x), f2(x)} = Dq{fi(x)Dqf2(x) - f2(x)Dqfx(x)}

= fi(xq)D2f2(x)+Dqf2(x)Dqfi(x)-f2(xq)D2fi(x)-Dqfi(x)Dqf2(x)

= fi(xq){-a(x)Dqf2(x) - b(x)f2(xq)}

-f2(xq){-a(x)Dqfi(x)-b(x)f(xq)}

= -a(x){fi(xq)Dqf2(x) - f2(xq)Dqfi(x)}

= -a(x){fx(x)Dqf2(x)-f2(x)Dqfi(x)} = -a(x)Wq(fi(x), f2(x)).

A theorem concerning the relation between the ^-Wronskian and a funda-

mental system is as follows.

Theorem 3. Let f and f2 be solutions of the q-difference equation (5), and let

the q-Wronskian be defined by (8). Then every solution f of (5) can be written

as f(x) = (j>i(x)fi(x) + 4>2(x)f2(x), with <f>i and <j>2 q-periodic functions, if and

only if the q-Wronskian Wq(fx(x), f2(x)) / 0 for all x > 0.

Proof. All functions are defined on the open interval (0, co). We consider for

fixed x the set G(x) = {qnx\n eZ}. On this set ^-periodic functions are
constants. A solution / of (6) and hence of (5) is completely determined by

f(x) and f(qx). Now we have: Every solution / can be written as / =
Cifi +c2f2 (with ci and c2 constants) on the set G

^\f(x) = cifi(x) + c2f2(x) f(x)     f2(x)
\f(xq) = cJi(xq) + c2f2(xq)       f(xq)   f2(xq)

^Wq(fi(x),f2(x))^0.

3. The Hahn-Exton <?-Bessel difference equation

In the literature several ^-analogues of the Bessel function

(14) J(x)=(xYf{-l)k{x/2)2k
[    ' MX)     \2J   2^T(u + k+l)k\

k=0
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have been studied. In [1, 2] Exton derived the function

(15) C(x-g) = Y (-DV("-1)/2-*"(I-g)n
1    j a{   ,Q)     £*    Tq(a + n + l)(q;q)n     '

as a solution of a basic analogue of the Bessel-Clifford equation. Here

( (a;q)0=l,

I (a;q)n = (l-a)(l-aq)---(l-aq"-x),        n = 1, 2, ... , oc,

and the ^-Gamma function Tq(x) is defined by

r«w=<Fnfe(I-'>'"*•
If we take the limit q T 1 and use the fact that lim?Ti Tq(x) = T(x) (see [3]
for more details of this limit), an easy calculation shows that Ca(x; q) is a

^-extension of (x/2)~a/2Ja(2^/x), where /Q(x) is the classical Bessel function

defined by (14). Recently Vaksman and Korogodskii [9] gave an interpretation

of the ^-Bessel functions (15) as matrix elements of irreducible representations
of the quantum group of plane motions.

Nowadays it is common to consider a slightly modified form of (15), first
investigated by Koornwinder and Swarttouw (see [6, 8]) and also considered

by Koelink [5]. This Hahn-Exton q-Bessel function (the name of W. Hahn is
involved since he investigated the special case a = 0 of (15) in [4]) is defined

by

(16) Jfrjl   ^r'^ixft-D"^'^2"

(16) *<*•«>-* -(q-^Th «,">;«).(«;*)„■
If in (16) x is replaced by x(l - q)/2 and if q T 1, we find the classical Bessel
function (14). In this paper we consider the ^-Bessel function defined by (16).

It is easy to check that J„(x; q) satisfies the relation

(17) y(xq) + q-"'2(qx2 - 1 - qv)y(xqm) + y(x) = 0.

Using (7), relation (17) can be rewritten as a ^-difference equation

qx'2x2(l-qx'2)2D2l/2y(x) + x(l-qx'2)2DqU2y(x)

+ (x2qx-"12 + (l- qv/2)(l - q~vl2))y(xqxl2) = 0,

where
y(x)-y(qx'2x)

D^y(x) -  x{l_qX/2) ■

Let /i and f2 denote two solutions of (18). The ^-analogue of Abel's

theorem (13) implies that for the q'^-Wronskian we have the relation

(19) DqmWqm(fx(x), f2(x)) + -LfWtMW , /2(x)) = 0.

It is easy to verify that Wq]/2 = 1/x is a solution of (19). By Theorem 1 we
have

Wqm(Ji, Ji) =-,

where (p is a ^1/2-periodic function depending on / and f2.
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If we replace v by — v and x by xq~vl2 in (18), we obtain that

J-V(xq~vl2; q) is a second solution of (18) and of (17). Using (10) we have

for the <?1/2-Wronskian of Jv(x; q) and J-V(xq~"12; q)

WqM(x;q),J-v(xq~"l2;q))

^ Uxq1'2; q)J_v(xq-"l2; q) - Jv(x; q)J.v(xq^x-^2; q)

x(l-qx'2)

x{\-qwy

With the series representation (16) we obtain

a, _ (Qv+ ; g)oo(g~t/+ ; g)oo / i/(i/+n/2 _ _«/(i/-i)/2n

9 {q;q)oo(q;q)oo       K9 * '

~  g^-n/2(gt/;g)o°(g~'/+1;g)oo

(q;q)°o(q;q)oc

It follows that

WqU2(Jv(x;q),J^(xq-l'l2;q))

(20) -g^-')/2(^;g)oo(g-^l;g)oo  =  -^-0/2(1+01/2)

x(l-qxl2)(q;qU(q\q)oo xYq(v)Tq(l - v)   '

Note that the ^1/2-Wronskian is never zero if v & Z. By Theorem 3 this

implies that if v 0 Z then every solution / of (17) can be written as f(x) =

4>i(x)Jv(x; q)+<p2(x)J-„(xq~v!1; q), where 0i and 02 are <?'^-periodicfunc-

tions. If we restrict ourselves to solutions of the form xP Y^o a"x" > tnen every

solution of (17) can be written as ci/„(x; q) + c2J-v(xq~vl2; q), where ci and

c2 axe constants. If v = n e Z, however, the ^-Wronskian is identically zero.
In that case an easy calculation shows a clear linear dependence. We have

(21) J_n(xq-"'2; q) = (- l)nqn'2Jn(x; q).

These properties match with the q = 1 case.

If we replace in (20) x by x(l - q)/2 and if we let q t 1 and if we use the

well-known relation

(2Ti 1 = sinfri/)
1    ; T(v)T(l-v)   '      n     '

we obtain the classical Wronskian

-2
W(Jv(x), J-u(x)) = —sin(nu).

TtX

Our next aim is to look for a second solution of the Hahn-Exton ^-Bessel

equation which is a ^-extension of the classical Y„(x), defined for v g Z by

Y ,x) _ cos(nu)Jl/(x) - J-V(x)

v sin(nu)

and for n eZ by

Yn(x) = lim T„(x).
v—>n

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A ^-ANALOGUE OF THE WRONSKIAN 861

Consider the function Yv(x; q), defined for i/^Z by

(23) Yv(x; q) = T"{v)Y"{l " v) {cos(nv)q>>I2Ju(x; q) - J-V(xq~vl2; q)}.
n

For n e Z we define

(24) Yn(x;q) = lixn Yv(x;q).
v—*n

If v 0 Z, it is easy to show with relation (22) and the identity T(j) = y/n that

lixnYv(x(l-q)/2;q) = Yv(x).
?T1

The limit (24), however, is more complicated, but it exists as we will show
below.

Observe that for v g Z

Y-v(xq-»t2; q) = -T<^T«{l +V\jv(x; q)-cos(nu)q-^2J_l/(xq-^2; q)}.

Since

rq(-u)Tq(i + u) = -<7<T»r?(i - v),

we have

y_„(x<r"/2; q) = q"l2T,l{v)Yf~V){qvl2Jv(x; q) - cos(nv)J_v(xq->"2; q)}.

This implies for n el that

(25) Y-n(xq-n'2;q) = (-l)"qn'2Yn(x; q).

Now we will calculate the limit (24), which in particular implies that it exists.

Because of relation (25), it is sufficient to consider Yn(x; q) for n > 0. To
simplify the notation we introduce the function F defined by

(26) F(v) = (qv;q)oa.

Then for n = 0, 1,2,...

(27) F(-n) = 0

and

(28) F'{~n) = (1 " q'n)'"'(1 ~ r')(~l0gq){q; q)°°

= (-Dn+lq-n{n+l)l2(q;q)n(q;qU\ogq.

Substituting this function F in definition (23) we obtain for v £ Z

Y{x.a)- (r,qUd-q) {cos{jlv)qV,2x, f (-\)kqk^'2x2kF(u + k + l)
Yv[X>q)-nF(v)F(l-v)\C0S(-nV)q    *fa (q;q)k

u y^ (-l)kqk(k+x)l2x2kq-vk+v2l2F(-v + k + 1) 1

Applying I'Hopital's rule we get for n = 0, 1,2,...

(29) r,(*;g)=(g;<?)-(I-g)f.
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Here

Dn = ^;F(u)F(l - u)\v=n = F'(n)F(l - n) - F(n)F'(l - n)

(2_7) f F'(0)F(1) if « = 0,

I -F(n)F'(l-n)   ifn>l.

Applying (26) and (28) we have for n > 1

-F(«)F'(1 - n) = - (qn;q)oo(-l)nq-n{n-i)/2(q;q)n-i(q;q)oclogq

= (-\)**q-»l»-W(q-q)l0\ogq.

Moreover,

F'(0)F(l) = -(q; q)x(q; q^logq.

Hence for n = 0, 1, 2, ...

(30) Dn = (-ly+'q-^-^Hq^^losq.

On the other hand,

M      1,   ,« nil  nX       ^(-l)kqk^k+^2x2kF(n + k+l)
Nn = ^(-l)nqn/2xnlogq}^K-—'-- -'-

k=0 ^ 'k

mi,   ,v»  B1       A(-l)V(*+1)/2*2fcF(n + it+l)
+ 4  '   (-1)  X"lOgX >-—-;-r—^-

to {q>q)k

, _.,/2f n«.,f(-i)^1)/2^n"+fc+i)
* ( }  h        {q>q)k

^ (-l)kqk{k+1)/2x2kF(-n + k + l)q-nk+"2'2
+ X   "logX>-—-—-—r-

to (*;«)*

,, y, (-l)kqk(k+xV2x2kF'(-n + k+ \)g-"k+^l2

h (q>q)k
~   (-l)kak{k+l)/2x2kF(_n + k+ l)g-nk+n>/2rn_k)

~x 8'£-^-■

Observe that the fourth and sixth sum can start at k = n since F(-n+k+l) = 0

if k < n . Furthermore, observe that the second and fourth term are equal to

(-l)nqnl2(q;q)ooUx;q)logx,

that the first plus the last term equals

1 c"'2(   11"::" lnCJV (~l)kqk{k+l)/2X2k(2k + l)F(k + n + I)
2q    (   l)x log^ {q.q)k

and that the fifth term equals

n— 1 / -. 2)fe

(-i)v/2(«; <7)oo*-" log* £ {q'tnrk-lX
to       {q'q)k

,,   ^^.nn-y^fq^^^F'ik+l)

to (q>q)n+k
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Hence,

(31)
N„ = 2(-l)V7V, q)ooJn(x;q)logx

2 to ^q)k

n— 1 / •. 2yt
+ (-i)V/2(g; gW-iogg^:(g; q)":k:lX

+ (-1 )nxna"/2 Vf-1 )kak^k+x^2x2k I F'(n + k + l} + **'(£+1) \

Substituting (31) and (30) in (29) we obtain

(32)

r-<*:«> - ^r*"2/2^'*>l0^ - ^«",/2*- g (g;?]rgfcrixa

_ (1-g) 2/v
nlogq(q;q)00

to    )q l    («;«)*     +(«;?WJ

_    (l-q)     „2f2x„^ (-l)V(^')/2x^(2/c+l)F(W + rc+l)

2n(q;q)o0 t (Ql9)k

Now observe that

(33)
F'(n + k+l)     F'(k+l) _ F(n + k+l) (F'(n + k + l)     F'(k+l)}

(q\q)k      +(q;q)n+k~      (q\q)k      \ F(n +k + I) + F(k + I) }'

Furthermore, since

F(lA     (q;q)oc(l-qy-v

FW--f>)-'
we have

With (34) and (33) we can rewrite (32) in a more suitable form. It is

_ (l-Q)qn2l2x-n y (q;q)n-k-lX2k + (1-g)    „2/2^n

/c=0

(35) ^(-l)*^**"/^2* rr^(n + fe + l)     rg(fc + l)]

X^0 (q\q)k(q\q)n+k  \Tq(n + k+l) +Tq(k+l)\

_ {IZlL*/V f (-1)^^»/2X2A:(2/C+1)
2tt £j        (q;q)k(q\q)n+k
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Remark. If we replace x by x(l - q)/2 in (35) and take the limit q | 1, we
see that the last term disappears and that the remaining three terms become the

classical Y„(x) (see [10]).

We will now derive the #1/2-Wronskian of Jv(x; q) and Y„(x;q). With

the properties (11) and (12) we find with the #1/2-Wronskian (20), with i/^Z

(36)
Wqm(Jv(x;q), Yu(x;q))

= Wqm (jv(x; q), Yq{v)Tc£l ~ V){cos(nv)q»l2Jv(x; q) - J-V(xq~vl2; q)}\

m _Tq(v)Tq(l-v)w^{Mx. qhJ_v[xq-»i2.q))

_g"("-')/2(l+g'/2)

nx

This obviously also holds for v = neZ.
Note that the q'^-Wronskian (36) is never zero for all v. By Theorem 3

this implies that for all v every solution / of (17) can be written as f(x) =

4>x(x)Ju(x; q)+cf>2(x)Yu(x;q),-whexe 0i(x) and <p2(x) are #1/2-periodicfunc-

tions. If we restrict ourselves to solutions of the form x^ Y^n°=o a"x" or

x^ logx J^L0 a„xn , then every solution of (17) can be written as cxJv(x; q) +

c2Yv(x; q), where cx and c2 are constants.
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