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Abstract: A vehicular ad hoc network (VANET) is the major element of the intelligent transportation
system (ITS). The purpose of ITS is to increase road safety and manage the movement of vehicles. ITS
is known as one of the main components of smart cities. As a result, there are critical challenges such
as routing in these networks. Recently, many scholars have worked on this challenge in VANET. They
have used machine learning techniques to learn the routing proceeding in the networks adaptively
and independently. In this paper, a Q-learning and fuzzy logic-based hierarchical routing protocol
(QFHR) is proposed for VANETs. This hierarchical routing technique consists of three main phases:
identifying traffic conditions, routing algorithm at the intersection level, and routing algorithm at the
road level. In the first phase, each roadside unit (RSU) stores a traffic table, which includes information
about the traffic conditions related to four road sections connected to the corresponding intersection.
Then, RSUs use a Q-learning-based routing method to discover the best path between different
intersections. Finally, vehicles in each road section use a fuzzy logic-based routing technique to
choose the foremost relay node. The simulation of QFHR has been executed on the network simulator
version 2 (NS2), and its results have been presented in comparison with IRQ, IV2XQ, QGrid, and
GPSR in two scenarios. The first scenario analyzes the result based on the packet sending rate (PSR).
In this scenario, QFHR gets better the packet delivery rate by 2.74%, 6.67%, 22.35%, and 29.98% and
decreases delay by 16.19%, 22.82%, 34.15%, and 59.51%, and lowers the number of hops by 6.74%,
20.09%, 2.68%, and 12.22% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively. However, it
increases the overhead by approximately 9.36% and 11.34% compared to IRQ and IV2XQ, respectively.
Moreover, the second scenario evaluates the results with regard to the signal transmission radius
(STR). In this scenario, QFHR increases PDR by 3.45%, 8%, 23.29%, and 26.17% and decreases delay by
19.86%, 34.26%, 44.09%, and 68.39% and reduces the number of hops by 14.13%, 32.58%, 7.71%, and
21.39% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively. However, it has higher overhead
than IRQ (11.26%) and IV2XQ (25%).

Keywords: vehicular ad hoc networks (VANETs); intelligent transportation system (ITS); routing;
reinforcement learning (RL); fuzzy logic; smart city
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1. Introduction

There is a great demand for vehicular ad hoc networks in which vehicles can communi-
cate with each other without any infrastructure. The purpose of these networks is to reduce
delays in traffic flow and improve driving quality. These networks have attracted the atten-
tion of universities and industries because they can improve road safety and provide many
services to drivers and travelers. VANET is the core of an intelligent transportation system
(ITS) [1,2]. It does not require an expensive infrastructure because wireless technology is
cheap and ubiquitous. In VANET, when vehicles have a direct connection with each other,
they create a vehicle-to-vehicle (V2V) connection. When vehicles interact with roadside
units (RSUs), they form a vehicle-to-infrastructure (V2I) connection. Over the past decade,
researchers have introduced various methodologies to provide better routing techniques in
VANET to avoid road accidents. For example, a vehicle can help other drivers and inform
them of an unexpected position so that drivers take appropriate action in response to this
event. This attractive feature is very important for making smart cities [3,4]. View Figure 1.
The smart city has no certain definition in the world. However, the motivation to build
such a city in different countries is to improve physical, social, and economic infrastructure.
In fact, a smart city is created when the city efficiently presents public services provided
by the government, increases the quality of services for citizens, and reduces government
costs. These programs will not only improve the life quality of citizens but also lead to
financial interests for the economy. Today, deploying a smart city requires a safe road that
includes road conditions, good mobility, vehicle safety, and easy access to the Internet to
provide drivers/passengers services and comfort [5,6].

Routing is a process for transferring packets between source and destination. In
VANET, routing depends on some factors, for example velocity, density, and movement di-
rection [7,8]. As a result, a challenging problem is to design a routing approach in vehicular
ad hoc networks. Thus, traditional routing protocols should be updated for the dynamic
environment of VANET [9,10]. When designing routing protocols in VANETs, some rout-
ing challenges include high dynamic topology, frequent disconnections, mobility model,
propagation model, communication environment, delay constraint, and quality of service
(QoS) requirements. Routing protocols in VANET are categorized as follows: topology-
based [11,12], geographic [12], hybrid [6,13], clustering-based [6,14], opportunistic [6,14],
and data fusion [11,14].

Recently, many scholars are working on the routing challenge in VANET. They have
used machine learning (ML) techniques to address the routing challenge in VANET adap-
tively and independently [15,16]. Reinforcement learning (RL) is the most efficient ML
techniques for deploying routing algorithms in VANET. This algorithm is popular due to
the trial and error technique [17,18]. In reinforcement learning-based routing, the agent
discovers the network by taking different actions to earn a routing policy [19,20]. To achieve
this goal, the agent must search for the best path in accordance with several criteria, which
are obtained from local information of nodes to reduce energy consumption and improve
network connections. However, in order to achieve an optimized routing technique, the
agent requires global information about the entire system.
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Figure 1. Intelligent transportation system (ITS) in smart city.

In this paper, a Q-learning and fuzzy logic-based hierarchical routing algorithm
(QFHR) is proposed in VANETs. In the method, the focus is on delay reduction in the
routing process. QFHR utilizes a hierarchical routing technique. In this scheme, RSUs use a
Q-learning-based routing operation to discover paths between different intersections in the
urban environment. In the existing Q-learning-based routing algorithms, researchers often
consider vehicles as the state space in Q-learning. Therefore, when increasing the density of
vehicles, the state space is dramatically increased in the routing algorithm. This affects the
convergence speed of this algorithm negatively. Therefore, QFHR considers intersections
as the state set to manage the convergence speed of the routing algorithm. On the other
hand, vehicles in each road segment use a fuzzy logic-based greedy routing technique to
choose the most suitable next-hop node. As a result, the main contributions of our work
are as follows:

• In QFHR, a traffic detection algorithm is presented for identifying the traffic status of
four road sections connected to each intersection. The algorithm provides new traffic
information for the Q-learning-based routing process and inform RSUs of the traffic
status in the network at any moment.

• In QFHR, a Q-learning-based routing scheme called the intersection-to-intersection
(I2I) routing algorithm is designed in accordance with a distributed strategy to obtain
the best route between different intersections using traffic information. Moreover,
The I2I routing algorithm manages network congestion and can quickly discover and
replace congested paths.

• In QFHR, a greedy routing technique is designed by vehicles to find the best route in
each road section. This algorithm addresses the local optimum issue using a fuzzy
path recovery algorithm.

In the following, the paper is organized as follows: Section 2 demonstrates the related
works. Section 3 explains reinforcement learning algorithms, especially Q-learning and
fuzzy logic because the proposed method utilizes these techniques for designing the routing
process. Section 4 introduces the network system applied in QFHR. Section 5 describes
QFHR in VANETs. In Section 6 evaluates the performance of QFHR based on packet
delivery rate, end-to-end delay, hop count, and routing overhead. Ultimately, Section 7
presents the conclusions of our paper.

2. Related Works

Sun et al. [21] have presented a position-based Q-learning routing (PbQR) scheme for
VANET. In this method, reliability and link stability are considered to choose relay nodes
in the data transmission operation. PbQR regards vehicles as the state set in the learning
algorithm. In this scheme, Hello messages are periodically exchanged between neighboring
nodes to share their information. PbQR applies Q-learning in the routing process. Thus, the
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agent always takes a greedy action, meaning that it always chooses the most suitable action,
which is available in Q-table. PbQR evaluates link quality based on two factors, namely
stability and continuity to choose the next-hop node. The continuity factor is defined based
on node degree. In this method, the reward function is equal to the sum of these factors in
each node. PbQR defines a distance factor to specify the distance from source to destination.
In Q-learning, the discount factor is implemented based on the distance factor.

Roh et al. [22] have offered the Q-learning-based load balancing routing (Q-LBR)
protocol in VANETs. It is a UAV-assisted routing protocol. Thus, it provides line-of-sight
(LOS) communications for ground vehicles. Q-LBR utilizes three mechanisms to balance
the load in the network. In the first mechanism, the authors have suggested an optimized
load estimation for ground vehicles. In this technique, ground vehicles disseminate hello
messages to transfer their buffer queue information to UAVs. In the second mechanism,
Q-learning is used to establish communication paths using a load-balancing manner. To
achieve this end, it defines a new concept called the UAV routing policy area (URPA).
Ultimately, the authors try to define a reward function that accelerates the convergence
speed related to the learning model. This approach introduces different packets for three
types of services, namely emergency, real-time, and connection-oriented. These messages
have various priorities, including high, medium, and low. Q-LBR involves two sections.
In the first section, UAV hears broadcast messages to collect the congestion conditions in
the ground vehicles. Then, it detects the congestion level in the ground network. URPA
information is broadcast in the second section. Q-LBR discovers paths similar to AODV and
DSR. It supports multipath routing. Thus, it can manage the number of routing messages
exchanged between nodes in the network.

Bi et al. [23] have introduced the reinforcement learning-based routing protocol in
clustered networks (RLRC) for electric vehicles. RLRC utilizes a clustering process to
divide the network into several clusters. RLRC uses an enhanced K-Harmonic Means
(KHM) for the clustering process and considers two factors, namely the energy of vehicles
and bandwidth when selecting the best cluster head (CH). KHM is another version of the
K-Means clustering method. This scheme considers the harmonic mean as an alternative
option instead of the minimum value. In the first step, it calculates partial derivatives
to achieve the best position for the centroid. In each iteration, the algorithm improves
the centroid. The clustering algorithm considers the relative distance to select CHs based
on the least distance to the neighbors. Non-CH nodes calculate the distance between
themselves and CHs and join the nearest CH. To reduce learning time, RLRC utilizes the
state-action-reward-state-action (SARSA) algorithm to enhance the routing process. It
regards the clustered network as the learning environment, and CHs play the agent role. In
RLRC, Hello messages are disseminated in the network to refresh Q-values. In the learning
algorithm, the reward function is defined with regard to the next-hop link state. It considers
three scales, including hop count, link condition, and available bandwidth for calculating
Q-values.

Yang et al. [24] have offered the heuristic Q-learning-based VANET routing (HQVR)
protocol. It selects the intermediate vehicles based on link reliability. This scheme uses a
distributed manner to implement the learning process based on the information extracted
from beacon messages. However, the authors have not taken into account the road width.
In this method, the convergence speed of the Q-learning algorithm is dependent on the
beacon packet rate. HQVR considers the link lifetime as the learning rate to determine the
convergence speed of the learning protocol. HQVR has a route discovery strategy, which
depends on delay information. When a node compares the new path and the old path in
terms of delay and realizes that the new path requires less time than the previous path, it
switches to the new path. Feedback messages find several routes to the destination. As a
result, the source vehicle chooses the best route among different paths.

Wu et al. [25] have offered the Q-learning-based VANET delay-tolerant routing
protocol (QVDRP) for VANET. This method uses several gateways to transfer data from
source to destination. In this method, RSUs play the gateway role to communicate with the
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cloud server. In QVDRP, vehicles disseminate their generated data to RSUs. This reduces
delay and maximizes packet delivery rate when transferring data from a node to another.
In QVDRP, the network is regarded as the learning system, and vehicles play the agent
role. In the learning operation, data is exchanged between nodes to select the next action
(i.e., the next-hop node). Each vehicle stores a Q-table, which involves Q-values of other
vehicles. In the learning operation, vehicles disseminate hello messages to refresh Q-table.
If the transmitter vehicle and the destination vehicle form a direct connection with each
other, this link receives a positive reward. If the previous-hop node receives a message
from another node after a threshold time, they obtain a discounted reward. Otherwise, its
default reward is adjusted to 0.75. QVDRP predicts the input and output directions in each
road segment to obtain a collision probability to reduce the duplicated packets.

Karp and Kung in [26] have designed the greedy perimeter stateless routing (GPSR) in
ad hoc networks. The greedy routing strategy utilizes the local information of single-hop
neighboring vehicles to deliver data packets through the nearest node to the destination.
GPSR is a position-based routing approach, which merges greedy and perimeter strategies.
It refreshes the neighbor table by exchanging beacon messages that increase routing over-
head. However, it has an acceptable routing overhead and delay. GPSR deals with some
limitations in the routing process in VANET because it ignores parameters such as delay,
node speed, and movement direction.

Li et al. in [27] have suggested the Q-learning and grid-based routing protocol (QGrid)
for VANETs. This protocol divides the network environment into several grids. Then, the
Q-learning algorithm learns traffic flow to select the optimal grid based on Q-values. In
each grid, the relay node is selected based on two techniques namely the greedy method
and the second-order Markov chain prediction technique. In QGrid, the packet delivery
issue from a vehicle to a fixed destination is investigated. In the routing process between
different grids, a set of grids with the maximum Q-value is chosen. When increasing the
number of packets on the network, this method has not suggested any mechanism for
controlling network congestion. In addition, intersections and buildings may disrupt the
data transfer process in urban areas. However, this issue has not been addressed in QGrid.
Moreover, this method designs an off-line Q-table, which is fixed throughout the simulation
process. Thus, QGrid cannot control the network load.

Lou et al. in [28] have suggested the intersection-based V2X routing via Q-learning
(IV2XQ) for VANET. This hierarchical routing scheme uses a Q-learning-based routing
algorithm at the intersection level to select the best routes between intersections. In IV2XQ,
road intersections are regarded as the state space, and the road segments are considered as
the action space. Thus, IV2XQ reduces the number of states in the Q-learning algorithm
and improves its convergence speed. Moreover, vehicles use a greedy technique to choose
the relay node based on the positions of vehicles in the road segments. In addition, one
important task of RSUs is to monitor the network status to control congestion in the
network. IV2XQ does not use any control packet for finding routes. Thus, it has low
routing overhead and delay because IV2XQ only uses historical traffic information in the
reinforcement learning-based routing process. However, it is very important to consider
new information in the routing decisions.

Khan et al. in [29] have presented an intersection-based routing method using Q-
learning (IRQ) in VANETs. This scheme defines two global and local views and proposes
a traffic dissemination mechanism to create these views. This mechanism helps IRQ to
update traffic information and provide a new and fresh global view for the network server.
The global view is used for designing a Q-learning-based routing technique. This RL-based
routing method finds the best routes between intersections and is executed by the central
server. In the Q-leaning algorithm, the discount factor is determined dynamically based
on distance and vehicle density in each road section. Thus, IRQ is compatible with the
dynamic environment of VANET. IRQ introduces an evaluation mechanism to detect and
penalize congested paths. This improves the packet delivery rate. The local view is used
for designing a greedy routing strategy on each road segment to discover the best next-
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hop node. It considers the vehicle status, including location, distance, connection time,
and delay.

Table 1 expresses briefly the strengths and weaknesses of the related works.

Table 1. The strengths and weaknesses of the related works.

Method Strengths Weaknesses

PbQR [21] Stability of communication links,
improving packet transmission
rate, reducing delay in the rout-
ing process, high scalability

Applying a greedy approach to ob-
tain Q-value from Q-table, high de-
pendence on RSU, not considering
traffic lights as warning signs

Q-LBR [22] Low routing overhead, high
packet transmission rate, stabil-
ity of communication links, suit-
able for urban areas during natu-
ral disasters, high scalability

Not considering a mechanism for
adding drones to the network, not
providing techniques to calculate the
optimal height of drones, not speci-
fying the number of drones

RLRC [23] Considering the optimal energy
consumption in electric vehicles,
using SARSA for optimizing the
routing process, scalability

High bandwidth consumption, high
delay, low throughput, not paying
attention to motion direction

HQVR [24] Determining the learning rate
based on the link quality, increas-
ing packet delivery rate, reduc-
ing the effect of the node mobil-
ity on the convergence speed of
Q-learning algorithm, low depen-
dence on infrastructure (RSUs)

High dependence of Q-learning al-
gorithm to beacon messages, slow
convergence speed of the learning
algorithm, applying an exploration
technique based on a specific proba-
bility

QVDRP [25] High delay-tolerant, increasing
packet delivery rate, reducing
the number of duplicated control
messages, considering relative ve-
locity of vehicles

Slow convergence speed of the learn-
ing algorithm

GPSR [26] Reducing routing overhead, re-
ducing delay in the network

Not considering factors, like veloc-
ity, movement direction, and link life-
time in the routing process

QGrid [27] Reducing the number of states in
Q-learning algorithm, appropri-
ate convergence speed, reducing
communication overhead, deter-
mining the discount factor based
on vehicle density

Designing an off-line routing, not de-
signing a congestion control mecha-
nism in the network, fixing Q-table
during the simulation process, not
considering the effect of intersections
and buildings on the transmission
quality in each grid, not consider-
ing parameters such as speed, move-
ment direction, and link lifetime in
the routing process, introducing a
centralized reinforcement learning-
based routing algorithm
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Table 1. Cont.

Method Strengths Weaknesses

IV2XQ [28] Determining the discount factor
with regard to the density and
distance of vehicles on the road
section, reducing communication
overhead, designing a congestion
control mechanism, appropriate
convergence speed, reducing the
number of states in the Q-learning
algorithm

Not considering factors, like speed,
movement direction, and link life-
time in the routing process, not rely-
ing on new traffic information in the
network, introducing a centralized
reinforcement learning-based rout-
ing algorithm

IRQ [29] Adjusting the discount factor with
regard to the vehicle density and
distance, high PDR, reducing la-
tency in the routing process, pre-
senting a evaluation mechanism
for controlling the congested paths,
suitable convergence speed, reduc-
ing the number of states in the
Q-learning algorithm, considering
new traffic information in the net-
work

High routing overhead, introducing
a centralized reinforcement learning-
based routing algorithm

3. Base Concepts

In this section, two techniques, namely the Q-learning algorithm and the fuzzy logic,
are briefly explained because QFHR uses these techniques to find the best route in the data
transmission process in VANET.

3.1. Reinforcement Learning

In artificial intelligence (AI), there is an important and useful tool called reinforcement
learning (RL), which defines two main components, agent and environment. The agent
chooses an action to interact with the environment. The aim of this interaction is to
achieve an optimal solution for a certain issue. RL supports a specific framework called
the Markov decision process (MDP) for solving optimization issues [30,31]. MDP manages
the optimization problem using a random manner and defines four parameters such
as (S, A, p, r). The first parameter is S and indicates the finite state space. The second
parameter (i.e., A) is the finite action space. The third parameter (i.e., P) represents the
transition function. This function determines the next state s

′
after doing the action a in the

current state s. The last parameter is r, which indicates the reward function in the learning
issue. This function determines the reward obtained from the learning environment after
taking the action at by the agent in the state st. Note that t indicates time. Figure 2 displays
reinforcement learning. In this process, the agent searches the environment by taking
the action at in the current state st. Now, the environment calculates the reward value (r)
and the next state st+1 by considering the performed action and the current state. The
purpose of this learning framework is to reach the most suitable policy π and achieve the
maximum reward. The long-term purpose of the agent is to boost the expected discounted

reward (i.e., max
[

T
∑

t=0
δrt(st, π(st))

]
). δ illustrates the discount factor and indicates the

effect of the reward on the Q-value. It is adjustable in [0, 1]. If δ = 1, the agent is only
dependent on previous experiences. In contrast, if δ = 0, the agent considers only the last
immediate reward received from the environment [30,31]. After determining reward values
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and transition probabilities, the Q-value is obtained from the Bellman function presented
in Equation (1):

Q(st, at) = (1− α)Q(st, at) + α[r + δ(max Q(st+1, at))] (1)

Figure 2. Reinforcement learning process.

In the Bellman equation, α is the learning rate. It is adjustable in [0, 1] and creates a
tradeoff between exploration and exploitation. It determines whether the agent focuses
on new or old information. If α = 0, the agent does not learn any new knowledge, and if
α = 1, the agent only regards the last information.

The most efficient RL technique is Q-learning. In this technique, the agent explores an
unknown environment using a trial and error technique. In this method, the agent stores a
Q-table, which includes the optimal state-action pairs and corresponding Q-values. The
Q-learning algorithm must maximize Q-value by adjusting the action selection process
in accordance to the reward received from the environment and evaluating the selected
action in the current state. In each iteration, the Q-learning algorithm refreshes Q-values
according to Equation (1). Next, the agent exploits the environment and selects actions
with maximum Q-value. This scheme is called ε-greedy, which defines a probability value
(ε) for the exploration or exploitation processes [32,33].

3.2. Fuzzy Logic

Researchers’ studies show that real and complicated processes cannot be modeled,
measured, or managed accurately because they include various uncertainties such as
uncompleted data, random data, noise data, outliers, and data loss. A robust solution
for solving this issue is to use a useful mathematical technique called fuzzy logic (FL).
It can describe human thinking in an approximate manner. Zadeh first introduced this
theory in 1965. Note that the classical set theory presents a precise and certain definition of
membership. Based on this definition, an element either belongs to a set or not. In contrast,
the fuzzy theory emphasizes a novel concept called partial membership [34,35]. According
to this concept, an element may partly be belonging to a set. Thus, the results are not right
or wrong absolutely.

In the fuzzy theory, assume that X indicates a reference set, which includes a set of
elements such as x. In this mode, Equation (2) defines the fuzzy set (i.e., A) based on X.

A = {(x, µA(x))|x ∈ X} =
n

∑
i=1

µA(xi)/xi (2)

where, µA : X → [0, 1] means the membership function (MF). It determines the membership
degree (i.e., µA(xi)) for each element (i.e., x) in A. “/” is a symbol for separating µA(xi)
from x. Note that MF is a key component in fuzzy sets. For example, the triangular function,
trapezoidal function, and Gaussian function are known as the most common MFs.

Today, various applications utilize fuzzy inference mechanisms (FIMs) to improve their
performance. The most famous FIMs are Mamdani and Sugeno (TSK). In each fuzzy system,
there are four main parts, including the fuzzifier, defuzzifier, rule base, and fuzzy engine.
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The fuzzifier produces fuzzy inputs based on crisp values and allocates a membership
degree to each element using the defined membership functions. The fuzzy engine uses
fuzzy rules stored in the rule base to simulate fuzzy inputs. Finally, the results obtained
from the fuzzy engine are converted to crisp values using the defuzzifier. The most common
defuzzification techniques are averaging and centroid [35,36].

4. Network Model

In QFHR, the network environment consists of various intersections, which are con-
nected to one another through two-way roads. Furthermore, QFHR defines both communi-
cation links namely vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Network
elements, like road sections, intersections, roadside units (RSUs), and vehicles have a
unique ID. Figure 3 displays this network model. In the following, the task of vehicles and
RSUs in the network is explained:

• Roadside units (RSUs): These components are located at intersections, and their task
is to monitor the network and control congestion in each road section. RSUs store
a traffic table to record the traffic status of the four road sections connected to the
corresponding intersection. This table is periodically updated. Moreover, each RSU
holds a Q-table produced by the Q-learning-based routing algorithm to select the best
routes between different intersections on the network.

• Vehicles: Each vehicle periodically sends a hello message to its neighboring nodes.
These vehicles establish a neighbor table in their memory to store information about
neighboring nodes. Additionally, they can achieve their position and speed at any
time using a positioning system.

Figure 3. Network model in QFHR.

5. Proposed Method

In this paper, a Q-learning and fuzzy logic-based hierarchical routing method (QFHR)
is proposed in vehicular ad hoc networks. At each intersection, RSUs use a Q-learning-
based routing algorithm to obtain the most suitable path between different intersections on
the network. Furthermore, vehicles use a fuzzy logic-based routing technique to find the
next relay in each road section. QFHR consists of three main phases:

• Identifying traffic conditions;
• Routing algorithm at the intersection level;
• Routing algorithm at the road section level.
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5.1. Identifying Traffic Conditions

For knowing traffic conditions in each road section, QFHR presents a traffic detection
process in the network. Algorithm 1 offers a pseudo-code for identifying traffic conditions
in QFHR. In this process, each vehicle (such as Vehiclei, where i = 1, 2, ..., N and N represent
the number of vehicles) disseminates a hello packet to the neighbors periodically. In QFHR,
the hello broadcast time (τ) is equal to one second. The hello message includes vehicle ID
(IDi), road ID (IDR), queue status (Qi), vehicle location (xi, yi), and vehicle speed

(
vx,i, vy,i

)
.

Note that the vehicle speed is unchanged at the timeframe τ and is updated after receiving
each hello message. Vehiclei builds a neighbor table (Tableneighbori

) to record the information
about neighboring nodes. This operation is represented in Figure 4. If Vehiclei receives a
new hello packet, it searches the ID related to the packet in its neighbor table. If this ID is
in the table, Vehiclei updates the recorded information about this vehicle in its neighbor
table. Otherwise, it adds a new entry to this table and records the information about the
new vehicle. Table 2 shows the format of the neighbor table. In the following, various fields
of the table are explained:

Figure 4. Hello message broadcast.

Table 2. Neighbor table format.

Vehicle ID Road ID Spatial Coordinates Speed Queue Status Connection Quality Validity Time

IDj IDR
(
xj , yj

) (
vx,j , vy,j

)
Qj CQi,j VTj

• Vehicle ID: This field represents the identification of a neighboring vehicle in the road
section. After receiving a hello packet from a neighbors, Vehiclei searches its ID in its
neighbor table. If this ID is not available in the table, it adds a new entry to this table
and records this ID in the ”Vehicle ID” field.

• Road ID: This field is the identification of the road section corresponding to the
neighboring vehicle. Upon receiving a new hello message, Vehiclei refreshes the road
ID corresponding to the vehicle recorded in its neighbor table.

• Spatial coordinates: It indicates the position of a neighboring vehicle in the road
section and is updated after the time period τ.

• Speed: This field indicates the speed of the neighboring vehicle in the road section. It
is fixed at the time period τ and refreshed after receiving the new hello message.

• Queue status: Using this parameter, Vehiclei can detect the congestion level in the
neighboring vehicle. The queue status (Qj) is normalized using Equation (3).

Qj =
QLj

max QLj
(3)
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where, QLj and max QLj are the number of packets in the queue and maximum queue
length of Vehiclej, respectively.

• Connection quality: It represents the quality of the connection between Vehiclei and
Vehiclej. It is measured based on two parameters, namely the connection time and the
hello packet reception rate. Section 5.1.1 describes how to calculate this parameter in
detail.

• Validity time: It is a time interval when this entry is valid in the neighbor table. After
receiving each new hello message from a vehicle, this time interval is refreshed. If the
new hello message is not received from the vehicle, the entry related to the vehicle
will be removed from the neighbor table after ending the validity time.

5.1.1. Calculating the Connection Quality of Two Vehicles

In QFHR, the quality of the connection between Vehiclei and Vehiclej, namely CQi,j,
is evaluated with regard to two factors, namely the connection time and the hello packet
reception rate because the connection time indicates the stability of the link between the two
nodes and the packet reception rate also evaluates their connection quality. It is difficult to
calculate the connection quality because the nodes are mobile. In the proposed method,
CQi,j is obtained from the weighted mean of two parameters, including the connection
time of Vehiclei and Vehiclej (i.e., λij) and the hello packet reception rate (i.e., ηij) based on
Equation (4):

CQi,j =
ω1λij + (1−ω1)ηij

∑
Vehiclej∈Neighbori

(
ω1λij + (1−ω1)ηij

) (4)

So, Neighbori represents the neighbors of Vehiclei. Moreover, ω1 is a weight coefficient
and 0 ≤ ω1 ≤ 1.

In the following, we demonstrate how to obtain the connection time (λij) and the hello
reception rate (ηij).

• Connection time (λij): The connection time of Vehiclei and Vehiclej is evaluated by
Equation (5):

λij =

( R−dij
∆Vij

)
Tmax

(5)

where, R is the communication radius of vehicles, dij =
√(

xi − xj
)2

+
(
yi − yj

)2

is the Euclidean distance between the two vehicles and ∆Vij =
∣∣vi − vj

∣∣ expresses
the relative speed of Vehiclej with regard to Vehiclei. Moreover, (xi, yi) and

(
xj, yj

)
represent the spatial coordinates of Vehiclei and Vehiclej, respectively. In addition, vi
and vj are their speed. Tmax is the maximum connection time, which is a fixed value
determined based on the simulation time. To accurately estimate the connection time
in the dynamic environment of VANET, two configuration coefficients are added to
Equation (6). As a result:

λij =

(
R−α1dij

|vi−α2vj|

)
Tmax

(6)

where, α1 and α2 are the configuration coefficients that are determined as follows:

• If Vehiclei and Vehiclej move at a similar direction (i.e., 0 ≤ ∆θij ≤ π
3 , so that ∆θij

is the movement direction of Vehiclej with regard to Vehiclei), then α2 = 1. Now if
Vehiclei is ahead of Vehiclej, then α1 = 1. Otherwise, α1 = −1. See Figure 5.
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Figure 5. The movement of vehicles in the same direction (a) Vehiclei is ahead of Vehiclej. (b) Vehiclei

is behind Vehiclej.

• If Vehiclei and Vehiclej move in the opposite direction (i.e., 2π
3 ≤ ∆θij ≤ π) then,

α2 = −1. Now, if Vehiclei approaches Vehiclej, then α1 = −1. Otherwise, α1 = 1. See
Figure 6.
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Figure 6. The movement of vehicles in the opposite direction (a) Vehiclei approaches Vehiclej. (b)
Vehiclei gets away from Vehiclej.

In addition, ∆θij is obtained from Equation (7):

∆θij = cos−1

(
vx,ivx,j+vy,ivy,j√

(vx,i)
2
+(vy,i)

2×
√
(vx,j)

2
+(vy,j)

2

)
,

0 ≤ ∆θij ≤ π

(7)

where
(
vx,i, vy,i

)
and

(
vx,j, vy,j

)
are the velocity vectors of Vehiclei and Vehiclej, respectively.

Then, each vehicle updates the connection time (λij) using the approach of window
mean with exponentially weighted moving average (WMEWMA).

WMEWMA is an EWMA-based estimator that approximates the average value. It uses
the linear combination of a limited exponentially weighed history [37,38]. Equation (8) is
used to calculate this estimation recursively:

WMEWMAt = β
(

WMEWMAt−1
)
+ (1− β)Xt (8)
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where Xt is the value of X at the moment t. Note that Equation (8) can be rewritten as
Equation (9):

X(l) = β

t−1
∑

k=t−Lwindow

Xk

Lwindow
+ (1− β)Xt (9)

WMEWMA has two control parameters, namely window size (Lwindow) and the control
coefficient β so that 0 ≤ β ≤ 1. Each window records the last Lwindow values. When β has a
higher value, this estimation is more dependent on historical values. This means that the
estimation is more stable. In contrast, if β = 0, the average value depends only on the last
value. This scale can create a stable estimation and is calculated easily.

• Hello packet reception rate (ηij): The quality of the link between Vehiclei and Vehiclej
is measured based on the ratio of the hello packages received by Vehiclei to all hello
packets transmitted by Vehiclej at the time interval Φ. Each node uses a counter to
count the number of hello messages received from its neighbors. Moreover, the hello
broadcast time is equal to the specified time frame τ. As a result, the number of hello
messages sent by Vehiclej can be calculated in a certain time Φ. Therefore, each vehicle
can calculate the hello reception rate according to Equation (10):

ηij =
∑t∈Φ Rhello(i, j)
∑t∈Φ Shello(i, j)

(10)

where Rhello(i, j) and Shello(i, j) are equal to the number of received hello messages and
the number of sent hello messages, respectively. Then, each vehicle uses Equation (9)
to refresh the hello reception rate (ηij) using the WMEWMA method.

5.1.2. Forming a Traffic Table

To know the network status, each RSU holds two tables in its memory. In the following,
each table is demonstrated exactly.

• Neighbor table (Tableneighbor): It contains information about neighboring vehicles.
The format of this table is presented in Section 5.1. After receiving new hello messages
from vehicles in different road sections, RSU searches their IDs in its neighbor table. If
these IDs are in the table, RSU updates the recorded information about these vehicles
in its neighbor table. Otherwise, RSU adds new entries to this table to record the
information about new vehicles.

• Traffic table (Tabletraffic): It indicates traffic conditions on the roads connected to
the intersection related to RSU. The format of Tabletra f f ic is presented in Table 3.
Tabletra f f ic is periodically refreshed every five seconds (TTR = 5 s) because traffic
status information at the road level does not change before this time period. Tabletra f f ic
includes various fields explained as follows.

– Road ID: Each intersection is connected to the four road sections: the northern
road, the southern road, the eastern road, and the western road. The road ID is
obtained from the neighbor table.

– Road length: Each RSU (such as RSUm) is aware of its location and the position
of its neighboring RSUs (such as RSUn) at adjacent intersections. Therefore, it
can calculate the road length using Equation (11):

LR =

√
(xn − xm)

2 + (yn − ym)
2 (11)

where (xm, ym) and (xn, yn) are spatial coordinates of RSUm and RSUn, respec-
tively.

– Average road time (TR): This field represents the average time required to travel
the road section. RSU estimates TR using Equation (12), which considers two
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scales, the road length (LR) and the average speed of neighbors in this road
section:

TR =
LR

nR
∑

i=1
Vi

nR


(12)

where Vi is the speed of the neighbors obtained from the neighbor table and nR
is all number of vehicles on the road section. RSU uses the WMEWMA scheme
to update TR using Equation (9) in each road section.

– Vehicle density (DR): This field represents the number of available vehicles in
a road section (i.e., northern, southern, eastern, or western road sections). It
is obtained from the neighbor table. To update DR, RSU uses the WMEWMA
method in Equation (9).

– Congestion status (QR): The value of this field corresponds to the average queue
status of vehicles in the road section. It is achieved from the neighbor table:

QR =

nR
∑

i=1
Qi

nR
(13)

Note that RSU refreshes this parameter in the traffic table using the WMEWMA
scheme in Equation (9).

– Average connection quality (CQR): This field represents the average connection
quality of vehicles (i.e., CQi,j) in each road section. It can be calculated based on
Equation (14) and recorded in the traffic table.

CQR =
2

nR(nR + 1)

nR−1

∑
i=1

nR

∑
j=i+1

CQi,j (14)

where nR is all number of vehicles in the road section R. RSU uses the WMEWMA
to update CQR in the traffic table using Equation (9).

– Validity time (VTR): This field represents the time interval that this entry is
valid in the traffic table.

Table 3. Traffic table format.

Road ID Road
Length

Average Road
Time

Vehicle Density Congestion Sta-
tus

Average Connec-
tion Quality

Validity
Time

RNorth Northern
road
length

Average northern
road time

The number of ve-
hicles in the north-
ern road

Average conges-
tion status in the
northern road

Average connec-
tion quality in the
northern road

VTRNorth

RSouth Southern
road
length

Average southern
road time

The number of ve-
hicles in the south-
ern road

Average conges-
tion status in the
southern road

Average connec-
tion quality in the
southern road

VTRSouth

REast Eastern
road
length

Average eastern
road time

The number of ve-
hicles in the east-
ern road

Average conges-
tion status in the
eastern road

Average connec-
tion quality in the
eastern road

VTREast

RWest Western
road
length

Average western
road time

The number of ve-
hicles in the west-
ern road

Average conges-
tion status in the
western road

Average connec-
tion quality in the
western road

VTRWest
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Algorithm 1 Traffic condition detection

Input: Vehiclei, i = 1, . . . , N
N: Total number of vehicles.
Ni: The number of neighbors of Vehiclei.
τ: Hello broadcast interval
TTR: Traffic status update time
Hello message
RSUk, k = 1, . . . , NR
NR: All number of RSUs.

Output: Tableneighbor
Tabletra f f ic

Begin
1: for i = 1 to N do
2: if τ = 1 then
3: Vehiclei: Broadcast a Hello message to the neighboring vehicles;
4: end if
5: for j = 1 to Ni do
6: if Vehiclei receives a Hello message from Vehiclej then
7: Vehiclei: Compare the ID of Vehiclej with IDs recorded into Tableneighbor;
8: if Vehiclei finds IDj in Tableneighbor then
9: Vehiclei: Update IDR,

(
xj, yj

)
,
(
vx,j, vy,j

)
, Qj, CQi,j, and VTj into Tableneighbor;

10: else
11: Vehiclei: Add a new entry to Tableneighbor;
12: Vehiclei: Calculate CQi,j using Equation (4);
13: Vehiclei: Insert IDj, IDR, (xi, yi),

(
vx,i, vy,i

)
, Qj, CQi,j, and VTj into

Tableneighbor;
14: end if
15: end if
16: end for
17: for k = 1 to NR do
18: if RSUk receives a Hello message from Vehiclej then
19: Vehiclei: Compare the ID of Vehiclej with IDs recorded into Tableneighbor;
20: if RSUk finds IDj in Tableneighbor then
21: RSUk: Update IDR,

(
xj, yj

)
,
(
vx,j, vy,j

)
, Qj, CQi,j, and VTj into Tableneighbor;

22: else
23: RSUk: Add a new entry to Tableneighbor;
24: RSUk: Compute CQi,j using Equation (4);
25: RSUk: Insert IDj, IDR, (xi, yi),

(
vx,i, vy,i

)
, Qj, CQi,j, and VTj into Tableneighbor;

26: end if
27: end if
28: end for
29: end for
30: for k = 1 to NR do
31: if TTR = 5 then
32: RSUk: Extract the ID of the related road (RNorth, RSouth, REast, and RWest) from

Tableneighbor;
33: RSUk: Insert the ID of the related road into Tabletra f f ic;
34: RSUk: Calculate the road length (LR) using Equation (11);
35: RSUk: Compute the road travel time (TR) based on Equation (12);
36: RSUk: Compute the road congestion (QR) based on Equation (13);
37: RSUk: Calculate the road connection quality (CQR) using Equation (14);
38: RSUk: Update LR, TR, DR, QR, and CQR using Equation (9) into Tabletra f f ic;
39: end if
40: end for

End
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5.2. Routing Algorithm at Intersection Level

In this routing process, the source vehicle first calculates the positions of itself and the
destination vehicle using GPS and a digital map. Then, it must specify two intersections
namely the source intersection and the destination intersection. Note that each road section
is connected to two intersections. Thus, the source vehicle should determine the source
intersection among the two intersections before starting the routing process. The source
vehicle selects the intersection that has less distance from the destination as the source
intersection (IntersectS). Moreover, the destination intersection should be determined
among two intersections connected to the destination road section. The destination vehicle
chooses the intersection that is closer to the source vehicle as the destination intersection
(IntersectD).

Now, the source vehicle must send the data to IntersectS by using the routing algo-
rithm at the road level described in Section 5.3. At this step, a Q-learning-based distributed
routing protocol is introduced to obtain the most suitable route between various intersec-
tions using traffic information. This algorithm is also called the intersection-to-intersection
(I2I) routing algorithm. Algorithm 2 describes the pseudo-code related to this routing
process in QFHR. In the I2I routing model, each message is the agent and the entire
network expresses the learning environment. The agent must discover the learning en-
vironment by performing different actions and experiencing various states. The state
space contains a set of intersections, namely I =

{
Interscet1, Intersect2, . . . , Interscetp

}
.

The action set represents the four road sections connected to each intersection, namely
Road = {RNorth, RSouth, REast, RWest}. See Figure 7. After selecting a road section, the
packets are sent from Intersectt

i to Intersectt+1
j . Now, the environment gives a reward to

the learning agent based on the reward function presented in Equation (15).

Rt =


Rmax, Intersectt+1

j is destination
Rmin, Intersectt+1

j is local minimum

DRcurrent (l)
max

R∈Intersecti
DR(l)

+
CQRcurrent (l)
max

R∈Intersecti
CQR(l)

+

(
1− QRcurrent (l)

max
R∈Intersecti

QR(l)

)
+

(
1− TRcurrent (l)

max
R∈Intersecti

TR(l)

)
, Otherwise

(15)

where DRcurrent(l), CQRcurrent(l), QRcurrent(l), and TRcurrent(l) are the density of vehicles, the
average connection quality, the average congestion status, and the average road time in
the current road section Rcurrent. Based on the reward function, if the selected intersection
is the desired intersection meaning that the packet reaches the destination intersection,
the corresponding road section achieves the maximum reward (Rmax). On the other hand,
when the next intersection is a local minimum, meaning that the selected intersection has
the minimum distance from the destination compared to other neighboring intersections, it
receives the minimum reward (Rmin). In other conditions, the reward function depends on
vehicle density, connection quality, congestion status, and road traveling time.

QFHR estimates the discount factor in accordance with the network conditions because
if this parameter is considered a constant value, the routing algorithm cannot adapt to the
dynamic network. In addition, QFHR empirically considers α as a default value (α = 0.1)
according to [28]. Moreover, the discount factor is calculated using Equation (16) based on
the two parameters, namely vehicle density and the distance to the destination:

δ =

(
DR(l)− min

R∈Intersecti
DR(l)

max
R∈Intersecti

DR(l)− min
R∈Intersecti

DR(l)

)

√(

xintersectt+1
−xD

)2
+
(

yintersectt+1
−yD

)2

√
(xintersectt−xD)

2
+(yintersectt−yD)

2

 (16)
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where DR(l) is the vehicle density on the current road.
(
xintersectt+1 , yintersectt+1

)
, (xintersectt ,

yintersectt), and (xD, yD) are the spatial coordinates of the current intersection (intersectt),
the next intersection (intersectt+1), and the destination, respectively.

After reviewing Equation (16), we find out that if the Euclidian distance between
intersectt+1 and the destination is less than that between intersectt and the destination,
and the corresponding road section includes a sufficient number of vehicles (i.e., it has a
suitable vehicle density), δ has a large value.

The agent must discover the network environment by performing different actions and
locating in various states. Thus, it calculates a Q-value for each action and the corresponding
state and maintains it in Q-table to be used in the routing decisions. After converging the
I2I routine algorithm, Q-table is stored in the memory of RSUs at the intersections. They
use this table to select the next intersection with the highest Q-value. Then, RSU sends
packets to the next intersection using the routing algorithm at the road level described in
Section 5.3. This process continues until packets reach the destination vehicle.

Figure 7. Different components in I2I routing model in QFHR.
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Algorithm 2 Q-learning-based routing algorithm (I2I routing)

Input: ε, α, γ: Q-learning parameters
I =

{
Interscet1, Intersect2, ..., Interscetp

}
Road = {RNorth, RSouth, REast, RWest}

Output: Q-table
Begin

1: while the convergence condition is not met do
2: for episode = 1 to M do
3: RSUk: Choose an intersection as initial state Intersectt

i ;
4: for t = 1 to N do
5: RSUk: Select a random number numrand in [0, 1];
6: if numrand ≤ ε then
7: RSUk: Choose an action from Road = {RNorth, RSouth, REast, RWest} ran-

domly;
8: else if numrand > ε then
9: RSUk: Choose the desired action with maximum Q-value from Q-table;

10: end if
11: if Intersectt+1

i is destination then
12: Rt = Rmax
13: else if Intersectt+1

i is a local minimum then
14: Rt = Rmin
15: else

16: Rt =
DRcurrent (l)
max

R∈Intersecti
DR(l)

+
CQRcurrent (l)
max

R∈Intersecti
CQR(l)

+

(
1− QRcurrent (l)

max
R∈Intersecti

QR(l)

)
+(

1− TRcurrent (l)
max

R∈Intersecti
TR(l)

)
17: end if
18: RSUk: Update Q-value in Q-table according to the reward value;
19: end for
20: end for
21: end while

End

5.3. Routing Algorithm at the Road Level

This section describes the QFHR routing algorithm at road sections. As stated in
Section 5.1, each vehicle shares its position, speed, and queue status through hello messages
with other neighboring vehicles. This information is stored in their neighbor table and used
in the routing process. In QFHR, the routing algorithm at the road level includes three
phases:

• Vehicle-to-vehicle (V2V) routing algorithm;
• Route recovery algorithm;
• Vehicle-to-infrastructure (V2I) routing algorithm.

In the following, each of these three phases is explained exactly.

5.3.1. Vehicle-to-Vehicle (V2V) Routing Algorithm

In QFHR, each vehicle utilizes a greedy routing technique to single out a relay vehicle
in the road section. Algorithm 3 shows the pseudo-code related to the V2V routing scheme.
If VehicleS wants to send a packet to VehicleD, this vehicle first determines the location of
VehicleD. There are three modes:

• First mode: VehicleS and VehicleD move on the same road section. In this case,
VehicleD is determined as a target point (PTarget).

• Second mode: VehicleS and VehicleD move in different road sections. VehicleS, which
means the source vehicle in this case, considers IntersectS as PTarget.
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• Third mode: VehicleS and VehicleD move in different road sections. VehicleS, which
is an intermediate vehicle in this case, considers the intersection obtained from
Algorithm 2 (i.e., Intersectt+1

j ) as PTarget.

Now, VehicleS checks its neighbor table to determine whether PTarget is its neighbor
or not. If PTarget is in the neighbor table, VehicleS send its data packet to PTarget directly.
Otherwise, VehicleS searches in its neighbor table to select the neighboring vehicle closest
to PTarget and sends data packets to this vehicle. If VehicleS fails to find a vehicle closer to
PTarget than itself, meaning that it deals with a local minimum issue. In this case, VehicleS
goes to the route recovery phase described in Section 5.3.2 to select the next-hop node.

5.3.2. Route Recovery Algorithm

In this phase, a fuzzy logic-based route recovery algorithm is implemented to evaluate
the chances of neighboring vehicles as the next hop node. The fuzzy logic-based route
recovery process involves the following parts:

Fuzzy Inputs

The fuzzy model includes three inputs:

• Distance to PTarget (di,target): VehicleS obtains the distance from a neighboring vehicle
(such as Vehiclei) to PTarget with regard to the information stored in the neighbor table
based on Equation (17). In this process, the vehicle that is closest to the destination
compared to other neighbors gains more chance to be selected as the relay vehicle.

di,target =

√(
xi − xtarget

)2
+
(
yi − ytarget

)2

LR
(17)

where (xi, yi) and
(
xtarget, ytarget

)
display the spatial coordinates of Vehiclei and PTarget,

respectively. Moreover, LR indicates the length of the road related to VehicleS. It is
calculated using Equation (11). The membership function chart of di,target is presented
in Figure 8a. It involves three states: low, medium, and high.

• Queue status (Qi): VehicleS extracts Qi for each neighboring vehicle (such as Vehiclei)
from the neighbor table. The purpose of this parameter is to lower the chance of
vehicles with high traffic being selected as the relay vehicle. See the membership
function chart of Qi in Figure 8b. This input considers three states: low, medium, and
high.

• Connection Quality (CQi,prev−hop): VehicleS calculates CQi,prev−hop for each neigh-
boring node (such as Vehiclei) using Equation (4) to be selected vehicle with the highest
connection quality as the relay vehicle. The membership function chart of CQi,prev−hop
is represented in Figure 8c. This input involves three states: low, medium, and high.
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Figure 8. Fuzzy inputs.

Fuzzy Output

In the fuzzy route recovery process, the fuzzy output (i.e., Si) determines the chances
of neighboring vehicles being selected as the relay vehicle. In the proposed fuzzy system, a
vehicle that has a short distance to PTarget and includes low traffic, and a high connection
quality compared to other neighboring vehicles, obtains a high chance to be selected as the
relay vehicle. See the diagram of the fuzzy membership function related to Si in Figure 9.
This fuzzy output consists of seven states: extremely low, very low, low, medium, high,
very high, and extremely high.

Figure 9. Fuzzy output.

Rule Base

Table 4 expresses the fuzzy rules introduced in the fuzzy route recovery algorithm.
For example, ”Rule 1” is defined below:

Rule 1: di,target is low AND Qi is low AND CQi,prev−hop is Low THEN Si is High.
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Table 4. Fuzzy rule base in proposed fuzzy system.

Fuzzy System Inputs Fuzzy System Output

Fuzzy Rules di,target Qi CQi,prev−hop Si

1 Low Low Low High

2 Low Low Medium Very high

3 Low Low High Extermely high

4 Low Medium Low Medium

5 Low Medium Medium High

6 Low Medium High Very high

7 Low High Low Low

8 Low High Medium Medium

9 Low High High High

10 Medium Low Low Medium

11 Medium Low Medium High

12 Medium Low High Very high

13 Medium Medium Low Low

14 Medium Medium Medium Medium

15 Medium Medium High High

16 Medium High Low Very low

17 Medium High Medium Low

18 Medium High High Medium

19 High Low Low Low

20 High Low Medium Medium

21 High Low High High

22 High Medium Low Very low

23 High Medium Medium Low

24 High Medium High Medium

25 High High Low Extermely low

26 High High Medium Very low

27 High High High Low
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Algorithm 3 V2V routing process

Input: VehicleS: Source vehicle or intermediate node
IntersectS: Source intersection
VehicleD: Destination vehicle

Output: Next-hop node
Begin

1: if VehicleS and VehicleD are on the same road section then
2: PTarget = VehicleD;
3: else if VehicleS is the source node then
4: PTarget = IntersectS;
5: else if VehicleS is the intermediate node then
6: PTarget = Intersectt+1

j that is obtained using Algorithm 2;
7: end if
8: VehicleS: Choose the nearest next-hop node to Target from its Tableneighbor;
9: if VehicleS cannot find the nearest next-hop node then

10: VehicleS: Calculate Si for all neighbors based on di,target, Qi, CQi,prev−hop using a
fuzzy system;

11: VehicleS: Choose the vehicle with maximum Si as the relay node;
12: end if
13: VehicleS: Transmit the packet to the relay vehicle;

End

5.3.3. Vehicle-to-Infrastructure (V2I) Routing Algorithm

In QFHR, when choosing the next-hop node in a road section, each vehicle uses a
greedy routing technique for transferring packets to the intersection area. Then, RSU
selects the next intersection by searching in Q-table calculated in the I2I routing algorithm
described in Section 5.2. At this step, each RSU employs a greedy strategy to send packets
to the related road section. In this case, there are two modes:

• First mode: VehicleD moves in this road section. In this case, VehicleD is determined
as a target point (PTarget).

• Second mode: VehicleD does not move in this road section. In this case, the next
intersection is considered as PTarget.

Now, RSU checks its neighbor table to determine whether PTarget is its neighbor or not.
If PTarget is in its neighbor table, the data packet is sent to PTarget directly. Otherwise, RSU
finds the vehicle closest to PTarget in its neighbor table and transfers the packet to it. If RSU
fails to find a vehicle to send the data packet, RSU stores this packet until it discovers the
next-hop vehicle.
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Algorithm 4 V2I routing process

Input: Intersecti: Intermediate intersection
IntersectD: Destination intersection
RSUi: RSU located in Intersecti
RSUD: RSU located in IntersectD
VehicleD: Destination vehicle

Output: Next-hop node
Begin

1: if the intersection is IntersectD then
2: PTarget = VehicleD;
3: else if the intersection is Intersecti then
4: PTarget = Intersectt+1

j that is obtained using Algorithm 2;
5: end if
6: if RSU is neighbor of PTarget then
7: RSU: Send the data packet to PTarget directly;
8: else
9: RSU: Find the closest relay node to PTarget from its Tableneighbor;

10: RSU: Send the packet to the relay node;
11: end if
12: if RSU cannot find the closest relay node to PTarget then
13: RSU: Carry the packet until it discovers an appropriate relay node;
14: while the buffer queue of RSU is not empty do
15: RSU: Check its Tableneighbor periodically;
16: if RSU finds a neighbor as the relay node then
17: RSU: Send the packet to the relay node;
18: end if
19: end while
20: end if

End

6. Simulates and Evaluation of Results

In this section, Network Simulator version 2 (NS2) [39] implements QFHR for evaluat-
ing its performance. When simulating QFHR, various parameters such as packet delivery
rate, delay, hop count, and routing overhead are analyzed. Next, the results are compared
with IRQ [29], IV2XQ [28], QGrid [27], and GPSR [26]. To achieve this goal, the dimensions
of the network are 3 km × 3 km. It has 38 two-way road sections and 24 intersections.
There are 5–20 vehicles in each kilometer. In the network, there are 450 vehicles whose
speed is 14 m per second. It is assumed that the communication range of each vehicle varies
between 250 and 300 m, and the communication range of each RSU is a fixed value (i.e.,
300 m). The simulation time is considered 1000 s. Help messages are broadcast in a fixed
time interval (1 s) and the packet sending rate is equal to 1–6 packets per second. Moreover,
the packet size is 512 bytes. In QFHR, the Q-learning algorithm has a fixed learning rate
(α = 0.1) and uses an ε-greedy strategy in the exploration and exploitation processes, so
that ε = 0.2. Table 5 describes the simulation parameters.
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Table 5. Simulation parameters.

Parameters Value

Network simulator NS2

Network size 3× 3 km2

Simulation time 1000 s

Vehicles 450

Road sections 38

Intersections 24

Vehicle density 0.005–0.02 (Vehicle/m)

Vehicle velocity 14 m/s

Communication range of vehicles 250–300 m

Communication range of RSUs 300 m

Packet size 512 byte

Packet sending rate 1–6 (Packet/s)

Hello broadcast period 1 s

Learning rate (α) 0.1

ε 0.2

6.1. Packet Delivery Rate (PDR)

Packet delivery rate (PDR) is defined as the ratio of packets received by the destination
nodes to all packets transferred by the source nodes. In the simulation process, two
scenarios are intended to evaluate the packet delivery rate. The purpose of the first scenario
is to calculate PDR based on the packet sending rate (PSR). As shown in Figure 10, when
PSR is high, PDR decreases in all methods and vice versa because the packet sending rate
indicates the number of packets produced in the network per time unit. Therefore, high PSR
increases the network load. In this case, the buffer capacity of vehicles is completed quickly,
and it is very likely that some data packets will be lost due to high network congestion.
Thus, PDR is reduced in the network. The purpose of the second scenario is to evaluate
the packet delivery rate according to the signal transmission radius (STR) of vehicles. As
shown in Figure 11, when STR is large, PDR will also increase because the number of
single-hop neighbors of each vehicle increases in this case, and a vehicle can cover a wider
communication range. In this case, vehicles have a higher chance to find a next-hop node.
This reduces the probability of the local optimum issue. According to Figures 10 and 11,
QFHR has an optimal PDR in comparison with other approaches. In Figure 10, which
shows the evaluation of PDR based on PSR, QFHR increases the packet delivery rate by
2.74%, 6.67%, 22.35%, and 29.98% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively.
Additionally, in Figure 11, which shows PDR based on STR, QFHR has improved PDR by
3.45%, 8%, 23.29%, and 26.17% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively.
This is mainly rooted in the fact that QFHR performs the Q-learning-based routing process
using a distributed manner to discover various paths between network intersections.
However, IRQ, IV2XQ, and QGrid present centralized routing processes. The distributed
routing method is more compatible with the dynamic environment of VANET and can
find routes with less delay and high connection quality in the network. Thus, it improves
the packet delivery rate. Moreover, if the network has high congestion, QFHR can quickly
discover this issue and replace the new path. However, IRQ selects the best route based
on traffic information from the central server. In this scheme, the central server should
wait for receiving traffic messages from RSUs to detect the congestion on the network.
However, this process causes a high delay and may lose some data packets on the network.
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Furthermore, in IV2XQ, the central server chooses the best route based on historical traffic
information stored in its memory, and the route selection process depends only on the
vehicle density in the road sections. In addition, QGrid selects the best gird (i.e., the gird
with maximum density) using a greedy routing process. However, the high-density grid is
not always desirable and may cause congestion on the network and packet loss. GPSR is a
greedy routing process and deals with the local minimum problem, which rises packet loss.

Figure 10. PDR in different approaches based on PSR.

Figure 11. PDR in different approaches based on STR.

6.2. Delay

End-to-end delay is defined as the time required for sending packets from the source
node to the destination node. The first scenario tests delay based on the packet sending
rate. It is displayed in Figure 12. According to this figure, high PSR leads to high delay in
all routing approaches because high PSR causes congestion in the network. As a result,
data packets wait longer in the buffer queue, meaning that the queuing delay increases.
Therefore, delay increases in the data transmission process. The second scenario evaluates
delay based on the signal transmission radius (STR) of vehicles. This is shown in Figure 13.
When STR is large, delay decreases in all methods because the number of hops is reduced
in the routing path. According to Figures 12 and 13, QFHR has the least delay compared
to other approaches. In Figure 12, the proposed scheme lowers delay by 16.19%, 22.82%,
34.15%, and 59.51%, compared to IRQ, IV2XQ, QGrid, and GPSR, respectively. Moreover, in
Figure 13, QFHR decreases delay by 19.86%, 34.26%, 44.09%, and 68.39% compared to IRQ,
IV2XQ, QGrid, and GPSR, respectively, because QFHR uses a distributed Q-learning-based
routing process to choose the next intersection with regard to road congestion status and
road connection quality. In addition, in the V2V routing process at each road section, a
fuzzy logic-based route recovery process is considered to obtain the next-hop vehicle in
accordance to the queue status and the connection quality of vehicles. These techniques
can prevent congestion in the network and lower delay in the operation. On the other
hand, IRQ, IV2XQ, and QGrid are centralized routing methods because the central server
performs the route discovery process and sends it to vehicles on the network. This boosts
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the delay in the packet transmission operation. Moreover, IRQ must periodically send
traffic messages to the central server to calculate routes based on these messages. This is
another factor in increasing delay in IRQ. Note that IRQ and IV2XQ are equipped with a
congestion control mechanism. Thus, they have an acceptable delay. However, QGrid has
not designed any congestion control mechanism on the network. This is the most important
reason for the high delay in this method. GPSR has also experienced the worst delay in
comparison with other methods because it involves the local optimum problem.

Figure 12. Average delay in different approaches according to PSR.

Figure 13. Average delay in different routing approaches according to STR.

6.3. Hop Count

Hop count is defined as the average number of intermediate nodes in the routing
path between the source node and the destination node. The first scenario evaluates the
number of hops based on the packet-sending rate. It is represented in Figure 14. Based
on this figure, we can deduce that the number of hops has a direct relationship with the
packet sending rate (PSR), meaning that high PSR leads to a high number of hops in
the routing path because high PSR causes congestion in the network and has a negative
impact on the routing process. QFHR has lowered the number of hops compared to IRQ,
IV2XQ, QGrid, and GPSR, by 6.74%, 20.09%, 2.68%, and 12.22%, respectively. The second
scenario evaluates the number of hops based on the signal transmission radius (STR). It is
represented in Figure 15. According to this figure, when STR has a large value, the number
of intermediate nodes in the path decreases. QFHR lowers the number of hops by 14.13%,
32.58%, 7.71%, and 21.39% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively.
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Figure 14. Average number of hops in different approaches with regard to PSR.

Figure 15. Average number of hops in different approaches with regard to STR.

6.4. Routing Overhead

Routing overhead is equal to the ratio of the total failed data packets in the data
transfer process and control packets in the route discovery and maintenance processes
to all the packets produced in the network. The first scenario tests the routing overhead
based on the packet sending rate. It is displayed in Figure 16. According to this figure,
there is a direct relationship between PSR and routing overhead, meaning that when the
packet sending rate goes up, the routing overhead increases because high PSR increases the
collision probability and the packet loss due to network congestion. As a result, the need
for retransferring packets increases, and it increases routing overhead. The second scenario
has evaluated the overhead in various methods based on the signal transmission radius
(STR), and its results are shown in Figure 17. This figure shows that high STR leads to low
overhead because the packet delivery rate is high, which reduces the need for retransferring
data packets. According to Figure 16, which evaluates the overhead based on PSR, QFHR
reduces the overhead by 30.23% and 41.4% compared to QGrid and GPSR, respectively.
However, the proposed method increases the overhead by approximately 9.36% and 11.34%
compared to IRQ and IV2XQ, respectively. Moreover, according to Figure 17, which shows
the overhead based on the signal transmission radius, QFHR decreases overhead by 21.99%
and 25.63% compared to QGrid and GPSR, respectively. However, it has a higher overhead
than IRQ (11.26%) and IV2XQ (25%). IV2XQ uses historical traffic information stored in the
server memory in the Q-learning-based routing process to discover paths between network
intersections, meaning that it does not exchange any control packet for discovering these
routes. As a result, the overhead is extremely low in this method. Whereas, in QFHR,
RSUs are responsible for discovering routes between intersections, and traffic information
is periodically updated. This has increased routing overhead in this scheme. GPSR has the
worst routing overhead due to the local optimum problem. QGrid also has high routing
overhead because it has not used any congestion mechanism. As a result, when increasing
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congestion in the network, packet loss increases. This increases the need for retransferring
data packets.

Figure 16. Routing overhead in different approaches based on PSR.

Figure 17. Routing overhead in different approaches based on STR.

7. Conclusions

In this paper, a Q-learning and fuzzy logic-based hierarchical routing approach (QFHR)
was suggested for VANETs. In the first step, a traffic identification algorithm was presented
so that each RSU obtains information about the traffic conditions of four roads connected
to its intersection. Next, each RSU uses this traffic information to design the Q-learning-
based routing algorithm to discover the most suitable path between different intersections.
In the last step, the routing algorithm at the road level was introduced. It is a greedy
routing algorithm that uses fuzzy logic to recover routes and solve the local optimum
problem. QFHR was implemented using NS2. Then, the results were compared with IRQ,
IV2XQ, QGrid, and GPSR in two scenarios. The first scenario analyzes the result based
on the packet sending rate (PSR). In this scenario, QFHR increases PDR by 2.74%, 6.67%,
22.35%, and 29.98% and reduces delay by 16.19%, 22.82%, 34.15%, and 59.51%, and lowers
the number of hops by 6.74%, 20.09%, 2.68%, and 12.22% compared with IRQ, IV2XQ,
QGrid, and GPSR, respectively. However, it increases the overhead by approximately 9.36%
and 11.34% compared to IRQ and IV2XQ, respectively. Additionally, the second scenario
evaluates the results with regard to the signal transmission radius (STR). In this scenario,
QFHR increases PDR by 3.45%, 8%, 23.29%, and 26.17% and decreases delay by 19.86%,
34.26%, 44.09%, and 68.39% and reduces the number of hops by 14.13%, 32.58%, 7.71%,
and 21.39% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively. However, it has
a higher overhead than IRQ (11.26%) and IV2XQ (25%). These results show that QFHR
has a good performance in terms of PDR, delay, and the number of hops. However, the
proposed method has a greater routing overhead than IRQ and IV2XQ. In future research
directions, our focus is on reducing the routing overhead in QFHR. This can be achieved in
two schemes: (1) Providing a clustering technique to increase scalability and reduce routing
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overhead and (2) adjusting the hello broadcast interval dynamically in accordance with
road traffic conditions.
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