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After the publication of [2], we realized that Proposition 3.1, in that paper, contains an error,
whose consequences are rather pervasive along the whole section 3 and for some aspects of
Examples 5.1 and 5.2. Here we give a complete account of needed corrections.

First of all, [2, Prop. 3.1] has to be replaced by the following:

Proposition 3.1 Let X (Σ) be a Q-factorial complete toric variety and Y (̂Σ) be its universal
1-covering. Let {Dρ}ρ∈Σ(1) and {̂Dρ}ρ∈̂Σ(1) be the standard bases of WT (X) and WT (Y ),
respectively, given by the torus orbit closures of the rays. Then

D =
∑

ρ∈Σ(1)

aρDρ ∈ CT (X) �⇒ ̂D =
∑

ρ∈̂Σ(1)

aρ
̂Dρ ∈ CT (Y ).

Therefore under the identification Z|Σ(1)| ∼= WT (X)
α∼= WT (Y ) ∼= Z|̂Σ(1)| realized by the

isomorphism Dρ
α�→ ̂Dρ ,

CT (X) ∼= α(CT (X)) ≤ CT (Y ) ≤ WT (Y )

is a chain of subgroup inclusions. Moreover the induced morphism α: Cl(X) → Cl(Y )

is injective when restricted to Pic(X), realizing the following further chain of subgroup
inclusions

Pic(X) ∼= α(Pic(X)) ≤ Pic(Y ) ≤ Cl(Y ).
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Proof Let us fix a basis B of the Z-module M ∼= Zn and let V and ̂V be fan matrices
representing the standard morphisms

divX : M ∼= Zn V T−→ Z|Σ(1)| ∼= WT (X), divY : M ∼= Zr ̂V T−→ Z|̂Σ(1)| ∼= WT (Y )

Let β ∈ GLn(Q)∩Mn(Z) be such that V = β̂V and so realizing an injective endomorphism
of the Z-module M . The result follows by writing down the condition of being locally
principal for a Weil divisor and observing that

IΣ = {I ⊆ {1, . . . , n + r}:
〈

V I
〉

∈ Σ(n)} (1)

= {I ⊆ {1, . . . , n + r}:
〈

̂V I
〉

∈ ̂Σ(n)} = I ̂Σ

by the construction of ̂Σ ∈ SF(̂V ), given the choice of Σ ∈ SF(V ). Notice that IΣ

describes the complements of those sets described by IΣ , as defined in [2, Rem.2.4]. In
particular, the Weil divisor

∑n+r
j=1 a j D j ∈ WT (X) is Cartier if and only if

∀ I ∈ IΣ ∃mI ∈ M : ∀ j /∈ I vTj mI = a j , (2)

where v j is the j th column of V . Then α(
∑n+r

j=1 a j D j ) = ∑n+r
j=1 a j ̂Dj is a Cartier divisor

since
∀ I ∈ IΣ ∀ j /∈ I v̂Tj (β

TmI ) = a j

where v̂ j is the j th column of ̂V .
The injectivity of α follows from the well-known freeness of Pic(X). �

As a consequence, parts 1, 4, 5 of [2, Thm. 3.2] still hold, while parts 2, 3, 6, 7 have to be
replaced by the following:

Theorem 3.2 Let X = X (Σ) be a n-dimensionalQ-factorial complete toric variety of rank
r and Y = Y (̂Σ) be its universal 1-covering. Let V be a reduced fan matrix of X, Q = G(V )

a weight matrix of X and ̂V = G(Q) be a CF-matrix giving a fan matrix of Y .

2. Define IΣ as in (1). For any I ∈ IΣ let EI be the r × (n + r) matrix admitting as rows
the standard basis vectors ei = (0, . . . , 0, 1

i
, 0, . . . , 0), for i ∈ I , representing the i th

basis divisor Di ∈ WT (X) ∼= Z|Σ(1)|. Set ˜VI := (

V T | ET
I

) ∈ Mn+r (Z). Then Cartier
divisors give rise to the following maximal rank subgroup of WT (X)

CT (X) ∼=
⋂

I∈IΣ

Lc
(

˜VI
) ≤ Z|Σ(1)| ∼= WT (X)

and a basis of CT (X) ≤ WT (X) can be explicitly computed by applying the procedure
described in [1, § 1.2.3].

3. LetCX ∈ GLn+r (Q)∩Mn+r (Z) be amatrix whose rows give a basis of CT (X) inWT (X),
as obtained in the previous part 2. Identify Cl(X) with Zr ⊕ ⊕s

k=1 Z/τkZ by item (c) of
part 4 in [2, Thm. 3.2] and represent the morphism dX by Q ⊕ Γ , according to parts 1
and 5. Let A ∈ GLn+r (Z) be a matrix such that A · CX · QT is in HNF. Let c1, . . . , cr
be the first r rows of the matrix A · CX and for i = 1, . . . r put bi = Q · cTi + Γ · cTi .
Then b1, . . . br is a basis of the free group Pic(X) in Cl(X).

6. Given the choice of ̂V and V as in the previous parts 4 and 5 of [2, Thm. 3.2], consider

U :=
( rUQ

̂V

)

∈ GLn+r (Z)
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A Q-factorial complete toric variety… 991

W ∈ GLn+r (Z):W · (n+r−sU )T = HNF
(

(n+r−sU )T
)

G := ŝV · (sW )T ∈ Ms(Z)

UG ∈ GLs(Z):UG · GT = HNF(GT ).

Then a “torsion matrix” representing the “torsion part” of the morphism dX , that is,
τX :WT (X) → Tors(Cl(X)), is given by

Γ = UG · sW mod τ (3)

where this notation means that the (k, j)-entry of Γ is given by the class in Z/τkZ

represented by the corresponding (k, j)-entry of sUG · sW , for every 1 ≤ k ≤ s, 1 ≤
j ≤ n + r .

7. Setting δΣ := lcm
(

det(QI ): I ∈ IΣ
)

then

δΣWT (X) ⊆ CT (X) and δΣWT (Y ) ⊆ CT (Y )

and there are the following divisibility relations

δΣ | [Cl(Y ): Pic(Y )] = [WT (Y ): CT (Y )] | [Cl(X): Pic(X)] = [WT (X): CT (X)].
Proof (2): Recalling relation (2) in the proof of Proposition 3.1, set

∀ I ∈ IΣ P I =
⎧

⎨

⎩

L =
n+r
∑

j=1

a j D j ∈ WT (X) | ∃m ∈ M : ∀ j /∈ I m · v j = a j

⎫

⎬

⎭

.

Then P I contains Im(divX : M → WT (X)) = Lc
(

V T
)

and a Z-basis of P I is given by

{Dj , j ∈ I } ∪
{

n+r
∑

k=1

vik Dk, i = 1, . . . , n

}

,

where {vik} is the i th entry of vk , so giving the rows of the matrix ˜VI defined in the statement.
(3): By definition

Pic(X) = Im

(

CT (X) ↪→ WT (X)
dX→ Cl(X)

)

so that Pic(X) is generated by the image under Q ⊕ Γ of the transposed of the rows of CX .
Since rk(CX ) = n + r and rk(Q) = r , the matrix CX · QT has rank r and therefore its HNF
has the last n− r rows equal to zero. Therefore the rows of the matrix A ·CX provide a basis
of CT (X) in WT (X) such that its last n rows are a basis of Lr (̂V ) ∩ CT (X) = Lr (V ). Since
Pic(X) is free of rank r , it is freely generated by the images under dX of the first r rows.
(6): A representative matrix of the torsion part τX :WT (X) → Cl(X) of the morphism dX is
any matrix satisfying the following properties:

(i) Γ = (γk j ) with γk j ∈ Z/τkZ,
(ii) Γ · (rUQ)T = 0s,r mod τ , meaning that Γ kills the generators of the free part F ≤

Cl(X) defined in display (4) of part 1 of [2, Thm. 3.2],
(iii) Γ ·V T = 0s,n mod τ ,whereV is a fanmatrix satisfying condition4.(b) in [2,Thm. 3.2]:

this is due to the fact that the rows of V span ker(dX ),
(iv) Γ · (ŝV )T = Is mod τ , since the rows of ŝV give the generators of Tors(Cl(X)), as in

display (6) of part 5 of [2, Thm. 3.2].
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992 M. Rossi, L. Terracini

Therefore it suffices to show that the matrix UG · sW in (3) satisfies the previous conditions
(i i), (i i i) and (iv) without any reduction mod τ , that is,

UG · sW · (n+r−sU )T = 0s,n+r−s, UG · sW · (ŝV )T = Is .

The first equation follows by the definition of W , in fact

W · (n+r−sU )T = HNF
(

(n+r−sU )T
)

=
(

In+r−s

0s,n+r−s

)

⇒ sW · (n+r−sU )T = 0s,n+r−s

The second equation follows by the definition of UG , in fact

UG · sW · (ŝV )T = UG · GT = HNF(GT ) = Is .

(7): Part (4) of [1, Thm. 2.9] gives that δΣ | [Cl(Y ): Pic(Y )] = [WT (Y ): CT (Y )]. On the other
hand, Proposition 3.1 gives that [WT (Y ): CT (Y )] | [WT (X): CT (X)] = [Cl(X): Pic(X)]. �

Considerations i, ii, iii, iv, v of [2, Rem. 3.3] still holds, while vi, vii and the remaining
part of Remark 3.3 have to be replaced by the following

Remark 3.3 vi. apply procedure [1, § 1.2.3], based on the HNF algorithm, to get a (n +
r) × (n + r) matrix CX whose rows give a basis of CT (X) ≤ WT (X) ∼= Z|Σ(1)|;

vii. apply procedure described in part 6 of Theorem 3.2 to get a system of generators
of Pic(X) in Cl(X). Precisely, let A ∈ GLn+r (Z) be a switching matrix such that
HNF(CX · QT ) = A · CX · QT , and put

BX = r (A · CX · QT ), ΘX = r (A · CX · Γ T ) (4)

Then the rows of the matrices BX and ΘX represent, respectively, the free part and
the torsion part of a basis of Pic(X) in Cl(X), where the latter is identified to Zr ⊕
⊕s

k=1 Z/τkZ.

Moreover:
– recall that, for the universal 1-covering Y of X , once fixed the basis {̂Dj }n+r

j=1 of

WT (Y ) ∼= Zn+r and the basis {dY (̂Li )}ri=1 of Cl(Y ) ∼= Zr , (see (11) in [1, Thm. 2.9]),
one gets the following commutative diagram

0 0 0

0 M

(

0n,r | In
)

CT (Y ) ∼= Pic(Y ) ⊕ M

(

Ir | 0r,n
)

CT
Y

Pic(Y )

BT
Y

0

0 M
divY

̂V T
WT (Y ) =

n+r
⊕

j=1

Z · Dj
dY

Q
Cl(Y ) 0

0 TY
∼= TY 0

0 0
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A Q-factorial complete toric variety… 993

where BY is the r × r matrix constructed in [1, Thm. 2.9(3)] and

CY =
(

BY 0r,n
0n,r In

)

·UQ =
(

BY · rUQ
̂V

)

,

– once fixed the basis {Dj }n+r
j=1 for WT (X) ∼= Zn+r and the basis {dX (Li )}ri=1 of the

free part F ∼= Zr of Cl(X), constructed in part 1 of [2, Thm. 3.2], one gets the
following commutative diagram

0 0 0

0 M

(

0n,r | In
)

CT (X) ∼= Pic(X) ⊕ M

(

Ir | 0r,n
)

CT
X

Pic(X)

BT
X⊕ΘT

X

0

0 M
divX

V T
WT (X) =

n+r
⊕

j=1

Z · Dj
dX= fX⊕τX

Q⊕Γ
Cl(X) 0

0 TX
∼= TX 0

0 0

Moreover:

– recall the following commutative diagram of short exact sequences

0

0 0 ker(α) = Tors(Cl(X))

0 M
divX

VT

βT

WT (X) = Z
|Σ(1)| dX

αIn+r

Cl(X)

α

0

0 M
divY

̂VT
WT (Y ) = Z

|̂Σ(1)| dY
Cl(Y ) 0

coker(βT ) ∼= Tors(Cl(X)) 0 0

0

(5)
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994 M. Rossi, L. Terracini

then, putting all together, one gets the following 3-dimensional commutative diagram

M
divX

0n,r | InβT

CT (X)
α|

(CX·C−1
Y )T

dX |

Ir | 0r,n

CT
X

Pic(X)
α|

(BX·B−1
Y )T

BT
X⊕ΘT

X

M
divY

0n,r | In

CT (Y )
dY |

Ir |0r,n

CT
Y

Pic(Y )

BT
Y

coker(βT ) coker(α|) coker(α|)

ker(α)

M
divX

V T

βT

WT (X)
dX=fX⊕τX

Q⊕Γ

α

In+r

Cl(X)
α

Ir⊕0r

M
divY

V T
WT (Y )

dY

Q
Cl(Y )

coker(βT )

K ∼= K

TX ∼= TX

TY ∼= TY

(6)

The Snake lemma implies

coker(βT ) ∼= ker(α) ∼= Tors(Cl(X))

K ∼= coker(α|) ∼= CT (Y )/CT (X)

so giving the following short exact sequences on torsion subgroups

0

0 Tors(Cl(X)) CT (Y )/CT (X) Pic(Y )/Pic(X) 0

Cl(X)/Pic(X)

Cl(Y )/Pic(Y )

0

(7)

For what concerns the examples given in section 5, considerations related with parts v, vi
and vii of Remark 3.3 have to be replaced as follows
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A Q-factorial complete toric variety… 995

Example 5.1 v. A matrix W ∈ GL4(Z) such that HNF
(

(3U )T
) = W · (3U )T is given by

W =

⎛

⎜

⎜

⎝

1 0 0 0
1 0 1 −2
0 1 −3 2
0 0 1 −1

⎞

⎟

⎟

⎠

giving

G := 1̂V · (1W )T = (

1
)

Therefore

Γ = 1W mod 5 = ( [0]5 [4]5 [2]5 [1]5
)

.

Consequently display (16) in [2], giving the action of Hom(Tors(Cl(X)),C∗) ∼= μ5 on
Y = P3, should be replaced by the following (equivalent) one:

μ5 × P3 −→ P3

(ε, [x1: . . . : x4]) �→ [

x1: ε4x2: ε2x3: εx4
]

.
(8)

vi. Applying procedure [1, § 1.2.3] as described in part 2 of Theorem 3.2, one gets a 4 × 4
matrix CX whose rows give a basis of CT (X) inside WT (X) ∼= Z|Σ(1)|. Namely

CX =

⎛

⎜

⎜

⎝

5 0 0 0
0 5 0 0

−3 −3 1 0
−2 −4 0 1

⎞

⎟

⎟

⎠

meaning that

CT (X) = L (5D1, 5D2,−3D1 − 3D2 + D3,−2D1 − 4D2 + D4) .

On the other hand, by part (3) of [1, Thm. 2.9], a basis of CT (Y ) ⊆ WT (Y ) is given by the
rows of

CY = I4 ·UQ = UQ ∈ GLn(Z)

giving CT (Y ) = WT (Y ), as expected for Y = P3.
vii. A basis of Pic(X) inside Cl(X) is then obtained by applying part 6 of Theorem 3.2. With
the notation of Remark 3.3 vii, a switching matrix A such that A · CX · QT is in HNF is

A =

⎛

⎜

⎜

⎝

1 0 0 0
−1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎟

⎟

⎠

so that

BX = 1(A · CX · QT ) = (

5
)

ΘX = 1(A · CX · Γ T ) = (

0
)

Then

Pic(X) ∼= Z[5dX (D1)] ≤ Z[dX (D1)] ⊕ Z/5Z[dX (D3 − D4)] ∼= Cl(X)

⇒ Cl(X)/Pic(X) ∼= Z/5Z ⊕ Z/5Z.
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996 M. Rossi, L. Terracini

Example 5.2 v. A matrix U as defined in part 6 of Theorem 3.2 is given by

U =
(

2UQ
̂V ′

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 0 0 0
−6 3 1 0 0 0
521 −251 −168 −2 14 28
388 −222 −112 7 45 3

−184 105 53 −2 −23 −1
191 −109 −55 2 24 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A matrix W ∈ GL6(Z) such that HNF((4U )T ) = W · ((4U )T ) is given by

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−57 −115 3 −549 17 0
4 8 1 3 7 0

−125 −250 0 −1090 14 0
−170 −340 0 −1482 19 0
−188 −376 0 −1639 21 0
−126 −252 0 −1092 13 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

then

G = 2̂V
′ · (2W )T =

(−2093 −1392
2302 1531

)

A matrix UG ∈ GL2(Z) such that HNF(GT ) = UG · GT is given by

UG =
(

1531 −2302
1392 −2093

)

hence giving

Γ = UG · 2W mod τ

=
(

2224 4448 0 4475 2225 −2302
2022 4044 0 4068 2023 −2093

)

mod

(

3
15

)

=
( [1]3 [2]3 [0]3 [2]3 [2]3 [2]3

[12]15 [9]15 [0]15 [3]15 [13]15 [7]15
)

Consequently display (20) in [2] should be replaced by the following (equivalent) one

g (((t1, t2), ε, η), (x1, . . . : x6)) (9)

:=
(

t21 t2εη
12 x1, t

4
1 t2ε

2η9 x2, t1t
3
2 x3, t

5
1 t

2
2 ε2η3 x4, t

4
1 t

3
2 ε2η13 x5, t

3
1 t

7
2 ε2η7 x6

)

vi. Depending on the choice of the fan Σi ∈ SF(V ), by applying procedure [1, § 1.2.3] as
described in part 2 of Theorem 3.2, one gets a 6× 6 matrix CX,i whose rows give a basis of
CT (Xi ) inside WT (Xi ) ∼= Z|Σi (1)|. Namely

CX,1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

265926375 0 0 0 0 0
−148978500 825 0 0 0 0
−58474020 −375 15 0 0 0

37 −18 −7 1 0 0
−58473933 −417 −3 0 3 0

19 −8 −5 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

123
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CX,2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

43543500 0 0 0 0 0
−34716000 15 0 0 0 0
−594165 0 30 0 0 0

−34715963 −3 −7 1 0 0
17655087 −12 −18 0 3 0

19 −8 −5 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

CX,3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

43543500 0 0 0 0 0
−37009500 825 0 0 0 0
−6534165 −750 30 0 0 0

37 −18 −7 1 0 0
87 −42 −18 0 3 0
19 −8 −5 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

vii. A basis of Pic(Xi ) inside Cl(Xi ) is then obtained by applying part 6 of Theorem 3.2. For
i = 1, 2, 3, matrices Ai switching CXi · QT in Hermite normal form are, respectively,

A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−351039 −449987 −449987 0 0 0
−502913 −644670 −644670 0 0 0

1 1 2 0 0 0
0 0 0 1 0 0
1 1 1 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−93838 −117699 0 0 0 0
−1157199 −1451450 0 0 0 0

4 5 1 0 0 0
0 −1 0 1 0 0

−2 −2 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−10317 −12139 0 0 0 0
−22429 −26390 0 0 0 0

1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

giving

BX1 = 2(A1 · CX1 · QT ) =
(

825 185620050
0 265926375

)

BX2 = 2(A2 · CX2 · QT ) =
(

60 1765515
0 21771750

)

BX3 = 2(A3 · CX3 · QT ) =
(

3300 10016325
0 21771750

)

ΘXi = 2(Ai · CXi · Γ T ) =
( [0]3 [0]15

[0]3 [0]15
)

, for i = 1, 2, 3.
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