Erratum to: $\mathbf{A} \mathbb{Q}$-factorial complete toric variety is a quotient of a poly weighted space

Michele Rossi ${ }^{1}$ • Lea Terracini ${ }^{1}$

Published online: 21 September 2017
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany 2017

Erratum to: Annali di Matematica (2017) 196:325-347 DOI 10.1007/s10231-016-0574-7

After the publication of [2], we realized that Proposition 3.1, in that paper, contains an error, whose consequences are rather pervasive along the whole section 3 and for some aspects of Examples 5.1 and 5.2. Here we give a complete account of needed corrections.

First of all, [2, Prop. 3.1] has to be replaced by the following:
Proposition 3.1 Let $X(\Sigma)$ be a Q-factorial complete toric variety and $Y(\widehat{\Sigma})$ be its universal 1-covering. Let $\left\{D_{\rho}\right\}_{\rho \in \Sigma(1)}$ and $\left\{\widehat{D}_{\rho}\right\}_{\rho \in \widehat{\Sigma}(1)}$ be the standard bases of $\mathcal{W}_{T}(X)$ and $\mathcal{W}_{T}(Y)$, respectively, given by the torus orbit closures of the rays. Then

$$
D=\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho} \in \mathcal{C}_{T}(X) \Longrightarrow \widehat{D}=\sum_{\rho \in \widehat{\Sigma}(1)} a_{\rho} \widehat{D}_{\rho} \in \mathcal{C}_{T}(Y)
$$

Therefore under the identification $\mathbb{Z}^{|\Sigma(1)|} \cong \mathcal{W}_{T}(X) \stackrel{\alpha}{\cong} \mathcal{W}_{T}(Y) \cong \mathbb{Z}^{|\widehat{\Sigma}(1)|}$ realized by the isomorphism $D_{\rho} \stackrel{\alpha}{\mapsto} \widehat{D}_{\rho}$,

$$
\mathcal{C}_{T}(X) \cong \alpha\left(\mathcal{C}_{T}(X)\right) \leq \mathcal{C}_{T}(Y) \leq \mathcal{W}_{T}(Y)
$$

is a chain of subgroup inclusions. Moreover the induced morphism $\bar{\alpha}: \mathrm{Cl}(X) \rightarrow \mathrm{Cl}(Y)$ is injective when restricted to $\operatorname{Pic}(X)$, realizing the following further chain of subgroup inclusions

$$
\operatorname{Pic}(X) \cong \bar{\alpha}(\operatorname{Pic}(X)) \leq \operatorname{Pic}(Y) \leq \operatorname{Cl}(Y) .
$$

[^0][^1]Proof Let us fix a basis \mathcal{B} of the \mathbb{Z}-module $M \cong \mathbb{Z}^{n}$ and let V and \widehat{V} be fan matrices representing the standard morphisms

$$
\operatorname{div}_{X}: M \cong \mathbb{Z}^{n} \xrightarrow{V^{T}} \mathbb{Z}^{|\Sigma(1)|} \cong \mathcal{W}_{T}(X), \quad \operatorname{di} v_{Y}: M \cong \mathbb{Z}^{r} \xrightarrow{\widehat{V}^{T}} \mathbb{Z}^{|\widehat{\Sigma}(1)|} \cong \mathcal{W}_{T}(Y)
$$

Let $\beta \in \mathrm{GL}_{n}(\mathbb{Q}) \cap \mathbf{M}_{n}(\mathbb{Z})$ be such that $V=\beta \widehat{V}$ and so realizing an injective endomorphism of the \mathbb{Z}-module M. The result follows by writing down the condition of being locally principal for a Weil divisor and observing that

$$
\begin{align*}
\mathcal{I}^{\Sigma} & =\left\{I \subseteq\{1, \ldots, n+r\}:\left\langle V^{I}\right\rangle \in \Sigma(n)\right\} \tag{1}\\
& =\left\{I \subseteq\{1, \ldots, n+r\}:\left\langle\widehat{V}^{I}\right\rangle \in \widehat{\Sigma}(n)\right\}=\mathcal{I}^{\widehat{\Sigma}}
\end{align*}
$$

by the construction of $\widehat{\Sigma} \in \mathcal{S F}(\widehat{V})$, given the choice of $\Sigma \in \mathcal{S F}(V)$. Notice that \mathcal{I}^{Σ} describes the complements of those sets described by \mathcal{I}_{Σ}, as defined in [2, Rem.2.4]. In particular, the Weil divisor $\sum_{j=1}^{n+r} a_{j} D_{j} \in \mathcal{W}_{T}(X)$ is Cartier if and only if

$$
\begin{equation*}
\forall I \in \mathcal{I}^{\Sigma} \quad \exists \mathbf{m}_{I} \in M: \forall j \notin I \mathbf{v}_{j}^{T} \mathbf{m}_{I}=a_{j}, \tag{2}
\end{equation*}
$$

where \mathbf{v}_{j} is the j th column of V. Then $\alpha\left(\sum_{j=1}^{n+r} a_{j} D_{j}\right)=\sum_{j=1}^{n+r} a_{j} \widehat{D}_{j}$ is a Cartier divisor since

$$
\forall I \in \mathcal{I}^{\Sigma} \quad \forall j \notin I \quad \widehat{\mathbf{v}}_{j}^{T}\left(\beta^{T} \mathbf{m}_{I}\right)=a_{j}
$$

where $\widehat{\mathbf{v}}_{j}$ is the j th column of \widehat{V}.
The injectivity of $\bar{\alpha}$ follows from the well-known freeness of $\operatorname{Pic}(X)$.
As a consequence, parts $1,4,5$ of [2, Thm. 3.2] still hold, while parts $2,3,6,7$ have to be replaced by the following:

Theorem 3.2 Let $X=X(\Sigma)$ be a n-dimensional \mathbb{Q}-factorial complete toric variety of rank r and $Y=Y(\widehat{\Sigma})$ be its universal 1-covering. Let V be a reduced fan matrix of $X, Q=\mathcal{G}(V)$ a weight matrix of X and $\widehat{V}=\mathcal{G}(Q)$ be a CF-matrix giving a fan matrix of Y.
2. Define \mathcal{I}^{Σ} as in (1). For any $I \in \mathcal{I}^{\Sigma}$ let E_{I} be the $r \times(n+r)$ matrix admitting as rows the standard basis vectors $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, for $i \in I$, representing the ith basis divisor $D_{i} \in \mathcal{W}_{T}(X) \cong \mathbb{Z}^{|\Sigma(1)|}$. Set $\stackrel{i}{\tilde{V}_{I}}:=\left(V^{T} \mid E_{I}^{T}\right) \in \mathbf{M}_{n+r}(\mathbb{Z})$. Then Cartier divisors give rise to the following maximal rank subgroup of $\mathcal{W}_{T}(X)$

$$
\mathcal{C}_{T}(X) \cong \bigcap_{I \in \mathcal{I}^{\Sigma}} \mathcal{L}_{c}\left(\tilde{V}_{I}\right) \leq \mathbb{Z}^{|\Sigma(1)|} \cong \mathcal{W}_{T}(X)
$$

and a basis of $\mathcal{C}_{T}(X) \leq \mathcal{W}_{T}(X)$ can be explicitly computed by applying the procedure described in [1, § 1.2.3].
3. Let $C_{X} \in \mathrm{GL}_{n+r}(\mathbb{Q}) \cap \mathbf{M}_{n+r}(\mathbb{Z})$ be a matrix whose rows give a basis of($\mathcal{C}_{T}(X)$ in $\mathcal{W}_{T}(X)$, as obtained in the previous part 2 . Identify $\mathrm{Cl}(X)$ with $\mathbb{Z}^{r} \oplus \bigoplus_{k=1}^{s} \mathbb{Z} / \tau_{k} \mathbb{Z}$ by item (c) of part 4 in [2, Thm. 3.2] and represent the morphism d_{X} by $Q \oplus \Gamma$, according to parts 1 and 5. Let $A \in \mathrm{GL}_{n+r}(\mathbb{Z})$ be a matrix such that $A \cdot C_{X} \cdot Q^{T}$ is in HNF. Let $\mathbf{c}_{1}, \ldots, \mathbf{c}_{r}$ be the first r rows of the matrix $A \cdot C_{X}$ and for $i=1, \ldots r$ put $\mathbf{b}_{i}=Q \cdot \mathbf{c}_{i}^{T}+\Gamma \cdot \mathbf{c}_{i}^{T}$. Then $\mathbf{b}_{1}, \ldots \mathbf{b}_{r}$ is a basis of the free group $\operatorname{Pic}(X)$ in $\mathrm{Cl}(X)$.
6. Given the choice of \widehat{V} and V as in the previous parts 4 and 5 of [2, Thm. 3.2], consider

$$
U:=\left(\begin{array}{c}
r \\
U_{Q} \\
\widehat{V}
\end{array}\right) \in \mathrm{GL}_{n+r}(\mathbb{Z})
$$

$$
\begin{aligned}
W & \in \mathrm{GL}_{n+r}(\mathbb{Z}): W \cdot\left({ }^{n+r-s} U\right)^{T}=\operatorname{HNF}\left(\left({ }^{n+r-s} U\right)^{T}\right) \\
G & :={ }_{s} \widehat{V} \cdot\left({ }_{s} W\right)^{T} \in \mathbf{M}_{s}(\mathbb{Z}) \\
U_{G} & \in \mathrm{GL}_{s}(\mathbb{Z}): U_{G} \cdot G^{T}=\operatorname{HNF}\left(G^{T}\right) .
\end{aligned}
$$

Then a "torsion matrix" representing the "torsion part" of the morphism d_{X}, that is, $\tau_{X}: \mathcal{W}_{T}(X) \rightarrow \operatorname{Tors}(\mathrm{Cl}(X))$, is given by

$$
\begin{equation*}
\Gamma=U_{G} \cdot{ }_{s} W \quad \bmod \boldsymbol{\tau} \tag{3}
\end{equation*}
$$

where this notation means that the (k, j)-entry of Γ is given by the class in $\mathbb{Z} / \tau_{k} \mathbb{Z}$ represented by the corresponding (k, j)-entry of ${ }^{s} U_{G} \cdot{ }_{s} W$, for every $1 \leq k \leq s, 1 \leq$ $j \leq n+r$.
7. Setting $\delta_{\Sigma}:=1 \mathrm{~cm}\left(\operatorname{det}\left(Q_{I}\right): I \in \mathcal{I}^{\Sigma}\right)$ then

$$
\delta_{\Sigma} \mathcal{W}_{T}(X) \subseteq \mathcal{C}_{T}(X) \quad \text { and } \quad \delta_{\Sigma} \mathcal{W}_{T}(Y) \subseteq \mathcal{C}_{T}(Y)
$$

and there are the following divisibility relations

$$
\delta_{\Sigma}\left|[\operatorname{Cl}(Y): \operatorname{Pic}(Y)]=\left[\mathcal{W}_{T}(Y): \mathcal{C}_{T}(Y)\right]\right|[\operatorname{Cl}(X): \operatorname{Pic}(X)]=\left[\mathcal{W}_{T}(X): \mathcal{C}_{T}(X)\right] .
$$

Proof (2): Recalling relation (2) in the proof of Proposition 3.1, set

$$
\forall I \in \mathcal{I}^{\Sigma} \quad \mathcal{P}^{I}=\left\{L=\sum_{j=1}^{n+r} a_{j} D_{j} \in \mathcal{W}_{T}(X) \mid \exists \mathbf{m} \in M: \forall j \notin I \mathbf{m} \cdot \mathbf{v}_{j}=a_{j}\right\}
$$

Then \mathcal{P}^{I} contains $\operatorname{Im}\left(\operatorname{div}_{X}: M \rightarrow \mathcal{W}_{T}(X)\right)=\mathcal{L}_{c}\left(V^{T}\right)$ and a \mathbb{Z}-basis of \mathcal{P}^{I} is given by

$$
\left\{D_{j}, j \in I\right\} \cup\left\{\sum_{k=1}^{n+r} v_{i k} D_{k}, i=1, \ldots, n\right\},
$$

where $\left\{v_{i k}\right\}$ is the i th entry of \mathbf{v}_{k}, so giving the rows of the matrix \widetilde{V}_{I} defined in the statement. (3): By definition

$$
\operatorname{Pic}(X)=\operatorname{Im}\left(\mathcal{C}_{T}(X) \hookrightarrow \mathcal{W}_{T}(X) \xrightarrow{d_{X}} \mathrm{Cl}(X)\right)
$$

so that $\operatorname{Pic}(X)$ is generated by the image under $Q \oplus \Gamma$ of the transposed of the rows of C_{X}. Since $\operatorname{rk}\left(C_{X}\right)=n+r$ and $\operatorname{rk}(Q)=r$, the matrix $C_{X} \cdot Q^{T}$ has rank r and therefore its HNF has the last $n-r$ rows equal to zero. Therefore the rows of the matrix $A \cdot C_{X}$ provide a basis of $\mathcal{C}_{T}(X)$ in $\mathcal{W}_{T}(X)$ such that its last n rows are a basis of $\mathcal{L}_{r}(\widehat{V}) \cap \mathcal{C}_{T}(X)=\mathcal{L}_{r}(V)$. Since $\operatorname{Pic}(X)$ is free of rank r, it is freely generated by the images under d_{X} of the first r rows.
(6): A representative matrix of the torsion part $\tau_{X}: \mathcal{W}_{T}(X) \rightarrow \mathrm{Cl}(X)$ of the morphism d_{X} is any matrix satisfying the following properties:
(i) $\Gamma=\left(\gamma_{k j}\right)$ with $\gamma_{k j} \in \mathbb{Z} / \tau_{k} \mathbb{Z}$,
(ii) $\Gamma \cdot\left({ }^{r} U_{Q}\right)^{T}=\mathbf{0}_{s, r} \bmod \boldsymbol{\tau}$, meaning that Γ kills the generators of the free part $F \leq$ $\mathrm{Cl}(X)$ defined in display (4) of part 1 of [2, Thm. 3.2],
(iii) $\Gamma \cdot V^{T}=\mathbf{0}_{s, n} \bmod \boldsymbol{\tau}$, where V is a fan matrix satisfying condition 4.(b) in [2, Thm. 3.2]: this is due to the fact that the rows of V span $\operatorname{ker}\left(d_{X}\right)$,
(iv) $\Gamma \cdot\left({ }_{s} \widehat{V}\right)^{T}=\mathbf{I}_{s} \bmod \boldsymbol{\tau}$, since the rows of ${ }_{s} \widehat{V}$ give the generators of $\operatorname{Tors}(\mathrm{Cl}(X))$, as in display (6) of part 5 of [2, Thm. 3.2].

Therefore it suffices to show that the matrix $U_{G} \cdot{ }_{s} W$ in (3) satisfies the previous conditions (ii), (iii) and (iv) without any reduction $\bmod \boldsymbol{\tau}$, that is,

$$
U_{G} \cdot{ }_{s} W \cdot\left({ }^{n+r-s} U\right)^{T}=\mathbf{0}_{s, n+r-s}, \quad U_{G} \cdot{ }_{s} W \cdot\left({ }_{s} \widehat{V}\right)^{T}=\mathbf{I}_{s} .
$$

The first equation follows by the definition of W, in fact

$$
W \cdot\left({ }^{n+r-s} U\right)^{T}=\operatorname{HNF}\left(\left({ }^{n+r-s} U\right)^{T}\right)=\binom{\mathbf{I}_{n+r-s}}{\mathbf{0}_{s, n+r-s}} \Rightarrow{ }_{s} W \cdot\left({ }^{n+r-s} U\right)^{T}=\mathbf{0}_{s, n+r-s}
$$

The second equation follows by the definition of U_{G}, in fact

$$
U_{G} \cdot{ }_{s} W \cdot\left({ }_{s} \widehat{V}\right)^{T}=U_{G} \cdot G^{T}=\operatorname{HNF}\left(G^{T}\right)=\mathbf{I}_{s} .
$$

(7): Part (4) of [1, Thm. 2.9] gives that $\delta_{\Sigma} \mid[\mathrm{Cl}(Y): \operatorname{Pic}(Y)]=\left[\mathcal{W}_{T}(Y): \mathcal{C}_{T}(Y)\right]$. On the other hand, Proposition 3.1 gives that $\left[\mathcal{W}_{T}(Y): \mathcal{C}_{T}(Y)\right] \mid\left[\mathcal{W}_{T}(X): \mathcal{C}_{T}(X)\right]=[\mathrm{Cl}(X): \operatorname{Pic}(X)]$.

Considerations i, ii, iii, iv, v of [2, Rem. 3.3] still holds, while vi, vii and the remaining part of Remark 3.3 have to be replaced by the following

Remark 3.3 vi. apply procedure [1, § 1.2.3], based on the HNF algorithm, to get a $n+$ $r) \times(n+r)$ matrix C_{X} whose rows give a basis of $\mathcal{C}_{T}(X) \leq \mathcal{W}_{T}(X) \cong \mathbb{Z}^{|\Sigma(1)|}$;
vii. apply procedure described in part 6 of Theorem 3.2 to get a system of generators of $\operatorname{Pic}(X)$ in $\mathrm{Cl}(X)$. Precisely, let $A \in \mathrm{GL}_{n+r}(\mathbb{Z})$ be a switching matrix such that $\operatorname{HNF}\left(C_{X} \cdot Q^{T}\right)=A \cdot C_{X} \cdot Q^{T}$, and put

$$
\begin{equation*}
B_{X}={ }^{r}\left(A \cdot C_{X} \cdot Q^{T}\right), \quad \Theta_{X}={ }^{r}\left(A \cdot C_{X} \cdot \Gamma^{T}\right) \tag{4}
\end{equation*}
$$

Then the rows of the matrices B_{X} and Θ_{X} represent, respectively, the free part and the torsion part of a basis of $\operatorname{Pic}(X)$ in $\mathrm{Cl}(X)$, where the latter is identified to $\mathbb{Z}^{r} \oplus$ $\bigoplus_{k=1}^{s} \mathbb{Z} / \tau_{k} \mathbb{Z}$.

Moreover:

- recall that, for the universal 1-covering Y of X, once fixed the basis $\left\{\widehat{D}_{j}\right\}_{j=1}^{n+r}$ of $\mathcal{W}_{T}(Y) \cong \mathbb{Z}^{n+r}$ and the basis $\left\{d_{Y}\left(\widehat{L}_{i}\right)\right\}_{i=1}^{r}$ of $\mathrm{Cl}(Y) \cong \mathbb{Z}^{r}$, (see (11) in [1, Thm. 2.9]), one gets the following commutative diagram

where B_{Y} is the $r \times r$ matrix constructed in [1, Thm. 2.9(3)] and

$$
C_{Y}=\left(\begin{array}{cc}
B_{Y} & \mathbf{0}_{r, n} \\
\mathbf{0}_{n, r} & \mathbf{I}_{n}
\end{array}\right) \cdot U_{Q}=\binom{B_{Y} \cdot{ }^{r} U_{Q}}{\widehat{V}},
$$

- once fixed the basis $\left\{D_{j}\right\}_{j=1}^{n+r}$ for $\mathcal{W}_{T}(X) \cong \mathbb{Z}^{n+r}$ and the basis $\left\{d_{X}\left(L_{i}\right)\right\}_{i=1}^{r}$ of the free part $F \cong \mathbb{Z}^{r}$ of $\mathrm{Cl}(X)$, constructed in part 1 of [2, Thm. 3.2], one gets the following commutative diagram

Moreover:

- recall the following commutative diagram of short exact sequences

then, putting all together, one gets the following 3-dimensional commutative diagram

The Snake lemma implies

$$
\begin{aligned}
\operatorname{coker}\left(\beta^{T}\right) & \cong \operatorname{ker}(\bar{\alpha}) \cong \operatorname{Tors}(\mathrm{Cl}(X)) \\
\mathcal{K} & \cong \operatorname{coker}\left(\alpha_{\mid}\right) \cong \mathcal{C}_{T}(Y) / \mathcal{C}_{T}(X)
\end{aligned}
$$

so giving the following short exact sequences on torsion subgroups

For what concerns the examples given in section 5, considerations related with parts v , vi and vii of Remark 3.3 have to be replaced as follows

Example 5.1 v . A matrix $W \in \mathrm{GL}_{4}(\mathbb{Z})$ such that $\operatorname{HNF}\left(\left({ }^{3} U\right)^{T}\right)=W \cdot\left({ }^{3} U\right)^{T}$ is given by

$$
W=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & -2 \\
0 & 1 & -3 & 2 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

giving

$$
G:={ }_{1} \widehat{V} \cdot\left({ }_{1} W\right)^{T}=(1)
$$

Therefore

$$
\Gamma={ }_{1} W \quad \bmod 5=\left([0]_{5} \quad[4]_{5} \quad[2]_{5} \quad[1]_{5}\right) .
$$

Consequently display (16) in [2], giving the action of $\operatorname{Hom}\left(\operatorname{Tors}(\mathrm{Cl}(X)), \mathbb{C}^{*}\right) \cong \mu_{5}$ on $Y=\mathbb{P}^{3}$, should be replaced by the following (equivalent) one:

$$
\begin{align*}
\mu_{5} \times \mathbb{P}^{3} & \longrightarrow \\
\left(\varepsilon,\left[x_{1}: \ldots: x_{4}\right]\right) & \mapsto\left[x_{1}: \varepsilon^{4} x_{2}: \varepsilon^{2} x_{3}: \varepsilon x_{4}\right] . \tag{8}
\end{align*}
$$

vi. Applying procedure [1, § 1.2.3] as described in part 2 of Theorem 3.2, one gets a 4×4 matrix C_{X} whose rows give a basis of $\mathcal{C}_{T}(X)$ inside $\mathcal{W}_{T}(X) \cong \mathbb{Z}^{|\Sigma(1)|}$. Namely

$$
C_{X}=\left(\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
-3 & -3 & 1 & 0 \\
-2 & -4 & 0 & 1
\end{array}\right)
$$

meaning that

$$
\mathcal{C}_{T}(X)=\mathcal{L}\left(5 D_{1}, 5 D_{2},-3 D_{1}-3 D_{2}+D_{3},-2 D_{1}-4 D_{2}+D_{4}\right) .
$$

On the other hand, by part (3) of [1, Thm. 2.9], a basis of $\mathcal{C}_{T}(Y) \subseteq \mathcal{W}_{T}(Y)$ is given by the rows of

$$
C_{Y}=\mathbf{I}_{4} \cdot U_{Q}=U_{Q} \in \mathrm{GL}_{n}(\mathbb{Z})
$$

giving $\mathcal{C}_{T}(Y)=\mathcal{W}_{T}(Y)$, as expected for $Y=\mathbb{P}^{3}$.
vii. A basis of $\operatorname{Pic}(X)$ inside $\mathrm{Cl}(X)$ is then obtained by applying part 6 of Theorem 3.2. With the notation of Remark 3.3 vii, a switching matrix A such that $A \cdot C_{X} \cdot Q^{T}$ is in HNF is

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

so that

$$
\begin{aligned}
& B_{X}={ }^{1}\left(A \cdot C_{X} \cdot Q^{T}\right)=(5) \\
& \Theta_{X}={ }^{1}\left(A \cdot C_{X} \cdot \Gamma^{T}\right)=(0)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \operatorname{Pic}(X) \cong \mathbb{Z}\left[5 d_{X}\left(D_{1}\right)\right] \leq \mathbb{Z}\left[d_{X}\left(D_{1}\right)\right] \oplus \mathbb{Z} / 5 \mathbb{Z}\left[d_{X}\left(D_{3}-D_{4}\right)\right] \cong \mathrm{Cl}(X) \\
& \quad \Rightarrow \mathrm{Cl}(X) / \operatorname{Pic}(X) \cong \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} .
\end{aligned}
$$

Example 5.2 v . A matrix U as defined in part 6 of Theorem 3.2 is given by

$$
U=\binom{{ }^{2} U_{Q}}{\widehat{V}^{\prime}}=\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & 0 \\
-6 & 3 & 1 & 0 & 0 & 0 \\
521 & -251 & -168 & -2 & 14 & 28 \\
388 & -222 & -112 & 7 & 45 & 3 \\
-184 & 105 & 53 & -2 & -23 & -1 \\
191 & -109 & -55 & 2 & 24 & 1
\end{array}\right)
$$

A matrix $W \in \mathrm{GL}_{6}(\mathbb{Z})$ such that $\operatorname{HNF}\left(\left({ }^{4} U\right)^{T}\right)=W \cdot\left(\left({ }^{4} U\right)^{T}\right)$ is given by

$$
W=\left(\begin{array}{cccccc}
-57 & -115 & 3 & -549 & 17 & 0 \\
4 & 8 & 1 & 3 & 7 & 0 \\
-125 & -250 & 0 & -1090 & 14 & 0 \\
-170 & -340 & 0 & -1482 & 19 & 0 \\
-188 & -376 & 0 & -1639 & 21 & 0 \\
-126 & -252 & 0 & -1092 & 13 & 1
\end{array}\right)
$$

then

$$
G={ }_{2} \widehat{V}^{\prime} \cdot\left({ }_{2} W\right)^{T}=\left(\begin{array}{cc}
-2093 & -1392 \\
2302 & 1531
\end{array}\right)
$$

A matrix $U_{G} \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $\operatorname{HNF}\left(G^{T}\right)=U_{G} \cdot G^{T}$ is given by

$$
U_{G}=\left(\begin{array}{ll}
1531 & -2302 \\
1392 & -2093
\end{array}\right)
$$

hence giving

$$
\begin{aligned}
& \Gamma=U_{G} \cdot{ }_{2} W \\
& \bmod \tau \\
&=\left(\begin{array}{cccccc}
2224 & 4448 & 0 & 4475 & 2225 & -2302 \\
2022 & 4044 & 0 & 4068 & 2023 & -2093
\end{array}\right) \quad \bmod \binom{3}{15} \\
&=\left(\begin{array}{cccccc}
{[1]_{3}} & {[2]_{3}} & {[0]_{3}} & {[2]_{3}} & {[2]_{3}} & {[2]_{3}} \\
{[12]_{15}} & {[9]_{15}} & {[0]_{15}} & {[3]_{15}} & {[13]_{15}} & {[7]_{15}}
\end{array}\right)
\end{aligned}
$$

Consequently display (20) in [2] should be replaced by the following (equivalent) one

$$
\begin{align*}
& g\left(\left(\left(t_{1}, t_{2}\right), \varepsilon, \eta\right),\left(x_{1}, \ldots: x_{6}\right)\right) \tag{9}\\
& \quad:=\left(t_{1}^{2} t_{2} \varepsilon \eta^{12} x_{1}, t_{1}^{4} t_{2} \varepsilon^{2} \eta^{9} x_{2}, t_{1} t_{2}^{3} x_{3}, t_{1}^{5} t_{2}^{2} \varepsilon^{2} \eta^{3} x_{4}, t_{1}^{4} t_{2}^{3} \varepsilon^{2} \eta^{13} x_{5}, t_{1}^{3} t_{2}^{7} \varepsilon^{2} \eta^{7} x_{6}\right)
\end{align*}
$$

vi. Depending on the choice of the fan $\Sigma_{i} \in \mathcal{S F}(V)$, by applying procedure [1, § 1.2.3] as described in part 2 of Theorem 3.2, one gets a 6×6 matrix $C_{X, i}$ whose rows give a basis of $\mathcal{C}_{T}\left(X_{i}\right)$ inside $\mathcal{W}_{T}\left(X_{i}\right) \cong \mathbb{Z}^{\left|\Sigma_{i}(1)\right|}$. Namely

$$
C_{X, 1}=\left(\begin{array}{cccccc}
265926375 & 0 & 0 & 0 & 0 & 0 \\
-148978500 & 825 & 0 & 0 & 0 & 0 \\
-58474020 & -375 & 15 & 0 & 0 & 0 \\
37 & -18 & -7 & 1 & 0 & 0 \\
-58473933 & -417 & -3 & 0 & 3 & 0 \\
19 & -8 & -5 & 0 & -1 & 1
\end{array}\right)
$$

$$
\begin{aligned}
C_{X, 2} & =\left(\begin{array}{cccccc}
43543500 & 0 & 0 & 0 & 0 & 0 \\
-34716000 & 15 & 0 & 0 & 0 & 0 \\
-594165 & 0 & 30 & 0 & 0 & 0 \\
-34715963 & -3 & -7 & 1 & 0 & 0 \\
17655087 & -12 & -18 & 0 & 3 & 0 \\
19 & -8 & -5 & 0 & -1 & 1
\end{array}\right) \\
C_{X, 3} & =\left(\begin{array}{cccccc}
43543500 & 0 & 0 & 0 & 0 & 0 \\
-37009500 & 825 & 0 & 0 & 0 & 0 \\
-6534165 & -750 & 30 & 0 & 0 & 0 \\
37 & -18 & -7 & 1 & 0 & 0 \\
87 & -42 & -18 & 0 & 3 & 0 \\
19 & -8 & -5 & 0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

vii. A basis of $\operatorname{Pic}\left(X_{i}\right)$ inside $\mathrm{Cl}\left(X_{i}\right)$ is then obtained by applying part 6 of Theorem 3.2. For $i=1,2,3$, matrices A_{i} switching $C_{X_{i}} \cdot Q^{T}$ in Hermite normal form are, respectively,

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cccccc}
-351039 & -449987 & -449987 & 0 & 0 & 0 \\
-502913 & -644670 & -644670 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& A_{2}=\left(\begin{array}{cccccc}
-93838 & -117699 & 0 & 0 & 0 & 0 \\
-1157199 & -1451450 & 0 & 0 & 0 & 0 \\
4 & 5 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& A_{3}
\end{aligned}
$$

giving

$$
\begin{aligned}
& B_{X_{1}}={ }^{2}\left(A_{1} \cdot C_{X_{1}} \cdot Q^{T}\right)=\left(\begin{array}{cc}
825 & 185620050 \\
0 & 265926375
\end{array}\right) \\
& B_{X_{2}}={ }^{2}\left(A_{2} \cdot C_{X_{2}} \cdot Q^{T}\right)=\left(\begin{array}{cc}
60 & 1765515 \\
0 & 21771750
\end{array}\right) \\
& B_{X_{3}}={ }^{2}\left(A_{3} \cdot C_{X_{3}} \cdot Q^{T}\right)=\left(\begin{array}{cc}
3300 & 10016325 \\
0 & 21771750
\end{array}\right) \\
& \Theta_{X_{i}}={ }^{2}\left(A_{i} \cdot C_{X_{i}} \cdot \Gamma^{T}\right)=\left(\begin{array}{cc}
{[0]_{3}} & {[0]_{15}} \\
{[0]_{3}} & {[0]_{15}}
\end{array}\right), \text { for } i=1,2,3 .
\end{aligned}
$$

References

1. Rossi, M., Terracini, L.: Z-linear Gale duality and poly weighted spaces (PWS). Linear Algebra Appl. 495, 256-288 (2016). doi:10.1016/j.laa.2016.01.039. arXiv:1501.05244
2. Rossi, M., Terracini, L.: A \mathbb{Q}-factorial complete toric variety is a quotient of a poly weighted space. Ann. Mat. Pur. Appl. 196, 325-347 (2017). doi:10.1007/s10231-016-0574-7. arXiv:1502.00879

[^0]: The authors were partially supported by the MIUR-PRIN 2010-11 Research Funds "Geometria delle Varietà Algebriche." The first author is also supported by the I.N.D.A.M. as a member of the G.N.S.A.G.A.

[^1]: The online version of the original article can be found under doi:10.1007/s10231-016-0574-7.
 Lea Terracini
 lea.terracini@unito.it
 1 Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

