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I. Introduction

Biological neurons have been found noisy both in the gen-

eration of spikes and in the transmission of synaptic signals.

The noise comes from the random openings of ion channels,

the quantal releases of neural transmitters, the coupling of

background neural activity, etc. [19], [25]. As the noise affects

neural computation directly, it has been of great interest to

study how neurons compute with noise reliably [24]. Interest-

ingly, many studies have indicated that noise plays a beneficial

role at least by:

1) inducing neuronal variability [7];

2) enhancing the sensitivity of neurons to environmental

stimuli [26];

3) inducing synchronization between neurons [1];

4) facilitating probabilistic inference according to the

Bayes’ rule in the brain [16].

The effect on synchrony could further relate to neural disor-

ders such as Parkinson’s disease [11] and hearing loss [4].

Understanding the effect of noise is thus crucial both for

computational neuroscience and for improving the treatments

to these neural diseases.

One major approach of theoretical studies is adding white

noise to the biologically plausible, deterministic Hodgkin-

Huxley (HH) model [12], either to the dynamics of gating vari-

ables of different ion channels, or to the dynamics of the mem-

brane potential [9], [20]. As a result, the neuronal dynamics

are modeled by stochastic differential equations (SDEs). This

leads to at least two challenges for computer-based studies.

First, the maximum number of neurons or SDEs a computer

simulation can consider is limited. Many simplified models

have thus been proposed [10], [13], However, the parameters

of these models no longer relate to real biophysical properties

directly, making it more difficult to extract parameter values,

or to understand how different parameters affect neuronal

behaviors. The second challenge is that the suggestions drawn

from theoretical studies are not easy to verify with biological

neurons, owing to the difficulty in manipulating a specific

property of biological neurons independently.

Contrary to computer simulation, analog circuits are in-

herently suitable for simulating differential equations in real-

time and in parallel [3]. By the merit of the natural, differen-

tial current–voltage relationship of a capacitor, noise-induced

stochastic dynamics can be simulated by simply applying a

noise current to the capacitor and measuring its corresponding

voltage dynamics. The hardware simulation further facilitates

the building of a hybrid network incorporating both very large

scale integrated (VLSI) and biological neurons, allowing the

network behavior to be studied efficiently by tuning the prop-

erties of VLSI neurons [15]. Therefore, this brief explores the

feasibility of simulating different types of stochastic neurons in

an analog VLSI system called the Pamina, which realizes the

conductance-based HH model and runs in biologically realistic

time [21].

II. Hodgkin-Huxley Model in VLSI

Fig. 1(a) shows the Pamina chip [21] containing two HH-

type neurons. Let CM represent the membrane capacitance,

and VM the membrane voltage. Each neuron implements the

formalism CM(dVM/dt) = −
∑

i Iion,i +
∑

j Isyn,j + Istim, where

Iion,i represents an ionic current, Isyn,j a synaptic current, and

Istim the stimulating input. The general form of Iion,i is given as

Iion,i = gi · xp
· yq

· (VM − Ei) (1)

where gi and Ei are the maximum conductance and the

reversal potential of the ionic current, respectively. x is the

gating variable modeling the fraction of ion channels that are

activated, while y the gating variable modeling the fraction

of ion channels that are inactivated. Let λ represent either x

or y. The dynamics of λ are guided by

τλ ·
dλ

dt
= λ∞(VM) − λ (2)

λ∞(VM) =
1

1 + exp(−(VM − Voff,λ)/Vslope,λ)
. (3)

The minus sign in front of (VM − Voff,λ) is omitted for the

inactivation variable y. τλ is the time constant for approaching

λ∞(VM). Although τλ is a function of VM in the original HH

model, it is a constant value in the Pamina chip to simplify

circuit design. Voff,λ and Vslope,λ control the offset and the

slope of the sigmoid function, respectively.

As shown in Fig. 1(b), each Pamina neuron contains five

ionic currents, eight synaptic inputs, and one stimulating input.

The five ionic conductances include the sodium current (INa),

the potassium current (IK), the leakage current (Ileak), the

calcium current (ICa), and the calcium-dependent potassium

current (IK(Ca)). (p, q) for ICa allows users to select between

(2, 1) and (1, 0), and the function m(VM, [Ca2+]) is realized in

accordance with [14]. For the synaptic current, the dynamics

of r(Vpre,j) also obey (2) and (3) with VM replaced by the pre-

synaptic potential Vpre,j [6]. As Isyn,j and Istim have the same

form as Iion,i, all the conductances are implemented with a

library of the analog operators detailed in [21]. Finally, Vstim

and Vpre,j are externally applied voltage.

The parameters of all the conductances are stored in the

analog parameter memory [Fig. 1(a)], and the types of con-

ductances or synapses connected to each neuron are controlled

by the digital data stored in the topology memory. By inte-

grating the Pamina chip with a field-programmable-gate-array

and data converters on a customized peripheral-component-

interconnect (PCI) card, the neurons can be configured and

recorded easily through C programming in a computer. Com-

pared to other conductance-based neurons in VLSI [8], [22],

the Pamina chip has the advantages that all neuronal parame-

ters are dynamically tunable over a wide range, together with

a flexible topology. These features make the chip particular

suitable for exploring the stochastic behaviors observed in

different biological neurons.
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Fig. 1. (a) Microphotograph of the Pamina chip fabricated with the 0.35 µm
BiCMOS technology by the Austriamicrosystems. The chip area is 4170 ×

3480 µm2. (b) Block diagram of a neuron.

III. Mapping Biological Models Into VLSI

A. Parameter Extraction

The minimal HH model proposed in [18] is of our particular

interests, as different classes of cortical and thalamic neurons

have been modeled satisfactorily with a minimal number of

ionic conductances. In addition, the conductance models in

[18] are similar to those implemented in the Pamina chip,

allowing most parameters to be adopted directly for VLSI

simulation according to the mappings described as follows.

All voltage levels in the VLSI neuron are designed to be

five times greater than their corresponding values in biological

neurons, i.e., VVLSI = 5∗VBIO, while the time scale is identical

for both VLSI and biological neurons. Let CVLSI and CBIO

represent the membrane capacitances of VLSI and biological

neurons, respectively. The conductance mapping is propor-

tional to the capacitance ratio as gVLSI/gBIO = CVLSI/CBIO.

The current mapping then equals the product of the voltage

TABLE I

Parameters of Different Neurons Simulated in VLSI

FS neuron RS neuron LTS neuron

CM (µF/cm2) 1 1 1

Area (cm2) 14 × 10−5 29 × 10−5 29 × 10−5

gstim (mS/cm2) 1.08 1.08 1.08

gNa (mS/cm2) 44 44 44
ENa (mV) 50 50 50
τm (ms) 0.07 0.07 0.07
Voff,m (mV) −34.42 −34.42 −34.42
Vslope,m (mV) 6.47 6.47 6.47
τh (ms) 0.36 0.36 0.36
Voff,h (mV) −39.07 −39.07 −39.07
Vslope,h (mV) 3.932 3.932 3.932

gK (mS/cm2) 10 10 5–10
EK (mV) −90 −90 −90
τn (ms) 1 1 1
Voff,n (mV) −29.08 −29.08 −29.08
Vslope,n (mV) 7.854 7.854 7.854

gleak (mS/cm2) 0.1 0.1 0.1
Eleak (mV) −70 −70 −70

gCa (mS/cm2) – 0.35 2
ECa (mV) – −90 120
τs (ms) – 200 0.65
Voff,s (mV) – −35 −115
Vslope,s (mV) – 10 6.2
τu (ms) – – 100
Voff,u (mV) – – −120
Vslope,u (mV) – – 16

and conductance mappings, i.e., IVLSI/IBIO = 5 ∗ CVLSI/CBIO.

In the Pamina chip, CVLSI = 5nF and the biological neurons

have CBIO = CM · Area with CM and Area given in Table. I.

The only difference between the VLSI and biological neu-

rons is that the dynamics of gating variables in [18] are

modeled as dλ/dt = αλ(VM) · (1 − λ) − βλ(VM) · λ instead

of (2). The parameters τλ, Voff,λ, and Vslope,λ are thus extracted

by:

1) calculating αλ(VM) and βλ(VM) over the range VM =

[−100, 100] mV;

2) deriving λ∞(VM) according to λ∞ = αλ/(αλ + βλ);

3) setting the VM corresponding to λ∞ = 0.5 as Voff,λ;

4) and then extracting Vslope,λ at a specific λ∞.

In addition, τλ is simply calculated from τλ(VM) = [αλ(VM) +

βλ(VM)]−1 at VM = −70 mV.

Three types of neurons, the fast-spiking (FS) neurons, the

Regular-Spiking (RS) neurons, and the low-threshold-spiking

(LTS) neurons were simulated in our experiments. Table I

summarized the parameter values extracted from [18]. For the

RS neuron, the calcium conductance (ICa) was programmed

to realize the slow potassium current (IM) with (p, q) = (1, 0).

For the LTS neuron, (p, q) = (2, 1) and τs = 0.65 ms were set

to realize the low-threshold calcium current (IT ) in [18].

B. Noise Injection

While the stochastic behaviors of biological neurons were

reproduced with remarkable precision in [20] by adding white

noise (σ · W(t)) to the kinetics of gating variables, the Pam-

ina chip originally designed for simulating deterministic HH

models only allowed the noise to be added to the kinetics of
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Fig. 2. Responses of a stochastic FS neuron in VLSI with Vn = 800 mVpp

and (a) VS = 2.33-V, (b) VS = 2.34-V, (c) VS = 2.37-V.

Fig. 3. Superimpose of 37 spikes generated by a stochastic FS neuron in
VLSI with VS = 2.34−-V and Vn = 800 mVpp.

the membrane voltage as (4)

CM

dVM

dt
= −

∑

i

Iion,i +
∑

j

Isyn,j + Istim + σ · W(t). (4)

Let VM = VMd + VMs, with VMd and VMs representing the

deterministic and the stochastic components, respectively. By

Taylor expansion, λ∞(VMd + VMs) can be expressed as

λ∞(VMd + VMs) = λ∞(VMd) + λ′

∞
(VMd) · VMs + o(VMs) (5)

where o(VMs) represents high-order terms of VMs. Equation (5)

indicates that although the white noise in (4) can be transferred

to the dynamics of λ in (2) via VM , the transferred noise,

λ′

∞
(VMd) ·VMs + o(VMs), is no longer white due to the filtering

effect by (4). Furthermore, VMs is nonlinearly transformed by

the sigmoid function. Adding white noise to the kinetics of

VM could thus result in different responses from adding white

noise to the kinetics of λ.

With this note in mind, we superimposed the noise signal

Vn on the stimulating signal VS in the Pamina chip to obtain

Vstim = VS + Vn [Fig. 1(b)]. Vstim was then converted into

the current Istim = gstim(Vstim − Vref ), wherein the stochastic

component of Istim corresponded to σ · W(t) in (4). The effect

of the noise on different types of neurons was then explored

and discussed as follows.

Fig. 4. (a) Response of a stochastic RS neuron in VLSI to a step-input
stimulation rising from VS = 1.3-V to VS = 2.4-V at t = 0.2 s. (b) Inverse of
inter-spike-interval of a stochastic RS neuron in VLSI in response to the same
depolarizing stimulation lasting for 1600 ms with various levels of noise.

IV. Simulating Stochastic Neurons in VLSI

A. Fast-Spiking Neurons

The FS neuron is a major class of neurons in the cerebral

cortex, involving only INa, IK, and Ileak. In the absence of

noise injection, the FS neuron simulated in the Pamina

chip generates spikes only when VS ≥ 2.34−V. With

Vn = 800 mVpp superimposed on VS , the measured responses

of the FS neuron to:

1) subthreshold (VS = 2.33-V);

2) suprathreshold1 (VS = 2.34-V);

3) above-threshold (VS = 2.37-V) stimulation are shown in

Fig. 2.

Under subthreshold stimulation, the noise induced spontaneous

firings. Suprathreshold stimulation then leads to increased

spiking frequency and reduced frequency variation. As VS is

well above the threshold, the spiking frequency approaches

constant while the spiking amplitude remains slightly variable

due to the presence of noise. These phenomena have been

reported in biological experiments both in vivo and in vitro

[2], [5].

As VM is polarized to around the same minimum voltage af-

ter each spike generation, the minimum voltage can be thought

of as the initial state from which the neuron is discharged by

VS of generate the next spike. Fig. 3 superimposes 37 spikes

generated under the suprathreshold stimulation, aligning their

initial states with t = 0. With a constant VS , the time required

for discharging the membrane over the spiking threshold varies

from one spike to another. Such noise-induced variability has

been widely observed in biological neurons [17]. Although the

variability could impede neurons from coding information as

spike timing precisely, it has been found useful for auditory

neurons, for example, to encode distinct features efficiently

[4]. Therefore, the results here demonstrate the feasibility of

reproducing the stochastic behaviors of biologically realistic

neurons in VLSI by simply adding noise to the neuronal

membrane.

1The quantitative definition for suprathreshold stimulation is that the prob-
ability of generating spikes under suprathreshold stimulation is 0.5 [25].
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Fig. 5. (a)VM and (b)IT of a LTS neuron in VLSI in response to a
hyperpolarizing stimulation which was dismissed by changing VS = 2.22-V
to VS = 2.3-V at t = 0.2 s.

Fig. 6. Responses of a LTS neuron in VLSI to Vn = 1.8 Vpp superimposed
on a hyperpolarizing stimulation which was dismissed abruptly by changing
VS = 2.22-V to VS = 2.3-V at t = 0.2 s.

B. Regular-Spiking Neurons

The RS neuron has been the largest class of neurons in

the neocortex. The slow potassium current (IM) is activated

by the depolarization of neuronal membranes. Once activated,

IM functions as an extra polarizing current, causing the spiking

frequency to adapt toward a minimum.

With VS stepping from 1.3-V (inhibition) to 2.4-V (above

threshold) at t = 0.2s and Vn = 300 mVpp, the measured re-

sponses of the stochastic RS neuron in the Pamina chip

are shown in Fig. 4(a). The frequency adaptation is clearly

shown, and the noise distorts the spiking frequency during

adaptation. Let the inverse of the inter-spike-interval (ISI)

between consecutive spikes approximate the instantaneous

spiking frequency. Fig. 4(b) plots the spiking frequency of the

RS neuron during 1600 ms of the above-threshold stimulation

(VS = 2.4-V). Without noise, the spiking frequency adapts

from 137 Hz to 25 Hz gradually. The variability around 25 Hz

is attributed to the clockfeedthroughs in the PCI system. As the

noise is increased, the adaptation process becomes distorted.

The initial firing frequency further reduces when Vn is greater

than 300 mVpp, owing to the serious threshold variations

induced by the noise. On the contrary, the adaptation rate is

nearly constant for different Vn. This is because IM with a

large τs (200 ms) is less affected by noise.

This experiment demonstrates that the effect of noise can

be studied efficiently by VLSI simulation in real-time, and

the same should hold as a large network of neurons is of

concern. Although software tools such as NEURON can also

complete the simulation in Fig. 4(a) within negligible time,

the time required would increase dramatically as the number

of neurons grows.

Fig. 7. Responses of a FS neuron to (a) sinusoidal and (b) square inputs
with an offset of 2.34-V and an amplitude of 30 mV. The Vstim has been
shifted by −0.7-V.

Fig. 8. Statistical firing probability of a deterministic FS neuron in response
to (a) sinusoidal and (b) square waves.

C. Low-Threshold-Spiking Neurons

The major distinctive behavior of the LTS neuron is the

generation of a burst of spikes at the “off-set" of a hyper-

polarizing current stimulus. This property has been shown

related to the low-threshold calcium current (IT ). With the

Pamina chip programmed to simulate the LTS neuron, the

neuron generates post-inhibitory rebounds after the release

of a hyperpolarizing stimulation (at t = 0.2 s), as shown

in Fig. 5. The corresponding IT is shown to function as

a depolarizing current, inducing the spikes during its slow

inactivation.

As Vn = 1.8Vpp is superimposed on the same hyperpolarizing

stimulation, the LTS neuron responds as shown in Fig. 6.

Before the hyperpolarization ended (t < 0.2 s), the neuron

generates no spikes even if the noise amplitude plus the hy-
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Fig. 9. Responses (VM ) of a stochastic FS neuron with Vn = 800 mVpp

superimposed on (a) sinusoidal and (b) square stimuli, VS . The total input
Vstim = VS + Vn has been shifted by −0.7-V in the plots.

perpolarizing stimulation already exceeds the firing threshold

(2.34-V). This is because the noise has a maximum amplitude

with a very low likelihood and in a short period of time.

After t > 0.2s, the post-inhibitory rebounds are evoked by

the stimulation off-set, but the spiking frequency is distorted.

The magnified window further reveals dynamics analogous

to the afterdepolarization (ADP) and afterhyperpolarization

(AHP) observed in biological neurons. The ADP and AHP

could play an important role in affecting the synaptic plasticity

in the hippocampus [23] and has been simulated with a more

complex HH model with noise added to gating variables in

[20]. The feasibility of simulating sophisticated stochastic

behaviors such as ADP and AHP in real-time in VLSI is

thus demonstrated. Nevertheless, adding noise to the gating

variables would be much more effective, as discussed in

Section III-B.

D. Noise-Enhanced Signal Modulation

Except for the rich stochastic behaviors explored above,

noise has been shown useful for enhancing neurons’ sensitivity

to weak signals by the mechanism called stochastic resonance

[26]. We here demonstrate the noise-enhanced sensitivity as

the responses of a stochastic FS neuron to two weak stimuli,

one with a sinusoidal waveform and the other with a square

waveform. Both stimuli have an amplitude of 30 mV, an offset

of 2.34-V, and a frequency of 5 Hz. The offset level introduces

suprathreshold stimulation to the neuron. Without noise, the

neuron only fires when the stimulating waveform exceeds its

firing threshold, as shown in Fig. 7. The firing frequency

and the separation between consecutive groups of spikes are

Fig. 10. Statistical firing probability of a stochastic FS neuron in response
to (a) sinusoidal and (b) square waves.

very similar for both stimuli. Let the timing of each spike

be calculated as its phase with respect to the stimulating

waveforms. By recording the response to each stimulus for 2 s,

the statistical distributions of the spike timing for both stimuli

are obtained and shown in Fig. 8. The square waveform simply

results in a wider distribution than the sinusoidal wave. Given

the two spike trains are received by a post-synaptic neuron,

the post-synaptic neuron could only detect the frequency but

not the waveform of the stimuli.

By contrast, with Vn = 800 mVpp added to the input, the FS

neuron exhibits dramatically different responses, as shown in

Fig. 9. Although the sinusoidal or square waveform is masked

off by the large noise, the ISIs are modulated in accordance

with the waveforms. From a prolonged recording of 20 s

for each stimulus, Fig. 10 plots the statistical distributions

of the spike timing for the two stimulating waveforms. The

histograms reconstruct the waveforms of the input stimuli,

indicating that the modulated ISIs allow post-synaptic neurons

to perceive the waveforms from spike timing. The advantage

and the utility of noise-induced stochastic behavior in neurons

is first demonstrated in VLSI. Certainly, an optimum level of

noise exists for maximizing the sensitivity, and the optimum

level is different from one case to another.

V. Conclusion

This brief demonstrated the feasibility of simulating various

stochastic neurons in VLSI by simply injecting noise into

the membrane capacitor of a HH model in VLSI. Various

stochastic behaviors observed in biological neurons have been

reproduced in VLSI realistically. The effect of noise on

different neurons has thus been studied efficiently. These

promising results point toward the development of analog

VLSI systems able to simulate stochastic neuronal networks

in real or accelerated time. The influence of noise on synaptic

connections and network behaviors will then be explored. In

addition, hybrid silicon-neuron networks could be built to ease

the investigation on how individual parameters affect stochas-

tic neural computation, as well as to verify the suggestions






