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A q-DEFORMATION OF
A TRIVIAL SYMMETRIC GROUP ACTION

PHIL HANLON AND RICHARD P. STANLEY

Abstract. Let A be the arrangement of hyperplanes consisting of the reflect-
ing hyperplanes for the root system An−1. Let B = B(q) be the Varchenko
matrix for this arrangement with all hyperplane parameters equal to q. We
show that B is the matrix with rows and columns indexed by permutations

with σ, τ entry equal to qi(στ−1) where i(π) is the number of inversions of π.
Equivalently B is the matrix for left multiplication on CSn by

Γn(q) =
∑

π∈Sn

qi(π)π.

Clearly B commutes with the right-regular action of Sn on CSn. A general
theorem of Varchenko applied in this special case shows that B is singular
exactly when q is a j(j − 1)st root of 1 for some j between 2 and n.

In this paper we prove two results which partially solve the problem (orig-
inally posed by Varchenko) of describing the Sn-module structure of the
nullspace of B in the case that B is singular. Our first result is that

ker(B) = indSn
Sn−1

(Lien−1)/Lien

in the case that q = e2πi/n(n−1) where Lien denotes the multilinear part of
the free Lie algebra with n generators. Our second result gives an elegant
formula for the determinant of B restricted to the virtual Sn-module P η with
characteristic the power sum symmetric function pη(x).

1. Introduction

Let A = {H1, . . . , H`} be an arrangement of hyperplanes in Rn, let ∆ be the
union of the hyperplanes in A and let R be the set of regions in Rn\∆. In [V],
Varchenko defines a matrix B with rows and columns indexed by the regions in R.
This matrix depends on a collection of real parameters aH , one for each hyperplane
H in A. The (R,S)-entry of B is given by

BR,S =
∏
H

aH ,

where the product on the right is over hyperplanes H which separate R and S.
The matrices B defined above are studied in papers of Varchenko [V], Schecht-

man/Varchenko [SV] and Brylawski/Varchenko [BV]. These matrices describe the
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analogue of Serre’s relations for quantum Kac-Moody Lie algebras and are relevant
to the study of hypergeometric functions and the representation theory of quantum
groups. In these applications, the kernel of B is of particular interest.

The kernel of B depends on the values of the aH . In general, the exact re-
lationship is difficult to describe. But the following theorem of Varchenko gives
considerable information about this dependence.

Theorem 1.1 (Varchenko [V]). Let notation be as above. Then

det(B) =
∏
F

(
1− a(F )2

)p(F )q(F )
,

where the product is over the non-zero flats in the intersection lattice of A (see [O]),
where a(F ) denotes the product of the aH over hyperplanes H ∈ A which contain
F and where p(F ) and q(F ) are non-negative integers defined in [V].

Our work in this paper will concern a particular arrangement. Fix a positive
integer n. For each i < j let Hij denote the hyperplane in Rn consisting of all
(x1, . . . , xn) such that xi = xj . Let An be the arrangement consisting of all Hij

with 1 ≤ i < j ≤ n. For each H ∈ An, let aH = q where q is a complex
indeterminate.

In this case ∆ is the set of all vectors (x1, . . . , xn) ∈ Rn which have (at least) one
pair of equal coordinates. The regions in R are naturally indexed by permutations
σ in Sn according to

σ ∈ Sn indexes the region Rσ = {(x1, . . . , xn) : xσ1 < xσ2 < · · · < xσn}.(∗)
Via this indexing, we can think of the rows and columns of B as corresponding to
permutations. We will let Bσ,τ denote the (Rσ, Rτ )-entry of B for σ, τ ∈ Sn. In
this way, we will think of B as an endomorphism of CSn.

Lemma 1.2. Let Γn(q) ∈ C[q]Sn be defined by

Γn(q) =
∑

σ∈Sn

qi(σ)σ

where i(σ) is the number of inversions of σ. Then B, considered as an endomor-
phism of CSn, is the matrix for left multiplication by Γn(q).

Proof. Consider the (α, β)-entry of B for α, β ∈ Sn. This entry is q` where ` is the
number of hyperplanes Hjk which must be crossed in going from Rα to Rβ .

Note that:
Hjk must be crossed in going from Rα to Rβ ,
iff: βj > βk and αj < αk,
iff: βj > βk and (αβ−1)βj < (αβ−1)βk,
iff: (βj, βk) is an inversion of αβ−1.

So the (α, β)-entry of B is equal to qi(αβ−1) which proves the lemma.

Next we consider what Theorem 1.1 tells us in this case. The intersection lattice
of A is the partition lattice Πn. It turns out that the exponent p(F ) is 0 unless the
partition F has exactly one non-trivial block. If F has one non-trivial block of size
`, then p(F ) = (`− 2)!(n− `+ 1)!. So in this case, Theorem 1.1 states that

det(B) =
n∏

`=2

(
1− q`(`−1)

)(n
`)(`−2)!(n−`+1)!

.(1.1)
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It should be noted that (1.1) was first proved by Zagier [Z]. In this paper we
realize it as a special case of the Varchenko determinant factorization.

There is one other feature of this arrangement which makes it particularly in-
teresting. The symmetric group acts on the set of regions Rσ via the right-regular
representation on the index. More precisely, if τ ∈ Sn then τ(Rσ) = Rστ . By
Lemma 1.2, this action of Sn commutes with B and so B preserves the isotypic
components of this Sn-action and Sn acts on the kernel of B.

Two questions motivated the work in this paper.

Question 1: What is the Sn-module structure of ker(B) at values of q for which
det(B) = 0?

Question 2: For each irreducible representation Sλ of Sn, what is the determinant
of the restriction of B to the Sλ-isotypic component of R?

Question 2 was posed independently by Varchenko [V] and by Zagier [Z, page
201]. Zagier’s work concerns the relevance of the operator B to a model in infinite
statistics. This model, suggested by Hegstrom gives a q-deformation of the classical
Bose (q = 1) and Fermi (q = −1) statistics. It was studied for q = 0 by Greenberg
[Gr] and for general q by Polyakov and Biedenharn [B].

In this paper we will prove a conjecture due to R. Stanley which answers a
question which is equivalent to Question 2. With regard to Question 1, we will
state a conjecture due to Hanlon and Varchenko which provides an elegant answer
to Question 1 for a number of interesting values of q. We will prove this conjecture
in one particularly interesting special case.

2. A factorization of Γn(q)

In this section we state a remarkable result which was first proved by Zagier [Z]
and later re-discovered in the paper [DKKT]. To state this result we need some
notation.

We will use two embeddings of CSn−1 in CSn. The first is the usual embedding,
namely we think of Sn−1 as the collection of permutations fixing n. More precisely,
if σ is in Sn−1, its image under this embedding is obtained from σ by adding a
one-cycle containing the number n. If A ∈ CSn−1 we let A also denote its image
in CSn under this embedding.

The second embedding, which we denote η, maps Sn−1 to the collection of
permutations in Sn which fix 1. If σ ∈ Sn−1 is written in disjoint cycle form then
η(σ) is obtained from σ by increasing every number by 1 and then adding a one-
cycle containing the number 1. For example, η ((1, 3, 5)(2, 4)) = (2, 4, 6)(3, 5)(1).
This defines η on Sn−1 and it extends linearly to an embedding of CSn−1 into
CSn.

For each n, let Tn(q) denote the sum

Tn(q) =
n∑

j=1

qj−1ηn−j(zj).

Here zj is the j-cycle (j, j−1, . . . , 1) in Sj so Tn(q), with permutations written out
in disjoint cycle form, is

Tn(q) =
n∑

j=1

qj−1(n, n− 1, . . . , n− j + 1).
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It is straightforward to verify that

Γn(q) = T2(q)T3(q) · · ·Tn(q).(2.1)

The factorization result in [Z] gives a factorization of Tn(q) which in turn gives a
factorization of Γn(q) by (2.1).

To state the result, we need to define elements Gj(q), Hj(q) ∈ CSj which we do
inductively according to the following equations:

G1(q) = H1(q) = 1,
Gj(q) =

(
1− qjzj−1

)
η (Gj−1(q)) ,

Hj(q) = η (Hj−1(q))
(
1− qj−1zj

)−1
.

Note thatHj(q) is defined only for those values of q with the property that 1−q`−1z`

is invertible in CSj for all ` ∈ {2, 3, . . . , j}. It is straightforward to see that
1− q`−1z` is invertible in Sj if and only if 1− q`(`−1) is nonzero.

Theorem 2.1 ([Z, Prop. 2]). Suppose
∏n

`=2

(
1− q`(`−1)

)
is nonzero. Then Tn(q)

= Gn(q)Hn(q), and so

Γn(q) = G2(q) H2(q) G3(q) H3(q) · · ·Gn(q) Hn(q).

This result can be extended to all values of q by restating it as

Tn(q)
(
1− qn−1zn

)
= (1− qnzn−1) η (Tn−1(q)) .(2.2)

As an example of (2.2), let n = 3. Then (2.2) is the equation

(1 + q(3, 2) + q2(3, 2, 1))(1− q2(3, 2, 1))

= (1 − q3(2, 1))(1 + q(3, 2)).

which is easily verified.

3. The Main Results

In this section we state and prove our two main results. We begin with a con-
jecture that is relevant to Question 1. In general, it seems that the Sn-module
structure of the kernel of Γn(q) is quite complicated. Below we see a table which
gives the character values of Sn acting on the kernel of Γ4(q) for all values for which
Γ4(q) is singular. In this table the rows are indexed by values of q and the columns
by conjugacy classes in S4 (denoted by cycle type).

14 212 22 31 4
1 9 -1 1 0 -1
-1 9 1 1 0 1

e2πi/3 3 1 -1 0 1
e2πi/4 2 0 2 2 0
e2πi/6 3 -1 -1 0 1
e2πi/12 2 0 2 -1 0

The reader will note that it is difficult to pick out a pattern even in the degrees
of the representations. This observation is reinforced when one examines the same
data for other values of n. However, Conjecture 3.1 states that the Sn-module
structure of ker(Γn(q)) has a very elegant description for certain values of q.
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Conjecture 3.1. Suppose that q is a root of exactly one of the factors on the
right-hand side of (1.1). More precisely, suppose that q = e2πis/j(j−1) for some
j ∈ {2, 3, . . . , n} and some nonnegative integer s and that qk(k−1) 6= 1 for k 6=
j, 2 ≤ k ≤ n. Then

(a) The right Sn-module structure of ker(Tn(q)) is

ker(Tn(q)) = indSn

Cj−1
(qj)/indSn

Cj
(qj−1),

where Cj−1 is the subgroup of Sn generated by the (j − 1)-cycle zj−1 = (j − 1, j −
2, . . . , 2, 1), and where qj denotes the linear character of Cj−1 whose value on zj−1

is qj.
(b) As a right Sn-module ker(Γn(q)) consists of n− j + 1 copies of ker(Tn(q))

It is interesting to note that there are examples of j(j − 1)st roots of unity q

(with 2 ≤ j ≤ n) for which indSn

Cj
(qj−1) is not even contained in indSn

Cj−1
(qj). If

Conjecture 3.1 is correct, then this containment must hold whenever 1− qk(k−1) is
nonzero for all k not equal to j.

We will prove Conjecture 3.1 in what is arguably the most interesting case. We
denote by Lien the representation of Sn on the multilinear part of the free Lie alge-
bra with n generators. There is an extensive literature on this representation (see
for example [G], [R1], [R2]). We will need one fact about the Lien representation.

Lemma 3.2 ([R1, see p. 215]). For each n,

Lien = indSn

Cn

(
e2πi/n

)
.

Theorem 3.3. Let q = e2πi/n(n−1). Then

ker
(
Γn(q)

)
= indSn

Sn−1
(Lien−1)/Lien.

Before going ahead with the proof of Theorem 3.3 we will need a pair of technical
lemmas.

Lemma 3.4. Suppose j ≤ n. As an endomorphism of CSn (acting by left multi-
plication) Tj(q) has determinant

j∏
`=2

(
1− q`(`−1)

)n!/`(`−1)

.

Proof. The proof is by induction on n. The result is easy to check for n = 1 so
assume the result is true for n− 1.

First, suppose j ≤ n−1. As an endomorphism of CSn−1, Tj(q) has determinant

j∏
`=2

(
1− q`(`−1)

)(n−1)!/`(`−1)

.(3.1)

For each i = 1, 2, . . . , n, let Vi be the subspace of CSn spanned by all permutations
which map i to n. Then Tj(q) preserves each Vi and the action of Tj(q) on Vi is
clearly isomorphic to the action of Tj(q) on CSn−1. It follows that the determinant
of Tj(q) on CSn−1 is the nth power of the quantity given in (3.1) which proves
Lemma 3.4 in this case.
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Next suppose that j = n. By (2.1) we have

det (Tn(q)) = det (Γn(q))
n−1∏
j=2

(
det
(
Tj(q)

))−1

=
n−1∏
`=2

(
1− q`(`−1)

)E`

where

E` =
(
n

`

)
(`− 2)!(n− `+ 1)!− (n− `)

(
n!

`(`− 1)

)
=

n!
`(`− 1)

.

Here we have combined (1.1) with the cases j < n for this lemma to get E`. This
completes the induction step.

The next lemma is a simple consequence of the Smith normal form.

Lemma 3.5. Let M(z) be an N by N matrix whose entries are polynomials in z.
Let z0 be a complex number such that

det(M(z)) = (z − z0)Df(z)

where f(z0) 6= 0. Then dim(ker(M(z0))) ≤ D.

The third lemma is again a standard result from representation theory. Although
it may not be explicitly stated in most references, it follows easily from the definition
of induced representations.

Lemma 3.6. Let H be a subgroup of a finite group G and let ψ be a linear character
of H. Let τ be the element of CG given by:

τ =
1
|H |

∑
h∈H

ψ(h)h.

Then the right ideal of CG generated by τ is isomorphic, as a right G-module, to
indG

H(ψ).

We are now ready to proceed with the proof of Theorem 3.3. Let q = e2πi/n(n−1).
By Lemma 3.4, Tj(q) is invertible as an endomorphism of CSn for j < n. So
ker(Γn(q)) ∼= ker(Tn(q)) where the isomorphism is one of right Sn-modules. Hence
it is sufficient to show that

ker (Tn(q)) ∼= indSn

Sn−1
(Lien−1)/Lien.(3.2)

Recall from §2 that

Tn(q)(1 − qn−1zn) = (1− qnzn−1)η(Tn−1(q)).(2.2)

Our first step is to understand the kernel of the right-hand side of (2.2). Again
appealing to Lemma 3.4 we have that η(Tn−1(q)) is invertible as an endomorphism
of CSn. So, as right Sn-modules,

ker
((

1− qnzn−1

)
η
(
Tn−1(q)

)) ∼= ker (1− qnzn−1) .
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It is straightforward to check that the kernel of 1− qnzn−1 (acting as usual on CSn

by left-multiplication) is the right ideal generated by

τ =
1

n− 1

n−2∑
`=0

(qnzn−1)`.

So by Lemma 3.6, we have the following equalities of right Sn-modules:

ker ((1− qnzn−1)) η (Tn−1(q)) = indSn

Cn−1
(qn) = indSn

Sn−1
(Lien−1)(3.3)

(the last equality from Lemma 3.2).
We now consider the kernel of the left-hand side of (2.2). A similar argument

involving Lemma 3.6 shows that

ker
(
1− qn−1zn

) ∼= indSn

Cn
(qn−1) = Lien,(3.4)

the last equality from Lemma 3.2. By standard linear algebra arguments,

dim
(
ker
(
Tn(q)

(
1− qn−1zn

)))
≤ dim

(
ker
(
Tn(q)

))
+ dim

(
ker
(
1− qn−1zn

))(3.5)

with equality if and only if

ker
(
Tn(q)(1 − qn−1)

) ∼= ker(Tn(q))⊕ ker
(
(1− qn−1)

)
(3.6)

(the last isomorphism being an isomorphism of right Sn-modules). Combining
Lemmas 3.4 and 3.5 we have

dim
(
ker
(
Tn(q)

))
≤ (n− 1)!.

This inequality together with (3.4) and (3.5) imply that

dim
(
ker
(
Tn(q)

(
1− qn−1zn

)))
≤ (n− 2)! + (n− 1)! = n(n− 2)!(3.7)

with equality if and only if (3.6) holds. But by (3.3)

ker
(
Tn(q)

(
1− qn−1

)) ∼= indSn

Sn−1
(Lien−1),

which has dimension n(n − 2)!. This implies that there is equality in (3.7) and
hence the isomorphism in (3.6) holds, i.e.,

indSn

Sn−1
(Lien−1) ∼= ker

(
Tn(q)

)
⊕ Lien.

It is interesting to note that the same representation

indSn

Sn−1
(Lien−1)/Lien

has recently appeared in another quite different context. Let Fn denote the space
of homeomorphically irreducible trees with n labelled leaves. We think of Fn as
a topological space with the trees near to each other if they differ by a small
deformation (just as drawings in the plane). There is an action of Sn on Fn

induced by permutations of the labels on the leaves. This action lifts to an action
of Sn on H∗(Fn), the homology of Fn. Sarah Whitehouse [W] showed that

H∗(Fn) ∼= indSn

Sn−1
(Lien−1)/Lien.

An interesting problem is to construct a Sn-equivariant isomorphism between
ker(Tn(q)) and H∗(F).

We next consider Question 2. As stated, this question probably does not have
a nice answer. In Table 1 we see a chart which has rows indexed by partitions of
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Table 1

λ DSλ(B)

1 I0

2 I2
12 I1

3 I2I3
21 I6

1I
6
2

13 I1I6

4 I2
2I3I4

31 I18
1 I18

2 I9
3

22 I8
1I

8
2 I

2
12

212 I18
1 I18

2 I9
6

14 I2
1I4I6

5 I2
2I3I4I5

41 I10
1 I12

2 I6
3I

3
4

32 I14
1 I14

2 I5
3I10I

2
12

312 I16
1 I16

2 I5
3I

5
6I20

221 I14
1 I14

2 I5I
5
6I

2
12

213 I12
1 I10

2 I3
4I

6
6

15 I2
1I4I6I10

6 I3
2I

2
3 I4I5I6

51 I15
1 I18

2 I9
3I

6
4I

3
5

42 I31
1 I34

2 I14
3 I5

4I
3
10I

3
12I30

412 I34
1 I36

2 I16
3 I5

4I
7
6 I15I20

32 I18
1 I17

2 I8
3I10I

3
12I15

321 I58
1 I58

2 I15
3 I3

5I
15
6 I3

10I
6
12I

2
20

313 I36
1 I34

2 I7
3I

5
4I

16
6 I20I30

23 I17
1 I18

2 I5I
8
6I

3
12I30

2212 I34
1 I31

2 I5
4I

3
5I

14
6 I3

12I15
214 I18

1 I15
2 I6

4I
9
6I

3
10

16 I3
1I3I4I

2
6I10

small size. The entry in row λ is the determinant DSλ(B) of the restriction of B to
the Sλ-isotypic component of R. In this chart we let Ij denote the jth cyclotomic
polynomial, i.e., the polynomial whose roots are the primitive jth roots of 1.

To establish notation more generally, let V be a virtual Sn-module written as

V =
∑

λ

nλS
λ

where nλ ∈ Z. Let A be an element of CSn. We let DV (A) denote the product
over λ of det(ϕλ(A))nλ where ϕλ is the irreducible representation of Sn indexed
by λ.
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Table 2

j dj(T )
1 0
2 0
3 2
4 2
5 6
6 11
7 11
8 18
9 18

Next, for each η ` n, let P η denote the virtual representation

P η =
∑

λ

χλ(η)Sλ(3.8)

where χλ(η) is the value of the irreducible character χλ on the conjugacy class
consisting of permutations of cycle type η. In terms of symmetric functions, Sλ is
the representation having the Schur function sλ(x) as characteristic whereas P η is
the representation having the power sum symmetric function pη(x) as characteristic.

It is well-known that the character table (χλ(η)) of Sn is an invertible matrix,
so the determinants DP η (Tn(q)) determine the determinants DSλ(Γn(q)). The
following conjecture of R. Stanley gives an elegant description of the DP η (Tn(q))’s.

Conjecture 3.7. For each η ` n, let Pη(q) denote DP η (Tn(q)). Then
(a) Pη(q) = 1 unless η is of the form `d1n−`d for some `, d.
(b) P(`d,1s)(q) =

(P(`d,1)(q)
)s! for all `, d and all s ≥ 1.

Note that (a) and (b) reduce the determination of Pη(q) to the cases where η is of
the form `d or `d1.

(c) P(`d)(q) =
∏

m|`
(
1− qdm(n−1)

)µ(m)`d(d−1)!/m

where in the exponent of the factors on the right-hand side, µ denotes the number-
theoretic Möbius function.

(d) P(`d,1)(q) = P(`d)(q)P(`d)

(
qn/(n−2)

)−1
.

The rest of this section will be devoted to proving Conjecture 3.7. We will need
the following theorem which is a special case of a more general result proved by
John Stembridge.

For λ a partition of n, let Fλ denote the set of standard Young tableaux of shape
λ. For T ∈ Fλ and i ∈ {1, 2, . . . , n − 1}, we say i is a descent of T if i + 1 occurs
in a lower row of T than i. For each j, let dj(T ) denote the sum of the descents of
T which are less than j.

For example, if

T =
1 2 4 7 9
3 5 8
6

then the descents of T are 2, 4, 5, 7. The numbers dj(T ) are given in Table 2. The
special case of Stembridge’s Theorem that we will need is:
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Theorem 3.8 (special case of Theorem 3.3 of [Ste]). Fix j, λ with 1 ≤ j ≤ n and
λ ` n. Let ω = e2πi/j. Then the multiplicity of ω` as an eigenvalue of ϕλ(zj) is
equal to the number of T ∈ Fλ with dj(t) ≡ ` (mod j).

Fix a positive integer j and let V be a Sn-module. Let ω = e2πi/j . Following
Stembridge we consider the generating function

MV,j(z) =
∑

`

mV,j(ω`)z`

where mV,j(ω`) is the multiplicity of ω` as an eigenvalue of zj acting on V . For V ,
a virtual Sn-module written as V = X − Y where X and Y are modules, define
MV,j(z) to be MX,j(z)−MY,j(z). Theorem 3.8 above states

MSλ,j(z) =
∑

T∈Fλ

zdj(T )

where the sum on the right should be reduced modulo 1 − zj. Another important
result we will need is the following well-known result (see [M], pp. 49-50 for a
proof).

Lemma 3.9. Let λ be a partition of n. Then

MSλ,n(z) = (z)nsλ(1, z, z2, . . . )

where (z)n denotes (1− z)(1− z2) . . . (1 − zn).

Lemma 3.10. Let η, j be as above and let ` be a divisor of j.
(a) MP η,j(z) ≡ (n−j)!∑s/`

1−zj

1−zsµ
(

`
s

)
s`d−1(d−1)! (mod 1−zj) if η = `d, 1n−j,

where d denotes j/`.
(b) MP η,j(z) ≡ 0 (mod 1− zj) otherwise.

Proof.

MP η,j(z) =
∑
λ`n

χλ(η)MSλ,j(z)

=
∑
λ`n

χλ(η)
∑

T∈Fλ

zdj(T ).

For α a partition of j and S ∈ Fα, let Fλ(S) denote the subset of Fλ consisting
of all T which contain S. In other words, T is contained in Fλ(S) if S is obtained
from T by erasing the numbers j + 1, j + 2, . . . , n. Note that if T ∈ Fλ(S) then
dj(T ) = dj(S). Also, by the Littlewood-Richardson rule, |Fλ(S)| is equal to the
multiplicity of Sλ in the induction of Sα from Sj to Sn,

|Fλ(S)| =
〈
χλ, indSn

Sj
(χα)

〉
for every S ∈ Fα. It follows that

MP η ,j(z) =
∑
α`n

( ∑
S∈Fα

zdj(S)

)∑
λ`f

〈
χλ, indSn

Sj
(χα)

〉
χλ(η).(3.9)

Substituting the formula from Lemma 3.9 into equation (3.9) we obtain

MP η ,j(z) = (z)j

∑
α`j

sα(1, z, z2, . . . )
(
indSn

Sj
(χα)

)
(η).(3.10)
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Note that
(
indSn

Sj
(χα)

)
(η) = 0 for all α unless η is of the form η = η̄1n−j where

η̄ ` j. So we have MP η ,j(z) = 0 in the case that η is not of the form η̄1n−j for
η̄ ` j which proves Lemma 3.10 (b).

Suppose η = η̄ 1n−j where η̄ ` j. Then (see [F])(
indSn

Sj
(χα)

)
(η) =

n!|C(η̄)|
j!|C(η)| χ

α(η̄)

where C(η) is the conjugacy class in Sn containing η and C(η̄) is the conjugacy
class in Sj containing η̄. Thus∑

α`j

sα(x)
(
indSn

Sj
(χα)

)
(η) =

n!|C(η̄)|
j!|C(η)|

∑
α`j

χα(η̄)sα(x) =
n!|C(η̄)|
j!|C(η)| pη̄(x).(3.11)

Substituting (3.11) in (3.10) we obtain

MP η,j(z) =
n!|C(η̄)|
j!|C(η)|

(z)j

Πi(1− zη̄i)
.(3.12)

Note that (z)j = (1−z`)j/` u(z) where u(z) is a polynomial in z. Hence MP η,j(z) ≡
0 mod 1− z` unless η̄ = `j/`. This observation completes the proof of Lemma 3.10
(b).

Lastly, assume that η = `j/`, 1n−j . Then

|C(η)| =
(

n
`, `, . . . , `, n− j

)
1

(j/`)!
(` − 1)!j/`

and

|C(η̄)| =
(

j
`, `, . . . , `

)
1

(j/`)!
(` − 1)!j/`.

So
n!|C(η̄)|
j!|C(η)| = (n− j)!.

Also,

(z)j

Πi(1− zη̄i)
=

(1− z)(1− z2) · · · (1 − zj)
(1− z`)j/`

.

Lemma 3.11. Suppose ` divides j. Let d denote j/`. Then

(1− z)(1− z2) · · · (1− zj)
(1 − z`)d

=
∑
s|`

1− zj

1− zs
µ(
`

s
) `d−1 (d− 1)!

modulo (1− zj).

Proof. It is enough to show that the two sides are equal whenever z is set equal to
a jth root of unity. There are three cases to consider.

Case 1: zj = 1 but z` 6= 1.

Clearly, both sides of the equality in Lemma 3.11 are equal to 0.

Case 2: z is a primitive ath root of unity for some a which properly divides ` (i.e.,
a < `).
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The left-hand side of the equality can be written as(
d−1∏
u=0

`−1∏
i=1

(1− zu`+i)

)
b(z)

where b(z) is a polynomial, so the left-hand side is equal to 0 (because of the factor
1− za).

The only non-zero summands on the right-hand side are those indexed by s
where a|s. Hence the right-hand side is equal to∑

a|s|`

(
j

s

)
µ

(
`

s

)
s `d−1(d− 1)!.(3.13)

We’ve used the fact that limz→ω
1−zj

1−zs = j
s for ω an sth root of unity. We can rewrite

(3.13) as ∑
a|s|`

µ

(
`

s

) j `d(d− 1)! = 0,

the last equality following because a is a proper divisor of ` so the sum of µ(e) for
e|( `

a ) is 0. This completes Case 2.

Case 3: z is a primitive `th root of unity.

We can write the left-hand side of the equation in Lemma 3.11 as

d−1∏
u=0

(
`−1∏
i=1

(
1− zu`+i

))( u∑
e=0

z`e

)
(3.14)

=
d−1∏
u=0

(
`−1∏
i=1

(1− zi)

)
(u+ 1)

= d!`d.

The first equality in (3.14) uses the fact that 1 − zu`+i ≡ 1 − zi mod(1 − z`) and
the second equality follows from the fact that

`−1∏
i=1

(1− zi) =
(
x` − 1
x− 1

)
x=1

= `.

The right-hand side in Lemma 3.11 is equal to

1− zj

1− z`
``d−1(d− 1)! = `d d!

which completes the proof of Lemma 3.11.

Lemma 3.10 follows immediately.
We are now ready to prove Conjecture 3.7. This will require a translation be-

tween the multiplicative determinant statements of Conjecture 3.7 and the additive
trace formulas in Lemma 3.10. This translation is given in the following proposition
which we leave to the reader.
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Proposition 3.12. Let η and j be as above. Write MP η ,j(z) as

MP η,j(z) =
j−1∑
u=0

cu z
u.

Then

DP η(1−Xzj) =
∏
u

(1 −Xωu)cu ,

where ω = e2πi/j .

Proof of Conjecture 3.7. Recall that DP η(α) denotes the determinant of α on the
Sn-module P η for α ∈ CSn. By Theorem 2.1 we have

DP η (Tn(q)) =
n∏

j=1

DP η(1 − qj zj−1)
(
DP η (1− qj−1 zj)

)−1
.(3.15)

Case 1: η is not of the form `d 1n−`d.

By Lemma 3.10(b) and Proposition 3.12, DP η (1 − Xzs) = 1 for all X and zs.
So DP η (TN(q)) = 1 which proves Conjecture 3.7(a).

Case 2: η = `d.

By Lemma 3.10(b) and Proposition 3.12, DP η (1 − Xzs) = 1 for all X and all
s < n. So

DP η(Tn(q)) = DP η (1− qn−1zn)−1.

By Lemma 3.10 and Proposition 3.12 we have

DP η (Tn(q)) =
∏
s|`

n
s −1∏
i=0

(
1− ωiqn−1

)−µ( `
s )s `d−1(d−1)!

where ω is a primitive (n
s )th root of 1. Letting m = `/s we can rewrite this as

DP η (Tn(q)) =
∏
m|`

(
1− qmd(n−1)

)−µ(m)`d(d−1)!/m

,

which proves Conjecture 3.7(c).

Case 3: η = m`d1n−j where j = `d < n.

By Lemma 3.10(b) and Proposition 3.12,

DP η (Tn(q)) = DP η

(
1− qj+1zj

)/
DP η

(
1− qj−1 zj

).

By the same kind of computation as in Case 2 we have

DP η(Tn(q)) =

∏
s|`

1− qj(j+1)/s

1− qj(j−1)/s

sµ( `
s )`d−1(d−1)!(n−j)!

.(3.16)

Conjecture 3.7(b) follows immediately from (3.16) as the only dependence on n is
the factor of (n− j)! in the exponent.

So assume j = n− 1. From (3.16) we have

DP η (Tn(q)) = U/V
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where

U =
∏
s|`

(
1− q(n−1)/s(n−2)

)−sµ( `
s )`d−1(d−1)!

= DP η̄ (q)

and

V =
∏
s|`

(
1− q((n−1)/s)n

)−sµ( `
s )`d−1(d−1)!

= DP η̄(qn/n−2)

where η̄ = `d. This proves Conjecture 3.7(d) and completes the proof of Conjecture
3.7.

4. Other Problems

Let A be an arrangement of hyperplanes in Rn, G a finite group of linear trans-
formations of Rn, which acts on A and let aH be an assignment of parameters
which is G-invariant. Then the Varchenko matrix B commutes with G and so we
can ask the same questions in this more general setting that we addressed in this
paper. More precisely we can ask:

1) For each choice of (G-invariant) parameter weights giving det(B) = 0, what is
the G-module structure of the kernel of B? Does this question have a simple
answer in the case that the factors in Theorem 1.1 which are 0 correspond to
only one orbit of flats in the intersection lattice of A?

2) What is the determinant of the restriction of B to each isotypic component
of the G-action on regions?

A second line of inquiry suggested by the results in the paper is to answer ques-
tions 1) and 2) for the endomorphism B of CG corresponding to left multiplication
by ∑

σ∈G

q`(σ)σ

for other Coxeter groups G, where ` is the length function in G.
In another direction, note that Conjecture 3.1 (b) implies that the dimension of

the kernel of Γn(q) is equal to the exponent of the jth cyclotomic polynomial in
det(Γn(q)) in the case that q is a primitive jth root of unity which divides exactly
one of the factors in (1.1). This is equivalent to saying that the jth cyclotomic
polynomial appears with exponent at most one in the diagonal terms of the Smith
Normal Form of Γn(q) (over the ring C[q]). Based on computational evidence we
make the following more general conjecture:

Conjecture 4.1. The maximum exponent of the jth cyclotomic polynomial Ij(q)
in a diagonal entry of the Smith Normal Form of Γn(q) is equal to the number of
factors in (1.1) that are divisible by Ij(q).

It would be interesting to better understand the Smith Normal Forms of the
Varchenko matrices over C[q] when all weights aH are set equal to q.
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